粒子群优化算法及其应用研究【精品文档】(完整版)
粒子群算法 (1)【精品文档】(完整版)

中文翻译用于电磁运用的量子粒子群优化算法摘要---一种新的用于电磁运用的粒子群优化(PSO)的技术被提出来了,该技术是基于量子力学提出的,而不是以前版本中我们所指的经典粒子群算法的假设的牛顿定律。
提出一个通用的程序是衍生许多不同版本的量子粒子群优化算法(算法)。
粒子群算法首次运用于线性排列和阵列天线的合体。
这是在天线工程师使用以前的一个标准难题,该粒子群算法性能和优化版的经典算法进行比较,优于经典算法的地方体现在收敛速度的时间上和更好的取得成本花费。
作为另一个应用程序,该算法用于寻找一个集合中的无穷小的介质,制造出相同远近不同的领域循环介质谐振器天线(DRA)。
此外采用粒子群算法的方法是要为DRA找到一种等效电路模型,这个DRA,可以用来预测一些如同Q-factor一样的有趣参数。
粒子群算法只包含一个控制参数,这个参数很容易随着反复试验或者简单的线性变异而调整。
基于我们对物理知识的理解,不同算法理论方面的阐释呈现出来。
索引词---天线阵列、电介质指数,粒子群优化,量子力学。
一介绍粒子群算法的进化是一种全局搜索策略,它能有效地处理任意的优化问题。
在1995年,肯尼迪和埃伯哈特首次介绍了粒子群优化算法。
后来,它引起了相当大的反响并且证明能够处理困难的优化问题。
粒子群算法的基本思想是模拟生物群之间的相互作用。
能阐明这个概念的一个很好的例子就是一大群蜜蜂的类比。
蜜蜂(候选方案)允许在一个特定的领域飞行寻找食物,人们相信经过一段时间(世代沿袭,更替),蜜蜂会聚集在食物集中的地区(总体最优值)。
在每一代中,每一只蜜蜂都会通过采集局部和全局中好的信息来跟新自己目前的住所,达到目前,达到所有蜜蜂中名列前茅的位置。
如此的相互作用和连续的更新会保证达到全局最优!这个方法由于在全局优化困难中简单和高能力的搜索通过电磁团体得到了相当高的重视。
经典粒子群算法最近被用于电磁学上,而且证明,相对于其他得到认可了的进化技术算法是相当有竞争力的。
粒子群优化算法的改进及应用研究

粒子群优化算法的改进及应用研究粒子群优化算法的改进及应用研究摘要:随着计算机技术的广泛应用,优化算法的研究和应用也越来越受到关注。
粒子群优化算法(PSO)作为一种新兴的优化算法,具有较高的收敛速度和全局搜索能力。
然而,传统的PSO算法在处理复杂问题时容易陷入局部最优解的问题。
本文基于传统PSO算法,提出了一种改进的粒子群优化算法,并将其应用于实际问题中,取得了良好的结果。
一、引言粒子群优化算法(PSO)是一种经典的启发式优化算法,最早由Eberhart和Kennedy于1995年提出。
其基本思想是模拟鸟群中鸟的行为,通过个体和社会信息的交流来寻找最优解。
在过去的几十年里,PSO算法取得了很多成功的应用,并在多个领域取得了良好的效果。
然而,传统的PSO算法存在局部最优解的问题,尤其在高维复杂问题中表现不佳,因此需要对其进行改进。
二、粒子群优化算法的原理和改进思路1. 粒子群优化算法的原理粒子群优化算法的基本原理是通过模拟鸟群中鸟的行为,每个粒子代表一个潜在解,在解空间中搜索最优解。
每个粒子根据历史最优解和邻域最优解进行位置更新,同时考虑个体和群体的信息。
通过迭代更新,粒子逐渐趋近于最优解。
2. 改进思路为了解决传统PSO算法局部最优解问题,本文提出了以下改进思路:(1)引入惯性权重:传统PSO算法的速度更新中只考虑历史最优解和邻域最优解,没有考虑到当前速度的影响。
为了引入速度的信息,本文在速度更新公式中引入了惯性权重。
惯性权重用于调节上一次速度对当前速度的影响程度,可以提高算法的全局搜索能力。
(2)引入自适应参数:传统PSO算法通常需要手动设置参数,对于不同问题,最优参数的选择可能不同。
为了克服这个问题,本文引入了自适应参数机制。
通过遗传算法等方法,自动调整PSO算法的参数,提高算法的鲁棒性和适应性。
三、实验设计与结果分析本文将改进的PSO算法应用于函数优化问题和组合优化问题中,并与传统PSO算法进行对比实验。
多目标优化的粒子群算法及其应用研究

多目标优化的粒子群算法及其应用研究多目标优化问题是指在优化问题中存在多个冲突的目标函数,需要找到一组解,使得所有目标函数能够达到最优或近似最优的解。
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,通过模拟鸟群觅食行为来寻找最优解。
多目标优化的粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)是对传统的PSO算法进行改进和扩展,以解决多目标优化问题。
MOPSO算法通过在空间中形成一组粒子,并根据自身的经验和全局信息进行位置的更新,逐步逼近Pareto最优解集,以找到多个最优解。
其基本步骤如下:1.初始化一组粒子,包括粒子的位置和速度,以及不同的目标函数权重。
2.对于每个粒子,计算其目标函数值和适应度值。
3.更新个体最优位置和全局最优位置,以及粒子的速度和位置。
更新方式可根据不同的算法变体而有所差异。
4.检查是否满足终止条件,如达到最大迭代次数或达到预设的精度要求。
5. 如果不满足终止条件,则返回第3步;否则,输出Pareto最优解集。
MOPSO算法在多目标优化中具有以下优点:-非依赖于目标函数的导数信息,适用于复杂、非线性、高维的优化问题。
-可以同时全局最优解和局部最优解,避免陷入局部最优点。
-通过自适应权重策略,得到一组不同的最优解,提供决策者进行选择。
MOPSO算法在许多领域都有广泛的应用-工程设计:多目标优化问题在工程设计中很常见,例如在汽车设计中优化油耗与性能的平衡。
-经济学:多目标优化可以用于投资组合优化问题,以平衡投资收益与风险。
-物流与运输:多目标优化问题可应用于货物分配与路线规划中,以实现最低成本与最短时间的平衡。
综上所述,多目标优化的粒子群算法(MOPSO)通过模拟鸟群觅食行为,以找到一组解,使得所有目标函数能够达到最优或近似最优的解。
MOPSO算法在工程设计、经济学、物流与运输等领域都有广泛的应用。
粒子群算法文档【精品文档】(完整版)

§6.4 粒子群优化算法人们提出了群搜索概念,利用它们来解决现实中所遇到的优化问题,并取得了良好的效果.粒子群优化算法就是群体智能中的一种算法.粒子群算法是一种演化计算技术,是一种基于迭代的优化工具,系统初始化为一组随机解,通过迭代搜寻最优值,将鸟群运动模型中栖息地类比为所求问题空间中可能解的位置,利用个体间的传递,导致整个群体向可能解的方向移动,逐步发现较好解.6.4.1 基本粒子群算法粒子群算法,其核心思想是对生物社会性行为的模拟.最初粒子群算法是用来模拟鸟群捕食的过程,假设一群鸟在捕食,其中的一只发现了食物,则其他一些鸟会跟随这只鸟飞向食物处,而另一些会去寻找更好的食物源.在捕食的整个过程中,鸟会利用自身的经验和群体的信息来寻找食物.粒子群算法从鸟群的这种行为得到启示,并将其用于优化问题的求解.若把在某个区域范围内寻找某个函数最优值的问题看作鸟群觅食行为,区域中的每个点看作一只鸟,现把它叫粒子(particle).每个粒子都有自己的位置和速度,还有一个由目标函数决定的适应度值.但每次迭代也并不是完全随机的,如果找到了新的更好的解,将会以此为依据来寻找下一个解.图6.21给出了粒子运动的思路图.图6.21粒子运动的路线图下面给出粒子群算法的数学描述.假设搜索空间是D维的,群中的第i个粒子能用如下D维矢量所表示:12(,,,)i i i iD X x x x '=(6.43)每个粒子代表一个潜在的解,这个解有D 个维度.每个粒子对应着D 维搜索空间上的一个点.粒子群优化算法的目的是按照预定目标函数找到使得目标函数达到极值的最优点.第i 个粒子的速度或位置的变化能用如下的D 维向量表示:12(,,,)i i i iD V v v v '= (6.44)为了更准确地模拟鸟群,在粒子群优化中引入了两个重要的参量.一个是第i 个粒子曾经发现过的自身历史最优点(Personal best ,pbest),可以表示为:12(,,,)i i i iD P p p p '= (6.45)另一个是整个种群所找到的最优点(Global best ,gbest),可以表示为:12(,,,)g g g gD P p p p '= (6.46)PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解.在每一次的迭代中,粒子通过跟踪两个“极值”(i P 和g P )来更新自己.在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置:1122(1)()()(()())()(()())id id id id gd id v t wv t c r t p t x t c r t p t x t +=+-+-,(速度更新公式)(6.46)(1)()(1)id id id x t x t v t +=++(位置更新公式) (6.47)其中w 称之为惯性因子,在一般情况下,取1w =,1,2,,t G = 代表迭代序号,G 是预先给出的最大迭代数;1,2,,d D = , 1,2,,i N = ,N 是群的大小;1c 和2c 是正的常数,分别称为自身认知因子和社会认知因子,用来调整i P 和g P 的影响强度.1r 和2r 是区间[0,1]内的随机数.由(6.46)和(6.47)构成的粒子群优化称为原始型粒子群优化.从社会学的角度来看,公式(6.47)的第一部分称为记忆项,表示上次优化中的速度的影响;公式第二部分称为自身认知项,可以认为是当前位置与粒子自身最优位置之间的偏差,表示粒子的下一次运动中来源于自己经验的部分;公式的第三部分称为社会认知项,是一个从当前位置指向种群最佳位置的矢量,反映了群内粒子的协作和知识共享.可见,粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动.随着迭代进化的不断进行,粒子群逐渐聚集到最优点处,图6.22 给出了某个优化过程中粒子逐渐聚集的示意图.图6.22 粒子群在优化过程聚集示意图 综上所述,我们得到如下基本粒子群算法流程:(1) 设定参数,初始化粒子群,包括随机位置和速度;(2) 评价每个粒子的适应度;(3) 对每个粒子,将其当前适应值与其曾经访问过的最好位置pbest 作比较,如果当前值更好,则用当前位置更新pbest ;(4) 对每个粒子,将其当前适应值与种群最佳位置gbest 作比较,如果当前值更好,则用当前位置更新gbest ;(5) 根据速度和位置更新公式更新粒子;(6)若未满足结束条件则转第二步;否则停止迭代.迭代终止条件根据具体问题一般选为迭代至最大迭代次数或粒子群搜索到的最优位置满足预定的精度阈值.6.4.2 粒子群算法的轨迹分析1998年,Ozcan 在文献[13]中首先对粒子在一维空间的轨迹进行了讨论,并在1999年将粒子运动的轨迹分析推广到多维空间的情形,2002年,文献[14]从矩阵代数的观点讨论了粒子的轨迹问题,本节采用[15]中的差分方程思想分别讨论单个粒子在一维以及二维空间的轨迹问题。
粒子群算法【精品文档】(完整版)

粒子群算法摘要:粒子群优化算法是由James Kennedy和 Russell Eberbart 设计的一种仿生优化计算方法。
PSO算法的基本设计思想来源于两个方面分别是人工生命和进化计算,设计者通过研究动物群体以及人类行为模式的计算机模拟,然后不断的试错、修改而逐渐的到算法的原型。
PSO算法的运行机理不是依靠个体的自然进化规律,而是对生物群体的社会行为进行模拟。
它最早源于对鸟群觅食行为的研究。
在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种相互作用和影响是通过信息共享机制体现的。
PSO算法就是对这种社会行为的模拟即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体朝着更好的方向发展。
关键词:粒子群优化算法;社会行为;鸟群觅食;信息共享1 粒子群算法设计思想粒子群算法的思想来源于对鸟捕食行为的模仿,虽让鸟群在捕食过程中会发生改变飞行方向、聚集等一系列不可预测的行为但整体还是呈现一种有序性,研究证明是因为鸟群中存在一种信息共享机制。
可以设想一群鸟在随机搜索食物,刚开始每只鸟均不知道食物在哪里,所以均无特定的目标进行飞行,但是它们知道哪只鸟距离食物最近,还有自己曾经离食物最近的位置,每只鸟开始通过试图通过这两个位置来确定自己往哪个方向飞行。
因此可以将鸟群觅食行为看做一个特定问题寻找解的过程。
如果我们把一个优化问题看做是空中觅食的鸟群,那么粒子群中每个优化问题的可行解就是搜索空间中的一只鸟,称为“粒子”,“食物”就是优化问题的最优解。
个体找到食物就相当于优化问题找到最优解。
当然这里的鸟群(粒子)是经过人工处理的,它们均有记忆功能,没有质量和体积,不占空间,每个粒子均有速度和位置两个属性,同时每个粒子都有一个由优化问题决定的适应度来评价粒子的“好坏”程度,显然,每个粒子的行为就是总追随者当前的最优粒子在解空间中搜索。
2 粒子群优化算法2.1 标准粒子群优化算法首先提出两个概念,(1)探索:是值粒子在一定程度上离开原先的搜索轨迹,向新的方向进行搜索,体现了向未知区域开拓的能力,可以理解为全局搜索。
多目标优化的粒子群算法及其应用研究共3篇

多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。
在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。
传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。
因此,多目标优化算法应运而生。
其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。
1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。
在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。
每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。
粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。
通过粒子群的迭代过程,粒子逐渐找到最优解。
2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。
粒子群优化算法及其应用研究【精品文档】(完整版)

摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
改进的粒子群优化算法研究及其若干应用

改进的粒子群优化算法研究及其若干应用一、本文概述随着和计算智能的快速发展,群体智能优化算法已成为解决复杂优化问题的重要手段。
其中,粒子群优化(Particle Swarm Optimization, PSO)算法作为一种模拟鸟群、鱼群等生物群体行为的优化算法,因其简单易实现、参数少、搜索速度快等优点,被广泛应用于函数优化、神经网络训练、模式识别、工程设计等多个领域。
然而,传统的粒子群优化算法也存在易陷入局部最优、收敛速度慢、全局搜索能力弱等问题。
因此,对粒子群优化算法进行改进,提高其优化性能和应用范围,具有重要的理论价值和现实意义。
本文首先介绍了粒子群优化算法的基本原理和发展历程,分析了其优缺点及适用场景。
在此基础上,重点研究了几种改进的粒子群优化算法,包括引入惯性权重的PSO算法、基于社会心理学的PSO算法、基于混合策略的PSO算法等。
这些改进算法在保持PSO算法原有优点的同时,通过调整粒子运动规则、引入新的优化策略、结合其他优化算法等方式,提高了算法的收敛速度、全局搜索能力和优化精度。
本文还将探讨这些改进的粒子群优化算法在若干实际问题中的应用,如函数优化问题、神经网络训练问题、路径规划问题等。
通过实际应用案例的分析和比较,验证了改进算法的有效性和优越性,为粒子群优化算法在实际问题中的应用提供了有益的参考和借鉴。
本文旨在深入研究和改进粒子群优化算法,探索其在复杂优化问题中的应用潜力,为推动群体智能优化算法的发展和应用做出贡献。
二、粒子群优化算法的基本原理粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化搜索技术,由Eberhart和Kennedy于1995年提出。
该算法模拟了鸟群觅食过程中的社会行为,通过个体(粒子)之间的信息共享和协作,达到在搜索空间内寻找最优解的目的。
在PSO中,每个粒子代表问题解空间中的一个候选解,每个粒子都有一个适应度值,用于衡量其解的优劣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度
目录
摘要 (I)
目录 (II)
1.概述 (1)
1.1引言 (1)
1.2研究背景 (1)
1.2.1人工生命计算 (1)
1.2.2 群集智能理论 (2)
1.3算法比较 (2)
1.3.1粒子群算法与遗传算法(GA)比较 (2)
1.3.2粒子群算法与蚁群算法(ACO)比较 (3)
1.4粒子群优化算法的研究现状 (4)
1.4.1理论研究现状 (4)
1.4.2应用研究现状 (5)
1.5粒子群优化算法的应用 (5)
1.5.1神经网络训练 (6)
1.5.2函数优化 (6)
1.5.3其他应用 (6)
1.5.4粒子群优化算法的工程应用概述 (6)
2.粒子群优化算法 (8)
2.1基本粒子群优化算法 (8)
2.1.1基本理论 (8)
2.1.2算法流程 (9)
2.2标准粒子群优化算法 (10)
2.2.1惯性权重 (10)
2.2.2压缩因子 (11)
2.3算法分析 (12)
2.3.1参数分析 (12)
2.3.2粒子群优化算法的特点 (14)
3.粒子群优化算法的改进 (15)
3.1粒子群优化算法存在的问题 (15)
3.2粒子群优化算法的改进分析 (15)
3.3基于量子粒子群优化(QPSO)算法 (17)
3.3.1 QPSO算法的优点 (17)
3.3.2 基于MATLAB的仿真 (18)
3.4 PSO仿真 (19)
3.4.1 标准测试函数 (19)
3.4.2 试验参数设置 (20)
3.5试验结果与分析 (21)
4.粒子群优化算法在支持向量机的参数优化中的应用 (22)
4.1支持向量机 (22)
4.2最小二乘支持向量机原理 (22)
4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)
4.4 仿真 (24)
4.4.1仿真设定 (24)
4.4.2仿真结果 (24)
4.4.3结果分析 (25)
5.总结与展望 (26)
5.1 总结 (26)
5.2展望 (26)
致谢 (28)
参考文献 (29)
Abstract (30)
附录 (31)
PSO程序 (31)
LSSVM程序 (35)
1.概述
1.1引言
最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
它广泛的存在于农业,国防,工程,交通,金融,能源,通信,材料等诸多领域。
最优化技术在上述领域的应用已经产生了巨大的经济效益和社会效益。
国内外的实践证明,在同样条件下,经过优化技术的处理,对系统效率的提高,能耗的降低,资源的合理利用及经济效益提高均有显著的效果,而且随着处理对象规模的增大,这种效果也更加显著。
但随着处理对象规模的增大,优化问题也越来越复杂,而经典的优化技术对问题的约束比较大,如梯度下降法要求优化函数是可导等,因此,对于新型优化算法的研究具有重要的意义[1]。
1.2研究背景
1.2.1人工生命计算
人们从生命现象中得到启示,发明了许多智能的优化方法来解决复杂优化问题。
现在已有很多源于生物现象的计算技巧。
例如,人工免疫模拟生物免疫系统的学习和认知功能,人工神经网络是简化的大脑模型, 遗传算法是模拟基因进化的过程。
在计算智能(computational intelligence)领域有两种基于群体智能swarm intelligence的算法,粒子群优化算法(particle swarm optimization)和蚁群算法(ant colony optimization)。
蚁群优化算法模拟了蚂蚁群体在路径选择和信息传递方面的行为,而粒子群优化算法模拟群居动物觅食迁徙等群体活动中个体与群体协调合作的工作过程。
这类借鉴了模拟生命系统行为功能和特性的科学计算方法称为人工生命计算。
人工生命计算包括两方面的内容,研究如何利用计算技术研究生物现象和研究如何利用生物技术研究计算问题。
人工神经网络,粒子群优化算法,遗传算法,蚁群优化算法等都属于人工生命计算的范畴[2]。
本文详细介绍的粒子群优化算法是其中的一种新兴计算方法。
它同遗传算法类似,同属随机迭代优化工具。
同遗传算法等其他人工生命计算相比,粒子群算法概念简单,容易实现,调节参数较少。
目前粒子群算法越来越引起人们的关注。
1.2.2 群集智能理论
我们经常能够看到成群的鸟、鱼或其它生物,这些生物的聚集行为有利于它们觅食和逃避捕食者。
生物的群落动辄以十、百、千甚至万计,它们是如何迅速完成聚集、移动等行为呢?这些群落一般都不存在一个统一的指挥者,那么一定有某种潜在的能力或者规则保证了这些行为的同步。
科学家们普遍认为上述行为是基于不可预知的种群社会行为中的群集智能。
群集智能((Swarm Intelligence)指的是众多无智能的简单个体组成的群体,通过相互间的简单合作表现出智能行为的特性。
群居生物涌现的群集智能正越来越得到人们的重视,成为近年来人工智能研究的一个热点课题。
Millonasp在开发人工生命算法时提出了群集智能的概念,并提出五点原则[3]:
1)接近性原则:群体应能够实现简单的时空计算;
2)优质性原则:群体能够响应环境要素;
3)变化相应原则:群体不应把自己的活动限制在一个狭小的范围:
4)稳定性原则:群体不应每次随环境改变自己的模式;
5)适应性原则:群体的模式应在计算代价值得的时候改变。
1.3算法比较
1.3.1粒子群算法与遗传算法(GA)比较
为更清楚地认识PSO算法和GA算法,下面对两者做个简单比较。
PSO算法和GA算法的相同点:
(1)都属于仿生算法。
PSO算法主要模拟鸟类觅食、人类认知等社会行为而研究;GA算法主要借用生物进化中“适者生存”的规律。
(2)都属全局优化方法。
在解空间都随机产生初始种群,因而算法在全局的解空间进行搜索,且将搜索重点集中在性能高的部分。
(3)都属随机搜索算法。
(4)隐含并行性。
搜索过程是从问题解的一个集合开始的,而不是从单个个体开始,具有隐含并行搜索特性,从而减小了陷入局部极小的可能性。
(5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。