弹性力学重点
弹性力学知识点总结

弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学复习重点+试题及答案【整理版】

)))))))弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
弹性力学知识点总结

一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程:揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定.反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系.2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明.答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体"?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的.(2)假定物体是完全弹性的。
(3)假定物体是均匀的.(4)假定物体是各向同性的.(5)假定位移和变形是微小的。
第二章弹性力学基础知识

19
用矩阵表示:
yxx
xy y
xz yz
z
zx
zy
其中,只有6个量独立 z。x zy z
xy yx yz zy 剪应力互等定理 zx xz
应力符号的意义(P8)
x
z
yx xz
y yz x
zy
yz
xy yx y
zx
O
y z
xy
第1个下标 x 表示τ所在面的法线方向; 第2个下标 y 表示τ的方向.
符号:
X Y Z —— 面力矢量在坐标轴上投影 k
Q
Z
X S Y
单位: 1N/m2 =1Pa (帕)
i Oj
y
x
1MN/m2 = 106Pa = 1MPa (兆帕)
正负号: X Y Z 的正负号由坐标方向确定。
16
例:表示出下图中正的体力和面力
O(z)
x
X
X
Y
Y
y
O(z)
x
Y
X
X
Y
y
17
2. 应力
5
地位
弹性力学在力学学科和工程学科中,具
有重要的地位: 弹性力学是其他固体力学分支学科的基础。
弹性力学是工程结构分析的重要手段。尤 其对于安全性和经济性要求很高的近代大型 工程结构,须用弹力方法进行分析。
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很 小的次要因素,抓住主要因素,从而建立 计算模型,并归纳为学科的基本假定。
符号:X、Y、Z为体力矢量在坐标轴上的投影 k X V Y
单位: N/m3
kN/m3
i Oj
y
弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学第一章

第一章 教学参考资料(一)本章的学习要求及重点1.弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别。
2.弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处。
3.弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。
(二)本章内容提要1.弹性力学的内容─弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2.弹性力学中的几个基本物理量:体力—— 分布在物体体积内的力、记号为,,,x y z f f f 。
量纲为L -2MT -2,以坐标正向为正。
面力—— 分布在物体表面上的力,记号为,,,x y z f f f 。
量纲为L -2MT -2 ,以坐标正向为正。
应力—— 单位截面面积上的内力,记号x xy στ⋯⋯,量纲为L -2MT -2,以正面正向为正,负面负向为正;反之为负。
形变—— 用线应变, x y εε和切应变xy γ表示,量纲为1,线应变以伸长为正,切应变以直角减小为正。
位移—— 一点位置的移动,记号为,,u v w ,量纲为L ,以坐标正向为正。
3.弹性力学中的基本假定理想弹性体假定—连续性,完全弹性,均匀性,各向同性。
小变形假定。
4.弹性力学问题的研究方法已知:物体的边界形状,材料性质,体力,边界上的面力或约束。
求解:应力、形变和位移。
解法:在弹性体区域V 内,根据微分体上力的平衡条件,建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件,建立物理方程。
在弹性体边界S 上,根据面力条件,建立应力边界条件,根据约束条件,建立位移边界条件。
然后在边界条件下,求解区域内的微分方程,得出应力、形变和位移。
(三)弹性力学的发展简史与其他任何学科一样,从这门力学的发展史中,我们可以看出人们认识自然的不断深化的过程:从简单到复杂,从粗糙到精确,从错误到正确的演变历史。
弹性力学 知识要点

弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。
外力分为体积力和面积力。
体力是分布在物体体积内的力,重力和惯性力。
体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。
内力,即物体本身不同部分之间相互作用的力。
凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。
连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。
完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。
均匀性,整个物体时统一材料组成。
各向同性,物体的弹性在所有各个方向都相同。
求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。
解释在物体内同一点,不同截面上的应力是不同的。
应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。
切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。
负面上沿坐标轴负方向为正,沿正方向为负。
材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。
试述弹性力学平面应力问题与平面应变问题的主要特征及区别。
平面应力问题:几何形状,等厚度薄板。
外力约束,平行于版面且不沿厚度变化。
平面应变问题:几何形状,横断面不沿长度变化,均匀分布。
外力约束,平行于横截面并不沿长度变化。
平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。
在推导平衡微分方程时我们主要用了连续性假定。
几何方程表示的是形变分量与位移分量之间的关系式。
试根据几何方程分析,应变分量与位移分量之间的关系,并解释原因。
当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。
在推导几何方程主要用了小变形假定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显着的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理
2 (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?
答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。
3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。
4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。
5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。
3 (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特
答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量xσ,yσ,xyτ存在,且仅为x,y的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量xε,yε,xyγ存在,且仅为x,y的函数。
4简述按应力求解平面问题时的逆解法。
所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
5有限元分析的解题步骤。
答:(1)力学模型的确定;(2)结构的离散化;(3)计算载荷的等效节点力;(4)计算各单元的刚度矩阵;(5)组集整体刚度矩阵;(6)施加便捷约束条件;(7)求解降阶的有限元基本方程;(8)求解单元应力;(9)计算结果的输出
7逆解法:
设定各种形式的、满足相容方程的应力函数,
求出应力分量后,根据应力边界条件判断该应力函数能解决什么问题。
8半逆解法:
针对所求问题,假定部分或全部应力分量的函数形式、从而推出应力函数的形式。
然后代入相容方程,求出应力函数的具体表达式。
最后求出应力分量,并考虑这些应力分量是否满足全部应力边界条件及多连体中的位移单值条件
9圣维南(Saint Venant)原理:
作用于物体某一局部区域内的外力系,可以用一个与之
静力等效的力系来代替。
而两力系所产生的应力分布只在力
系作用区域附近有显着的影响, 在离开力系作用区域较远处,
应力分布几乎相同
(1) 必须满足静力等效条件;
(2) 只能在次要边界上用圣维南原理,在主要边界上不能使用。
弹性力学问题的求解方法:
10按位移求解
以u、v为基本未知函数,将平衡方程和边界条件都用u、
v 表示,并求出u、v,再由几何方程、物理方程求出应力与
形变分量
11按应力求解
以应力分量为基本未知函数,将所有方程都用应力分量表示,并求出应力分量;再由几何方程、物理方程求出形变分量与位移
12. 混合求解
以部分位移分量和部分应力分量为基本未知函数,并求出这些未知量,再求出其余未知量。
以应力分量为基本未知函数,将所有方程都用应力分量表示,并求出应力分量;再由几何方程、物理方程求出形变
弹性力学概念
研究对象
材料力学基本上只研究所谓杆状构件,研究这种构件在拉伸(压缩)、剪切、扭转、弯曲作用下的应力和位移。
结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即杆系系统,如桁架、刚架。
弹性力学可对杆状构件作进一步的、较精确的分析;另外还对非杆状
结构,例如板和壳,以及挡土墙、堤坝、地基 等实体结构加以研究. 研究方法
材料力学:借助于直观和实验现象作一些假定,如平面假设等,然后由静力学、几何学、物理学三方面进行分析。
结构力学:与材料力学类同。
弹性力学:仅由静力平衡、几何方程、物理方程三方面分析,放弃了材力中的大部分假定。
弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物或其构件在弹性阶段的应力和位移,校核它 们是否具有所需的强度和刚度。
13边界条件:这里是指已知条件中弹性体外表面各部分点上所受的约束和荷载。
位移边界条件:约束已知的部分称为位移边界条件。
应力边界条件:荷载已知的部分称为应力边界条件。
混合边界条件:一部分约束已知,一部分荷载已知称为混合边界条件。
14应力状态指弹性体内任一点个个不同方向截面上应力的全部情况。
包括:任意方向斜截面的应力和坐标面方向平面上的关系;主应力及其所在方位,即主方向,主平面位置;一点应力极值的大小及应力变化范围。
展开的321230I I I σσσ-+-=
方程的三个系数为
1222222232x y z
x y y z z x xy yz zx x y z xy yz zx x yz y zx z xy I I I σσσσσσσσστττσσστττστστστ⎫=++⎪=++---⎬⎪=+---⎭
方程(2-6)称为应力状态特征方程,其系数的三个表达式称为应力状态三个不变量。
其所以不随坐标变化而变化,是因为物体受力平衡时,每点的应力状态就是确定的,并不随所取坐标系而变化。
所以特征方程和应力不变量反映了弹
性体内一点应力状态的确定性。
弹性体在受力过程中如果始终表示平衡,因而无动能变化,假定非机械能也无变化,则外力势能就完全转化为形变势能。
或者说,外力做功完全转化为变形能。
例如,在x 方向受均匀正应力x σ,相应的正应变为x ε,微分单元体每单位体积中具有的形变势能为12
x x σε,或者称为形变势能密度或比能。
再比如,x 和y 方向由均匀剪应力xy τ及相应的剪应变xy γ计算的比能就是12
xy xy τγ。
微元体六个独立应力分量及相应的六个应变分量都会产生比能。
根据能量守恒定理,微元体的全部比能可由下式计算,即
11()2
x x y y z z xy xy yz yz zx zx U σεσεσετγτγτγ=+++++ (4-8) 在一般情况下,应力和应变是位置坐标的函数,因而比能1U 也是位置坐标的函数。
这样,弹性体总的形变势能就可以由比能在弹性体范围内的积分来计算。
可以写成
1U U dxdydz =⎰⎰⎰ (4-9) 或()2
x x y y z z xy xy yz yz zx zx dxdydz
U σεσεσετγτγτγ+++++=⎰⎰⎰ (4-10) 平面应力问题→平面应变问题:E →
21E μ-,μ→1μμ- 平面应变问题→平面应力问题:E →2(12)(1)E μμ++,μ→1μμ
+ 位移边界条件:边界曲线上受约束的点有位移已知的边界条件。
s s u u v v =⎫⎬=⎭
(6-5) 应力边界条件:边界曲线上受荷载作用的点上有内力与面力平衡的已知条件
()()()()x s yx s xy s y s l m X l m Y σττσ⎫+=⎪⎬+=⎪⎭
(6-6) 混合边界条件:约束和荷载已知条件。
单连通体:弹性体由一条闭合曲线围成。
其边界条件称为简单边界条件。
多连通体:由两条以上闭合曲线围成一个弹性体。
平面问题中一点的应力状态(参考)
14、弹性力学中应力如何表示?正负如何规定?
答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。
并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。