油浸式变压器的冷却与油流

合集下载

变压器冷却系统冷却方式的表示是什么

变压器冷却系统冷却方式的表示是什么

变压器冷却系统冷却方式的表示是什么电力变压器的冷却系统包括两电阻部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证外热传导中的热散到变压器外。

根据变压器容量的大小,介质和循环种类的不同,变压器装配不同的冷却方式。

一、冷却方式的表示变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下:例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环二、变压器的冷却方式油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫木炭循环水冷式等几种。

1、油浸自冷式油浸液氢自冷式冷却系统没有特殊的空气冷却设备,油在电阻器内自然循环,传至和绕组所发出的热量依靠油的对流作用铁芯油箱壁或水箱。

按变压器容量的深浅,又可分为三种有所不同的结构:1.1、平滑式箱壁。

容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是事实上平滑的;1.2、散热筋式箱壁。

在平滑箱弯曲壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器;1.3、散热管或散热器式冷却。

容量更大一点儿的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,水箱散热器通过法兰与油箱连接,是可拆部件。

图1所示为带有散热管的油浸自冷式变压器的油流路径。

变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。

冷油在散热管内下降,由管的下端再流入下端变压器油缸下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。

油浸自冷式冷却系统结构非常简单、可靠性高,广泛用于容量10,000kVA以下的变压器。

2、油浸风冷式油浸风冷式冷却系统,也称油自然循环、强制风冷式冷却系统。

它是在电气设备油箱的风扇各个散热器旁安装一个至几个风扇,把氧气的自然对流作用改变为强制对流作用,以增强散热器的散热能力。

电气百科:油浸式电力变压器结构及功能

电气百科:油浸式电力变压器结构及功能

电气百科:油浸式电力变压器结构及功能油浸式变压器是一种重要的电力设备,也是一种重要的用电器,油浸式变压器的各个部件的作用也是比较大的,对于油浸式变压器的各个部件要掌握住基本的功能,这样的话油浸式变压器的运行需要注意,才会更加安全的。

油浸式变压器部件的作用是比较多的,今天我们和油浸式变压器厂家的小编就和大家进行共同去看一下油浸式变压器各个部件的作用以及主要的构造吧:油浸式变压器下面分析各部件的作用:(1) 铁芯:油浸式变压器的铁芯是磁力线的通路,起集中和加强磁通的作用,同时用以支持绕组。

(2) 绕组:油浸式变压器的绕组是电流的通路,靠绕组通入电流,并借电磁感应作用产生感应电动势。

(3) 油箱:油箱是油浸式油浸式变压器的外壳,油浸式变压器主体放在油箱中,箱内充满油浸式变压器油。

(4) 油枕:油枕也叫辅助油箱,它是由钢板做成的圆桶形容器,水平安装在油浸式变压器油箱盖上,用弯曲联管与油箱连接,油枕的一端装有油位指示计,油枕的容积一般为油浸式变压器油箱所装油体积的8%~10%。

其作用是油浸式变压器内部充满油,而由于油枕内油位在一定限度,当油在不同温度下膨胀和收缩时有回旋余地,并且油枕内空余的位置小,使油和空气接触的少,减少了油受潮和氧化的可能性,另外,储油柜内的油比油箱上部的油温低很多,几乎不和油箱内的油对流。

在油枕和油箱的连接管上装有瓦斯继电器,来反映油浸式变压器的内部故障。

(5) 呼吸器:呼吸器内装有干燥剂即硅胶,用来吸收空气中的水分。

(6) 防爆管:防爆管安装在油浸式变压器的油箱盖上。

防爆管的顶端装有一个玻璃片,当油浸式变压器内部发生故障,产生高压,油里面的气体便冲破玻璃片排到油箱外,释放压力,从而保护油浸式变压器油箱不被破坏。

(7) 温度计:温度计安装在油箱盖上的侧温筒内,用来测量油箱内的上层油温。

(8) 套管:套管是将油浸式变压器高、低压绕组的引线引到油箱外部的绝缘装置。

它既是引线对地(外壳)的绝缘,又担负着固定引线的作用。

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3、强迫油循环风冷50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

冷却方式的标志对于干式变压器,冷却方式的标志按GB6450的规定。

对于油浸式变压器,用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。

C的合成绝缘液体;K燃点大于300。

C的绝缘液体;1燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

第三个字母表示外部冷却介质:A空气;W水。

第四个字母表示外部冷却介质的循环方式:N自然对流;F强迫循环(风扇、泵等)。

油浸式变压器的冷却方式分析 宁雪峰

油浸式变压器的冷却方式分析 宁雪峰

油浸式变压器的冷却方式分析宁雪峰摘要:油浸式变压器有自冷式、风冷式、强油风冷或水冷式冷却方式。

油浸自冷(ONAN)或油浸风冷(ONAF)的冷却方式,通常称为(ON)冷却方式,即冷却系统中的油是靠自然热对流循环流动。

目前电网上运行的主要产品仍是油浸式变压器。

本文对油浸式变压器冷却方式进行分析。

关键词:变压器;冷却方式引言压器在电力系统中起到提高电压远距离输送电力的作用,在国民经济生产和人民生活中起到了重要的作用。

变压器在运行时,特别是长时间工作后会产生大量的热量(损害线路),加速绝缘老化,烧毁线圈,损坏变压器,严重时还会导致生产事故。

因此,为了保证变压器在运行时产生的热量不影响变压器的正常工作,需要在变压器上增加冷却系统,保证变压器的工作温度。

本文就变压器的冷却装置进行介绍,并讨论使用过程中需要注意的问题,分析了可行的解决方法。

1、变压器冷却装置变压器是根据电磁感应定律制成的装置,能够将电压在高电压和低电压之间转换。

由于变压器在工作中会产生大量热量,如果不及时降温冷却,会严重损害变压器,缩短工作寿命。

目前变压器冷却方式分为以下几类:1.1 干式冷却方式第一台干式变压器最早于1885年发明。

干式变压器的铁芯和绕组不浸渍在绝缘油中,不会像油浸式变压器存在渗漏油的问题,也不会因为油渗出后导致绝缘装置老化,减少了维修和维护的成本。

干式变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF)。

自然空气冷却时,变压器可在额定容量下长期连续运行。

强迫空气冷却的风机一般安装在干式变压器的下部,强迫空气冷却变压器输出容量可提高40%~50%。

但由于此时处于过负荷运行状态,对变压器损耗较大,不能长时间使用。

1.2 液体冷却方式为了满足远距离电力传送的要求,生产中必须提高输电电压的等级,这样对绝缘介质提出了更高的要求,于是矿物油作为电力变压器的绝缘装置被广泛应用于电力变压器中。

油浸式变压器的散热过程是:变压器内部的铁芯、绕组产生的热量先传递到油,然后通过油的介导将热量传递到油箱,最后再用油箱和空气的热交换,将热量散发至空气中。

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV 及以下的产品; 50000kVA及以下、产品。

2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。

3、强迫油循环风冷 50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

冷却方式的标志对于,冷却方式的标志按GB6450的规定。

对于,用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质:O 矿物油或燃点不大于300。

C的合成绝缘液体;K 燃点大于300。

C的绝缘液体;1 燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N 流经冷却设备和绕组内部的油流是自然的热对流循环;F 冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D 冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

油浸式变压器原理

油浸式变压器原理

油浸式变压器原理1.为什么油浸式变压器外部的散热管都是沿竖直方向而不是水平排列的?为什么导热油又不允许被灌满变压器的冷却形式可以分为四种:油自然循环空气自然冷却,油自然循环风(水)冷,强迫油循环空气自然冷却,强迫油循环风(水)冷变压器的散热器有进油口和出油口,由于热油膨胀,密度比较低,自然在上层,凉油在下层,所以散热器也是垂直布置,热油从上面进来,冷却后流回油箱内部。

导热油不允许被灌满?我想你问的应该是储油柜内而不是散热器内的情况。

变压器的储油柜有一个可伸缩的装置,或是隔膜或是胶囊或是波纹管,可满足变压器油的热胀冷缩,要求在温度最高时,变压器油不得溢出,温度最低时,储油柜内仍然有一定量的油。

所以在通常状况下,储油柜里的油不是满的。

2.变压器由几部份构成,部件的作用及原理是什么?变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

3变压器的分类按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。

按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。

按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。

按电源相数分类:单相变压器、三相变压器、多相变压器。

按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器。

4.电源变压器的特性参数1)工作频率变压器铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。

2)额定功率在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。

3)额定电压指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。

变压器冷却方式说明

变压器冷却方式说明

对于油浸式变压器,用四个字母顺序代号标志其冷却方式①②③④
1.1 ①表示与绕组接触的内部冷却介质:
o-矿物油或燃点不大于300℃的合成绝缘液体.
K-燃点大于300℃的绝缘液体,
L-燃点不可测出的绝缘液体。

1.2 ②表示内部冷却介质循环方式:
N-流经冷却设备和绕组内部的油流是自然的热对流循环.
F-油流是强迫循环,流经绕组内部的油流是热对流循环,
D-油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环.
1.3 ③表示外部冷却介质:A-空气,w-水
1.4 ④表示外部冷却介质的循环方式:N-自然对流,F-强迫循环(风扇、泵等).
注:①在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分。

调压绕组和(或)其他容量较小的绕组也可为非导向油循环.
②在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。

一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,有给出不同冷却方式下的容量值,以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值.在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。

不同的冷却方式一般是按冷却能力增大的次序进行排列。

2、干式变按其所采用的冷却方式用字母给以标志
2.1 冷却介质的种类:空气-A ,气体-G
2.2 循环种类:自然循环-N,强迫循环-F。

变压器 冷却方式 变压器油

变压器 冷却方式 变压器油

变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF);强迫油循环水冷(OFWF);强迫导向油循环风冷(ODAF);强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1 油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3 强迫油循环风冷50000~90000kVA、220kV产品。

4 强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

产生气体原因:内部局部过热,放电等,都会造成变压器油分解,而产生气体.中频电炉用变压器发热量按1%考虑。

如8800kVA变压器发热量为88kW。

电源柜为0.5%,即8800kW发热量为44kW。

变压器冷却(transformer cooling)变压器运行时,绕组和铁心中的损耗所产生的热量必须及时散逸出去,以免过热而造成绝缘损坏。

对小容量变压器,外表面积与变压器容积之比相对较大,可以采用自冷方式,通过辐射和自然对流即可将热量散去。

自冷方式适用于室内小型变压器,为了预防火灾,一般采用干式,不用油浸。

由于变压器的损耗与其容积成比例,所以随着变压器容量的增大,其容积和损耗将以铁心尺寸三次方增加,而外表面积只依尺寸的二次方增加。

因此,大容量变压器铁心及绕组应浸在油中,并采取以下各种冷却措施。

油浸自冷绝大多数配电变压器和许多电力变压器都采用这种方式。

容量较小的变压器,光滑油箱表面就足以将油冷却;中等容量变压器,油箱表面要做成皱纹形以增加散热面,或加装片式或扁管散热器,使油在散热器中循环流动;大容量变压器油箱表面应加设辐射散热器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油浸式变压器的冷却与油流1油浸式变压器的冷却原理分析通常,油浸式变压器内部的冷却介质为矿物油,外部冷却介质为空气或者是水。

根据国家标准‘电力变压器 温升 GB1094.2-1996’的规定,油浸式变压器外部冷却介质为空气时的冷却方式如表1所示。

同时,表1中也指出了变压器的绕组中冷却介质(变压器油)的流动状态。

表1 外部冷却介质为空气的油浸式变压器冷却方式与绕组中的油流在油浸自冷(ONAN )或油浸风冷(ONAF )的冷却方式中,由于变压器油在整个油路系统中为自然对流循环流动,通常称为ON 冷却方式。

在ON 冷却方式下,作为变压器冷却介质的变压器油,在变压器闭合的油路系统中通过油的浮力、重力的变化而对流循环流动。

即在变压器油箱内部,被变压器油所包围的发热元件(例如绕组与铁心等)加热了周围的变压器油,受热的变压器油密度变小而形成浮力向上浮动,下部温度较低的油随之取代了上浮的油,使变压器油在变压器绕组及铁心等发热元件中自下而上的流动。

发热元件表面热流密度较大的地方,其油的流动速度也将自然加快。

热油至油箱顶部流入散热器,热油在散热器中将从变压器绕组等发热元件中带出的热量通过散热元件的外表面散失在周围空气中而使油的温度降低、比重变大,在重力作用下向下流动,又重新回流到变压器的油箱下部,从而形成了变压器油在其封闭的油路系统中自然对流循环流动。

变压器油的密度θρ与其温度θ的关系可以用(1-1)式表示。

()θβρθβρρθ0000111-≈+= 3-k g m (1-1)式中θ—变压器油的温度,C 0;θρ—变压器油温度为θ0C 时的变压器油密度,3-kgm ;0ρ—变压器油温度为00C 时的变压器油密度,3-kgm ;0β—变压器油温度为00C 时的变压器油受热体积膨胀系数,10-C 。

相似地,变压器油的比重θγ与其温度θ的关系也可以用(1-2)式表示。

()θβγγθ001-≈ 3-k g m (1-2)式中θγ—变压器油温度为θ0C 时的变压器油比重,3-kgm ;0γ—变压器油温度为00C 时的变压器油比重,3-kgm ;其余符号意义见(1-1)式。

由(1-1)式和(1-2)式可见,两者均随温度上升而下降。

因此,在ON 冷却方式的变压器中,器身中(绕组与铁心等发热元件中)的变压器油受热后向上流动,散热器中的变压器油冷却后向下流动。

众所周知,容量较小的变压器通常采用油浸自冷(ONAN )的冷却方式,变压器油在变压器的封闭油路系统中流动状况如图1-1所示。

在油箱内部,油主要在变压器器身的发热元件中向上流动。

在绕组与油箱壁之间的空间内,一方面是由于热流密度很小,而且油箱壁也有一定的散热能力,另一方面是这个空间的截面积很大,因此这个空间内的变压器油流动速度非常缓慢。

图1-1油浸自冷(ONAN )式变压器的冷却原理示意图图1-1的右侧,用直角坐标示出了变压器油的温度θ与其几何高度h 的关系曲线,图中A 、B 、C 、D 各点与左图中相应点对应。

在A 点油进入绕组等发热元件下部并在绕组的高度区域被连续加热,油的密度连续降低并逐步增大向上的浮力而向上流动,至B 点处热油离开绕组。

热油经由B 与C 之间的一段路径流入散热器,热油在这段路径中几乎不被冷却,只是在几何高度上有所增加。

热油在散热器中从C 到D 的路径上,变压器油从绕组等发热元件中带出的热量通过散热器逐步散失在周围空气中而被冷却,油的比重逐渐增加而在重力作用下向下流动,而后经由D 与A 之间的一段路径从D 点回流到A 点重新进入绕组等发热元件。

如此循环往复,使变压器油在变压器的封闭油路系统中对流循环流动。

图1-1中,温差a o -∆θ是在散热器中逐渐冷却的变压器油与散热器周围被加热的空气之间的对数平均温差,通常称其为油对空气的平均温升;温差wo θ∆是变压器油进入绕组与离开绕组的温差,也就是变压器油在绕组高度区域被加热的温升值;温差co θ∆是变压器油进入散热器与离开散热器的温差,一般认为它与wo θ∆相等。

换句话说,根据热平衡原理,在最终的稳定状态下,封闭系统中的变压器油在器身中被发热元件加热的温度必然等于变压器油在散热器中被冷却的温度,从而达到变压器在稳态运行情况下发热与散热的平衡。

也就是说,在变压器稳态运行时,在封闭的发热与冷却油路系统中流动的变压器油,沿变压器的油循环系统几何高度的温度分布曲线(即图中右侧的θ-h 关系曲线)成为封闭曲线。

与此同时,散热器除了辐射散热外,包围散热器的空气被散热器所加热也自下而上的对流循环流动,即散热器下部的空气以环境温度进入散热器区域,沿着散热器的高度被逐步加热而从散热器上部流出散热器区域。

沿着散热器高度的空气温度a θ的变化规律如图4-1的θ-h 关系曲线中的a θ变化曲线所示。

此外,调整散热器的安装高度,可以改变整个油循环回路的浮力,改变油的自然热对流循环的流动速度。

图1-2油浸自冷式变压器散热器安装高度抬高的冷却原理示意图图1-2表示将散热器的安装高度提高,可以增加变压器油循环回路的浮力,使变压器油在绕组与散热器中的流动速率适当提高。

油的流动速率适当提高的结果也适当提高了对绕组的冷却效果,从而使温差wo θ∆=co θ∆适当降低。

但在变压器发热量(损耗)不变的情况下,油对空气的平均温升a o -∆θ仍然保持不变。

在油浸风冷(ONAF )的冷却方式下,用以冷却散热器的冷却空气通过风扇通常是自下而上吹过散热器。

由于空气的流动速度较高,与空气自然对流相比,沿着散热器高度的空气温度a θ的变化也大为减小。

空气流动速度的提高,使散热器空气侧的放热系数增大而大大提高了空气侧的对流散热能力,使热油冷却较快,提高了对变压器油的冷却效果。

如果散热器需要散出的热量(变压器的损耗)与空气自然对流(即ONAN 冷却)时相等,则油对空气的平均温升a o -∆θ将会大为降低,从而也提高对变压器的冷却效率。

图1-3为自然油循环吹风冷却(ONAF )的冷却原理图,在变压器的绕组等发热元件中,变压器油的流动原理与ONAN 冷却方式相同。

但是,由于散热器散热能力的提高,热油中在散热器中冷却更快,从而加快了整个油循环系统的油流速度,使ONAF 冷却方式比ONAN 冷却方式对变压器有更好的冷却效果。

图1-3油浸风冷式变压器的冷却原理示意图提高散热器的安装高度,也会与ONAN 冷却方式一样取得更好的冷却效果。

十分有意义的是:在ON 冷却方式下,流经绕组等发热元件的稳态变压器油流量等于流经散热器(散热元件)的变压器油流量,因而在油箱顶部测量而得到的变压器顶部油的温度,就是从绕组顶部流出的变压器油的温度,也就是变压器中油的最高温度。

这一个特点也成了这类变压器设计、运行的重要特点。

此外,在采用油浸风冷(ONAF )的冷却方式时,除了通常采用如图4-3所示的冷却风机垂直送风的型式外,有时也采用冷却风机水平方向送风的结构。

图1-4为强迫油循环的非导向冷却方式(OF )的冷却原理示意图,这时,冷却器中的变压器油通过油泵仅仅送入变压器油箱的下部。

进入油箱下部的变压器油如图所示分为a 、b 两个支路流动,而且相当大一部分变压器油是在油箱与绕组之间的空间b 支路流动,这部分变压器油在油泵的作用下、在温度在几乎不变的情况下向上流动到油箱的上部'B 点,与流经绕组的a 支路并从绕组顶部B 流出的热油相混合,使得从绕组顶部到油箱盖的空间充满了这种混合油[]6。

图1-4强迫油循环的非导向(OF )冷却变压器的冷却原理示意图从绕组顶部到油箱盖间的空间内充满的混合油温度显然要比流经绕组并且刚刚离开绕组顶部B 点的热油温度要低,显然,采用OF 冷却方的变压器从油箱顶部测量而得到的变压器顶层油的温度,也是这种混合油的温度[]6。

而后,混合油经过'C -C 这段管路进入冷却器,变压器油在冷却器中(图中C-D 路径)得到冷却,再通过油泵送入变压器油箱的下部(图中A 点)。

显然,进入冷却器与离开冷却器的变压器油温差co θ∆也是指这种混合油被冷却而言的。

因此,变压器在OF 冷却方式下,变压器油进入绕组与离开绕组的温差wo θ∆(油温度上升值),与变压器油进入冷却器与离开冷却器的温差co θ∆(油温度下降值)不再相等,其间的差值就是热油与温度较低的油(流经b 支路的油)混合时,热油的温度降低值。

事实上,对于采用强迫油循环非导向(OF )冷却方式的变压器,迄今还没有一种仅依靠在绕组以外的测量方法能确定OF 冷却方式变压器绕组顶部的油温度[]6。

因此,对于采用OF 冷却方式变压器的冷却系统设计,是让冷却系统的油泵输送更多温度较低的混合油,使其进入绕组下部的变压器油温度更低。

由于采用OF 冷却方式的变压器冷却系统的油流有这样一个特点,因此,一般而言,采用OF 冷却方式变压器,油箱顶部混合油温升的设计控制值通常不超过40K (在年平均环境温度较低的国家,也有按45K 进行设计控制的)。

这就是说,对于采用OF 冷却的变压器,若将变压器顶层油温的测量值用来确定绕组内部油的平均温度和绕组与变压器油之间的温度差(铜-油的平均温差),或者用于计算绕组的热点温度从而研究变压器过负荷能力,都将是不真实的,甚至会导致错误[]6。

在AF 冷却方式下,风机送入风冷却器排管的冷却介质(空气)为环境温度ai θ,而吹出冷却器排管的热风为温度0a θ。

计算变压器油与环境温度的平均温差a o -∆θ时,应当采用ai θ与0a θ的平均值,如图1-4~1-5右侧的图中所示。

在OF 冷却方式下,由于b 支路的存在(见图1-4),变压器流经绕组的稳态的油流量与流经冷却器(或散热器)的油流量无关。

而且,变压器绕组内部的油仍是按照自然对流方式循环[]6,绕组内部的热交换过程受油泵的影响很小。

也就是说,绕组中的油流速度相对于自然油循环(ON )冷却时的油流速度变化很小。

如果变压器绕组的热负荷相同时,那么即使采用OF 冷却,变压器油进入绕组与离开绕组的温差wo θ∆也几乎与采用ON 冷却方式时相同。

所不同的是由于油泵存在产生了两个不同效果:其一是热油在冷却元件(冷却器)中的流速大为增加,而且加强了热油的冷却;其二是比自然油循环(ON 冷却)能够输送更多经过冷却而温度更低的变压器油进入变压器的油箱下部,使进入绕组下部的油温更低。

图1-5为变压器强迫油循环导向(OD )冷却方式冷却原理示意图,冷却器中的变压器油通过油泵直接送入变压器的器身。

尽管它似乎只是取消了图1-4中油箱与绕组之间的并联油流支路b ,但两者在变压器器身中的油路结构却很有区别。

变压器在OD 的冷却方式下,除了极少的油因油路泄漏和为了控制绕组中油的流速度而对变压器油在进入绕组之前对少量油进行分流外,绝大部分变压器油都流经绕组等发热元件而进入冷却设备。

相关文档
最新文档