激光跟踪仪介绍资料讲解
faro激光跟踪仪工作原理解析资料讲解

激光跟踪仪在飞机型面测量中的应用
飞机在部装和总装过程中需要检测的几何参数 主要包括轴线偏斜度、定位装置的角度偏差、距离、 平行度、垂直度以及部件外形孥日。这些几何参数 的计算是通过对一些几何元素(如点、线、型面等) 的测量得到的。这些几何元素的测量可直接由激光 跟踪仪完成,通过把CAD模型或理论数值和实际测 量值作对比来实现。激光跟踪仪测量系统测量型面 操作步骤分为三部分。第一步是测前准备工作,第 二部分是建立工装坐标系,第三步是在工装坐标系 下测量型面隔。这三部分内容既有联系又各自独立, 三部分工作可以连续进行,也可以分段进行。下面 对每—个操作步骤及操作中要注意的事项作详细的 介绍。
faro激光跟踪仪工作原理解析
激光干涉仪
从激光器发出的光束,经扩束准直后由分光镜 分为两路,并分别从固定反射镜和可动反射镜反射 回来会合在分光镜上而产生干涉条纹。当可动反射 镜移动时,干涉条纹的光强变化由接受器中的光电 转换元件和电子线路等转换为电脉冲信号,经整形、 放大后输入可逆计数器计算出总脉冲数,再由电子 计算机按计算式式中λ为 激光波长(N 为电脉冲总数), 算出可动反射镜的位移量L。使用单频激光干涉仪 时,要求周围大气处于稳定状态,各种空气湍流都 会引起直流电平变化而影响测量结果 。
6
全机水平测量数据处理及结果验证
在全机水平测量前, 首先要查出全机水 平测量点理论坐标值, 一般以飞机水平基准线、 对称轴线为基准, 以机头位置或对称轴线上其 他位置为起始原点, 建立水平测量点相对于水 平基准线和对称轴线下的理论空间坐标系, 然 后把实际测得标点坐标通过系统计算, 得出实 际测量值与理论值之间的差异,从而得到标点 的偏离情况, 同时, 计算出全机大部件的安装 角、倾斜角等。
7
激光跟踪仪

《机械制图》教案《机械制图》教案导学问题1.一张完整的零件图主要包括哪些内容?2. 机械图样中,表示可见轮廓线和中心线的线型各是什么?3. 简述表面结构代号的组成及其识读方法?教学内容项目1 平板类零件图的识读与绘制任务1 识读减速器透视盖零件图课时 2教学目标通过识读如图1-1-1所示的减速器透视盖零件图,让学习者大概粗略地掌握零件图的内容,按时完成率90%以上,正确率达到80%以上。
教学重点与难点教学重点:零件图内容的识读教学难点:零件图内容的理解教学设计与组织教学地点多媒体教室(机房)教学仪器设备计算机与投影仪和手机教学环节教学内容与资源方法手段课前根据教学资源库实训任务的要求与目标,学习规定内容并进行课前检测与实践。
任务驱动翻转课堂信息化手段课中45分钟25分钟15分钟5分钟一、学生小组讨论学习一幅完整零件图的内容及识读零件图的方法与步骤,教师实时指导二、小组代表汇报并小结,教师实时评价三、教师归纳总结零件图的内容及识读零件图的方法与步骤四、任务检测讨论法任务驱动法归纳总结法归纳总结法分层教学课后一、拓展练习与自我评价二、考核评价与任务布置根据学生提交的实施任务和拓展任务的质量进行评价并预习项目1中任务2的相关知识讲解法教学反思教研室主任签名累计课时 2《机械制图》学习领域教案NO:3 班级电气1-5班周次10时间2020年10月9日26日27日节次5-8/5-8课程思政1.人民不能没有面包而生活,人民也不能没有祖国而生活。
——雨果2.爱国的主要方法,就是要爱自己所从事的事业。
——谢觉哉导学问题1. 技术制图》国家标准规定的2种图框格式和5种图纸幅面各是什么?2. 机械图样中,如何画圆中心线?3. 如何画两已知直线的圆弧连接?教学内容项目1 平板类零件图的识读与绘制任务2 抄画减速器透视盖垫零件图课时 2教学目标通过抄画如图1-2-1所示的一级圆柱斜齿齿轮减速器透视盖垫的零件图,让学习者掌握铅笔、图板、三角尺、丁字尺、圆规等常用绘图工具的使用方法,图纸幅面、图框格式、标题栏、比例、图线、汉字、字母、数字的相关标准,图样绘制的基本方法和步骤;绘制图样时能准确选用图幅、图框类型、比例和各种线型,能正确绘制图形、标注尺寸和填写标题栏,按时完成率90%以上,正确率达到80%以上。
激光跟踪仪和便携

4、应用范围
激光跟踪仪广泛应用于航空 航天、汽车、造船、风电等行业。 可实现对原型机制造、加工检验、 工件装配的检验;可对精密的工装、 夹具和检具进行检测。 对大型物体(比如飞机)和小型物体 都可以实现精度达到微米级的精密 测量。
Leica
二、便携式关节臂测量机
1、生产厂家及产品型号 海克斯康测量技术(青岛)有限公司 Infinite 2.0 2.4 m柔性关节臂测量机 2、技术参数 测量空间 7m 3 测量范围 (直径)2.4 m 点重复性测试 0.020 mm 空间长度测量精度 0.029 mm
工作条件
绝对跟踪仪是Leica工业测量系统推出的
3、工作原理
Байду номын сангаас
一款便携式测量系统,它利用激光进行精 确的测量和检测,其测量范围可以包容直 径达160米的球形测量空间 。 绝对激光跟踪仪通过跟踪一个带镜面的 小球,也就是大家所熟知的反射球,测得 物体的三维坐标。 通过手持式反射球,操作人员可以对被 测物体进行自由采点检测,同时得到实际 值与理论值之间偏差的实时反馈。
激光跟踪仪和便携式 关节臂测量机的简介
一、激光跟踪仪
1、厂家及型号 海克斯康测量技术(青岛) 有限公司 Leica AT901-B激光跟踪
2、基本参数
最大测量距离(直径) 测量范围 测量精度 激光干涉仪(IFM)精度 绝对测距仪(ADM)精度 数据采集速率 横向跟踪速度 径向跟踪速度 横向加速度 径向加速度
3、测量方法
将底座固定后,用测头在被测物 体上拾取点测得物体的三维坐标, 同时得到实际值与理论值之间偏 差的实时反馈。
4、应用范围
主要应用于汽车制造、船舶 制造、航空航天、模具制造、 机械加工、工业自动化、工 程机械和其它相关行业。
激光跟踪仪介绍课件

案例一:激光跟踪仪在汽车制造中的应用
总结词
精确测量、提高效率
详细描述
激光跟踪仪在汽车制造中主要用于对车身各部件进行精确测量,以确保它们符 合设计要求和规格。通过使用激光跟踪仪,制造商可以快速、准确地获取测量 数据,减少误差和返工,从而提高生产效率。
案例二:激光跟踪仪在航空航天领域的应用
总结词
高精度、安全性
THANK YOU
感谢聆听
更新软件
保持仪器软件更新至最新版本,以获得更好的性能和稳定性。
常见故障排除
01
02
03
测量失准
检查仪器是否校准,检查 连接线缆是否完好,重新 启动仪器尝试。
仪器无法开机
检查仪器电源是否正常, 检查电池是否需要充电或 更换。
线缆破损
如有线缆破损,及时更换 新的线缆。
05
激光跟踪仪的发展趋势与展望
技术创新
详细描述
在航空航天领域,激光跟踪仪被广泛应用于飞机和航天器的制造与维护。它能够提供高精度的测量 数据,确保零 部件的精确安装和整体结构的稳定性。此外,激光跟踪仪还可以用于检测飞机表面的平滑度和光泽度,从而提高 飞行的安全性和舒适性。
案例三
总结词
高效检测、降低成本
详细描述
在大型设备安装与调试过程中,激光跟踪仪能够快速、准确地检测设备的各项参数,如设备的几何尺 寸、位置和姿态等。通过使用激光跟踪仪,工程师可以减少传统测量方法所需的时间和人力成本,提 高工作效率,同时确保设备安装的准确性和稳定性。
02
激光跟踪仪的组成与性能
激光头
激光发射器
产生高精度、高稳定的激光束,用于测量和跟踪目 标。
光束控制装置
对激光束进行调制、整形和准直,确保光束质量和 稳定性。
激光跟踪仪PPT幻灯片课件

测量பைடு நூலகம்围及参数
• 水平转角: 640°(± 320°)
• 垂直转角: +80°~ -60°
• 测量距离(IFM&ADM): > 60米
• 角度分辨率: ±0.07 "
• 加速度:
>2 g
• 最大跟踪速度:
>3 m/s
• 电子水平仪精度: ±2 "
9
三维空间测量精度
• 静态: 5ppm(5µ m/m)
最大角速度:180º/s(π rad/s)
6
距离测量性能
•分辨率:0.5µm/m •采样速率:16,000/s •精度(MPE):16µm+0.8µm/m
•最大径向加速度:30m/s 2,
最大径向速度:大于25m/s
7
API公司
• 美国自动精密工程公司(automated precision Inc.)。API公司在国际精密测量 领域享有很高的声誉。
坐标轴的偏转角 ,, 来确定。
24
位姿特性
• 位姿精确度 • 位姿重复性
25
其他测位姿特性方法
• 多激光跟踪干涉仪法(位置)
26
其他测位姿特性方法
• 超声三边测量法 • 机器人在三维空间中的位置用三个固定的
超声话筒得到的距离可以得到,超声话筒 接收装在机器人上的声源发出的超声脉冲 串。 • 如果机器人有三个独立的声源,并且每个 话筒能检测到来自三个声源的脉冲串,就 能检测到机器人的姿态。
倾斜角±45,°俯仰角 ±45°,旋转角 360° •电池供电无线操作,提高了工作效率 •与其他类似仪器相比,它尺寸更小、重量更轻、使用更方
便
17
三家公司产品主要性能比较
激光跟踪仪原理

激光跟踪仪原理
激光跟踪仪是一种使用激光束来跟踪目标物体的仪器。
它的工作原理基于激光的特性以及光的传播规律。
激光跟踪仪的主要组成部分包括激光发射器、接收器和信号处理器。
激光发射器发射一束激光光束,经过透镜成为平行光束,并照射到目标物体上。
当激光光束碰撞到目标物体上时,会产生反射或散射。
这些反射或散射的光被接收器接收,并转换成电信号。
接收器将电信号传输给信号处理器进行处理。
在信号处理器中,会对接收到的电信号进行分析和处理,以确定目标物体的位置、方向和运动状态。
通过计算出目标物体相对于激光跟踪仪的偏移角度和距离,可以实现对目标物体的精确定位和跟踪。
激光跟踪仪的工作原理基于三角测量原理和光的传播速度。
通过测量激光光束从激光发射器到目标物体再到接收器的时间差,可以计算出目标物体与激光跟踪仪之间的距离。
结合光束在空间中的角度信息,可以计算出目标物体的具体位置。
激光跟踪仪具有精确度高、反应速度快、适用于远距离测量等优点,在工业、航空航天等领域有着广泛的应用。
通过激光跟踪仪可以实现目标物体的检测、定位、跟踪和测量等功能,为各种应用提供了可靠的技术支持。
激光跟踪仪工作原理 -回复

激光跟踪仪工作原理-回复激光跟踪仪(Laser Tracker)是一种广泛应用于精密测量和三维坐标测量领域的仪器。
它能够通过激光光束实时跟踪目标并测量其位置和姿态,具有高精度和高稳定性的特点。
在本文中,我们将介绍激光跟踪仪的工作原理,并逐步解释其实现精密测量的过程。
一、激光测距原理激光跟踪仪的工作原理基于激光测距技术。
激光是一种特殊的光源,具有高度的方向性、单色性和相干性,能够通过空气以及一些物质的透明介质传输。
激光跟踪仪利用激光束与目标表面的交互作用,通过测量激光束的入射角度和反射角度的差异来计算目标与仪器之间的距离。
二、测量系统结构激光跟踪仪的测量系统主要由激光发射器、探测器和相关器组成。
激光发射器负责发出激光光束,探测器用于接收反射光,并将其转换为电信号。
相关器用于测量入射光束和反射光束之间的相位差异,然后根据相位差计算目标与仪器之间的距离。
三、基准准直激光跟踪仪的准确性和稳定性依赖于其基准准直的精度。
在使用激光跟踪仪进行测量之前,需要进行基准准直操作,即将仪器的坐标系与实际的坐标系进行匹配。
这通常通过测量一系列已知位置的参考点来实现,然后根据这些测量结果进行坐标系的校正和校准。
四、目标反射激光跟踪仪通过测量激光束与目标表面的交互作用来确定目标的位置和姿态。
目标通常需要具备一定的反射性能,以便激光光束能够被有效地反射回探测器。
反射性能可以通过目标表面的材料和涂层来控制和改善。
五、跟踪和测量一旦目标反射激光光束被探测器接收到,相关器就会开始测量入射光束和反射光束之间的相位差异。
相位差可以通过不同的技术进行测量,例如在时间上测量或频率上测量。
根据相位差,激光跟踪仪能够计算目标与仪器之间的距离,并通过其他的测量和计算方法来确定目标的位置和姿态。
六、误差校正和数据处理激光跟踪仪的测量过程中会存在一些误差,例如仪器自身的误差、环境影响等。
为了提高测量精度,需要对这些误差进行校正和补偿。
误差校正和数据处理通常采用一些数学模型和算法,根据测量结果进行拟合和计算,以得到最终的测量结果。
激光跟踪仪原理

激光跟踪仪原理激光跟踪仪是一种常用于测量和追踪目标运动的仪器。
它利用激光束的特性,通过发射、接收和处理光信号来实现对目标的跟踪。
本文将介绍激光跟踪仪的原理和工作过程。
激光跟踪仪的原理基于激光的特性。
激光是一种特殊的光束,具有单色、单行波、高亮度和相干性等特点。
这些特性使得激光在目标跟踪中具有很大的优势。
激光跟踪仪首先通过激光发射器产生一束激光束,然后将其发射到目标上。
当激光束照射到目标表面时,部分光束被目标表面反射回来,称为反射光。
这些反射光中包含了目标的信息,如目标的形状、大小和位置等。
接下来,激光跟踪仪通过接收器接收反射光,并将其转换为电信号。
接收器通常由光电二极管或光电倍增管等光电器件组成。
光电器件可以将光信号转换为电信号,以便进一步处理和分析。
接收到的电信号经过放大和滤波等处理后,被送入信号处理器进行处理。
信号处理器根据接收到的信号,可以计算出目标的距离、角度和速度等信息。
这些信息可以用来描述目标的位置和运动状态。
在信号处理的过程中,激光跟踪仪通常采用一些特殊的算法和技术来提高跟踪的精度和稳定性。
例如,自适应滤波、卡尔曼滤波等算法可以用来抑制噪声和滤除干扰,从而提高跟踪的准确性。
激光跟踪仪的工作过程可以分为三个主要步骤:发射、接收和处理。
在发射阶段,激光跟踪仪通过激光发射器产生激光束,并将其发射到目标上。
在接收阶段,激光跟踪仪通过接收器接收目标反射回来的光信号,并将其转换为电信号。
在处理阶段,激光跟踪仪通过信号处理器对接收到的电信号进行处理和分析,从而得到目标的位置和运动状态。
激光跟踪仪在许多领域中都有广泛的应用。
例如,它可以用于航天、航空、船舶、汽车和机器人等领域中的目标跟踪和定位。
通过激光跟踪仪,可以实时监测目标的位置和运动状态,从而提高系统的安全性和可靠性。
激光跟踪仪是一种利用激光束进行目标跟踪的仪器。
它通过发射、接收和处理光信号,可以实现对目标的跟踪和定位。
激光跟踪仪在许多领域中都有广泛的应用,对提高系统的安全性和可靠性起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光跟踪仪的外观
激光跟踪系统坐标
x
如图,设P(x,y,z)为被测空间点, 假设点P 到点O 的距离为L,OP与z轴 夹角及x轴夹角已知,则有如下关系:
x L sin cos y L sin sin z L cos
测等
角度测量部分
包括方位角和高度角的角度编码器。 其工作原理类似于电子经纬仪、马达驱 动式全站仪的角度测量装置,包括水平 度盘、垂直度盘、步进马达及读数系统, 由于具有跟踪测量技术,它的动态性能 较好。
激光跟踪控制部分
由光电探测器(PSD)来完成。反 射器反射回的光经过分光镜,有一部分 光直接进入光电探测器,当反射器移动 时,这部分光将会在光电探测器上产生 一个偏移值,光电探测器根据偏移值会 自动控制马达转动直到偏移值为零,实 现跟踪反射器的目的。因此当逆反射器 在空间运动时,激光跟踪头能一直跟踪 逆反射器。
测量电路部分
该部分用于读出距离变化量和两个编码器的输出 脉冲数。与计算机之间进行大量的数据交换,计算机 进行数据处理,实时显示运动目标的三维位置。激光 跟踪器头围绕着两根正交轴旋转。每根轴具有一个编 码器用于角度测量和一只直接供电的DC电动机来进行 遥控移动。传感器头包含了一个测量距离差的单频激 光干涉测距仪(IFM),还有一个绝对距离测量的装 置(ADM)。激光束通过安装在倾斜轴和旋转轴交叉 处的一面镜子直指反射器。激光束也用作为仪器的平 行瞄正轴。挨着激光干涉仪的光电探测器(PSD)接 收部分反射光束,使跟踪器跟随反射器。
其中角度值由安装在跟踪头上的两个 编码器给出,距离值由跟踪头中的激 光干涉仪给出
激光跟踪仪工作原理
目标靶镜原理
入射靶镜的光束将沿原路返回
距离测量部分
包括激光干涉法距离测量装置和放置在被测物体上的逆反 射器等。干涉测距是利用光学干涉法原理,通过测量干涉条纹的 变化来测量距离的变化量。一般的干涉测距只能测量相对距离, 如果激光束被打断,则必须重新回到基点以重新初始化。通过 IFM装置和ADM装置分别进行相对距离测量和绝对距离测量。 IFM是基于光学干涉法的原理,通过测量干涉条纹的变化来测量 距离的变化量,因此只能测量相对距离。而跟踪头中心到鸟巢的 距离是已知固定的,称为基准距离。ADM装置的功能就是自动重 新初始化IFM,获取基准距离。ADM通过测定反射光的光强最小 来判断光所经过路径的时间,来计算出绝对距离。当反射器从鸟 巢内开始移动,IFM测量出移动的相对距离,再加上ADM测出的 基准距离,就能计算出跟踪头中心到空间点的绝对距离。
激光跟踪仪的优点
全自动跟踪,不需要人员瞄准
测量速度快,每秒可达1000次,适用 于动态目标检测。
激光跟踪测量仪的应用
在重型机械制造业中,大尺寸部件的检测和逆 向工程
三维管片和模具测量系统 在线检测车身、测量汽车外形、汽车工装检具
的检测与调整 飞机行架的定位安装,飞机外形尺寸的检测,
零部件的检测,飞机的维修等 视频 轮船外形尺寸的检测,重要部件安装位置的检