激光原理和应用
激光原理及应用 pdf

激光原理及应用 pdf
激光原理及应用是物理学中的热点话题,其中广泛应用于各个领域。
激光(Light Amplification by Stimulated Emission of Radiation)是一种特殊的电磁波,可
以表示为一种高功率、高集中度、高空间和时间偏振特征的瞬时光斑。
它是由激发态原子
以激发态跃迁而发出的光子能量而形成的。
激光非常专注,能量可以叠加,并能集中在一
个固定的方向上。
激光产生的原理是关于原子跃迁有关的,即一个原子由一个输入的能量激发到某个能级,而另一原子则从该能级跃迁而下到较低的能级,从而释放出一股脉冲的
能量,构成激光。
激光可以用于科学研究,比如气体分析、原子谱和紫外光谱等。
此外,激光也用于临床医学、工程技术、工业生产等领域。
在临床医学领域,激光可用于切割、治疗,皮肤美容,
病毒治疗等等。
在工程技术领域,激光可用于测量、数据处理和纠错等;在工业生产领域,激光可用于切割、焊接、打标等。
总之,激光原理及其应用被广泛应用于各个领域,具有广泛的应用前景,未来将会有更多的应用。
激光的原理和应用

激光的原理和应用一、激光的原理激光是一种高度聚集、高度一致的光束,具有独特的特性和广泛的应用。
激光产生的过程基于激光的原理,主要包括以下几个方面:1.激发物质:激光的产生需要一个激发物质。
激发物质可以是固体、液体或气体。
常见的激发物质包括半导体、晶体、染料和气体等。
2.受激发射:激光的产生是通过受激辐射过程实现的。
这个过程中,一个已经被激发的原子或分子会被入射的光激发到高能级,然后在退激时放出一个光子,与入射光子具有相同的波长、相位和方向。
3.光反射和放大:为了产生激光束,需要将受激发射的光经过多次反射从而形成光增强的环境,也就是光学谐振腔。
当光在谐振腔中来回反射时,会与激发物质不断发生受激辐射和增强,最终形成一个具有高度一致性和聚焦性的激光束。
4.窄带宽控制:激光的特点之一是具有非常窄的光谱带宽。
这是因为在激光器中,只有与谐振模一致的波长的光才会被放大,其他波长的光则会被抑制。
二、激光的应用激光的独特特性使其在多个领域中得到了广泛应用,下面列举了一些主要的应用领域:1.医疗:–激光手术:激光器可以在医疗手术中用于切割、烧灼或凝固组织。
由于激光具有高聚焦性和非接触性的特点,可以在手术过程中减少创伤和出血,提高手术精确度。
–激光治疗:激光器还可以用于治疗多种疾病,例如视网膜疾病、皮肤病、心脏病等。
激光器可以精确地照射到患处,实现精准治疗。
2.通信:–光纤通信:激光器是现代光纤通信系统中的重要组成部分。
激光器将电信号转换为光信号,通过光纤传输,实现了高速、远距离的通信。
激光器的高度一致性和窄带宽控制使其成为传输质量高的核心设备之一。
3.科学研究:–光谱分析:激光的窄带宽和高亮度使其成为光谱分析的理想工具。
激光可以用于原子吸收光谱、拉曼光谱、荧光光谱等分析方法,提供了更准确和详细的分析结果。
–光学显微镜:激光器的高聚焦性和高亮度使其成为高分辨率显微镜的重要源。
激光束可以用于激发荧光标记,提供更清晰和详细的样本图像。
激光的原理特性和应用

第二章激光与半导体光源激光的原理、特性和应用发光二极管与半导体激光器§2-1 激光的工作原理一、光的发射与光的吸收当原子从高能级向低能级跃迁时,将两能级之差部分以光子形式发射出去,称光的发射;当原子从低能级向高能级跃迁时,将吸收两能级之差部分的光子能量,称光的吸收。
光的发射和吸收过程满足相同的规律:两能级之差决定发射和吸收光子的频率光发射的三种跃迁过程1自发辐射:处在高能级的原子以一定的几率自发的向低能级跃迁,同时发出一个光子的过程,a)图;2 受激辐射过程:在满足两能级之差的外来光子的激励下,处在高能级的原子以一定的几率自发向低能级跃迁,同时发出另一个与外来光子频率相同的光子,b)图;两种辐射过程特点的比较:自发辐射过程是随机的,发出一串串光波的相位、传播方向、偏振态都彼此无关,辐射的光波为非相干光;受激辐射的光波,其频率、相位、偏振状态、传播方向均与外来的光波相同,辐射的光波是相干光。
3 受激吸收过程:在满足两能级之差的外来光子的激励下,处在低能级的原子向高能级跃迁,c)图受激辐射与受激吸收过程同时存在:实际物质原子数很多,处在各个能级上的原子都有,在满足两能级能量之差的外来光子激励时,两能级间的受激辐射和受激吸收过程同时存在。
当吸收过程占优势时,光强减弱;当受激辐射占优势时,光强增强。
二、粒子数反转与光放大当一束频率为的光通过具有能级E1和E2(假定E2>E1)的介质时,将同时发生受激辐射和受激吸收过程,在dt时间内,单位体积内受激吸收的光子数为dN12,受激辐射的光子数为dN21 ,设两能级上的原子数为N1、N2(正常情况下N2> N1),有dN21/ dN12 =B N2/ N1,比例系数B与能级有关。
1、N2/ N1<1时,高能级E2上原子数少于低能级E1上原子数(称正常分布),有dN21 < dN12,表明光经介质传播的过程中受激辐射的光子数少于受激吸收的光子数,宏观效果表现为光被吸收。
激光与物质相互作用的应用及原理

激光与物质相互作用的应用及原理1. 引言激光技术作为一种高度聚焦、高能量密度、单色性好的光源,其与物质相互作用的应用领域越来越广泛。
本文将介绍激光与物质相互作用的一些应用及其原理。
2. 材料加工激光在材料加工领域具有广泛的应用。
激光通过聚焦后的高能量密度,可以对各种材料进行切割、打孔、焊接等加工操作。
以下是激光材料加工应用的一些原理:•切割:激光加工中最常见的应用之一。
激光通过高能量聚焦,使材料发生熔化或气化现象,从而实现切割作业。
•打孔:激光束通过高能量聚焦,使材料在被烧蚀的同时发生熔化,从而形成孔洞。
•焊接:激光通过高能量聚焦,使材料局部熔化,然后冷却后形成焊缝。
激光材料加工的优势主要体现在精度高、速度快、热影响区小等方面。
3. 激光医学应用激光在医学领域的应用也十分广泛。
激光手术是一种非侵入性的治疗方法,可用于切除、蒸发和凝固组织。
以下是激光医学应用的一些原理:•激光手术:激光通过高能量聚焦,可以切割和蒸发生物组织。
激光手术具有创伤小、出血少和恢复快的特点。
•激光美容:激光可以用于美容领域中的病症治疗、皮肤重建和皮肤再生等方面。
•激光疗法:激光通过对病人身体组织的照射,可用于治疗多种疾病,如肿瘤、静脉曲张等。
激光医学应用的优势主要体现在精准治疗、创伤小、恢复快等方面。
4. 激光测量技术激光测量技术是利用激光与物体相互作用的原理进行测量的一种精确测量方法。
以下是激光测量技术的一些应用:•激光雷达:通过利用激光束对目标物体进行扫描,可以测量目标物体的距离、速度和位置等信息。
•激光测距仪:通过测量激光束从发射到接收的时间来计算距离,可用于测量远距离。
•激光显微镜:利用激光对样品进行照射,可以实现高分辨率、高对比度的显微观察。
激光测量技术的优势主要体现在测量精度高、非接触式测量、适用于各种物体等方面。
5. 激光通信技术激光通信技术是利用激光将信息传输的一种无线通信技术。
以下是激光通信技术的一些原理:•光纤通信:利用激光将信息通过光纤传输,具有大带宽、抗干扰能力强等特点。
激光原理及应用PPT课件

激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念
激光原理及应用ppt课件

激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
激光的原理及应用参考文献
激光的原理及应用参考文献原理1.概述:激光是一种通过受激辐射产生的具有高度聚焦、高亮度和单色性的光。
2.受激辐射:当被称为激活物的原子或分子受到外界能量的激发时,它们会从低能级跃迁到高能级,然后通过受到其他原子或分子的碰撞而发射出与其激发能级相对应的光子。
这种受激发射的光子会引起其他原子或分子的跃迁,从而产生连锁效应,形成激光光束。
3.产生单色性:激光是单色的,因为激光的光子具有相同的频率和相位。
这是通过选择合适的激活物和设置合适的谐振腔使得只有特定频率的光被放大和放射出来。
4.聚焦性能:激光具有高度聚焦的能力,这是因为激发绝热性和非线性光学效应导致激光光束在经过透镜时能够聚焦到很小的光斑上。
应用1.激光切割:激光切割是激光技术的重要应用之一。
它可以通过激光的高能量密度和精确控制的热作用来切割各种材料,如金属、塑料和纺织品等。
2.激光打印:激光打印是一种无接触的印刷技术。
它使用激光束对印刷介质进行高能量的热作用,从而在介质上形成图案和文字。
3.激光医疗:激光在医疗领域有着广泛的应用。
它可以用于激光手术、激光治疗和激光诊断等方面。
激光手术可以精确地切割和焊接组织,激光治疗可以用于各种疾病的治疗,激光诊断可以用于观察和测量生物组织的特性。
4.激光通信:激光通信利用激光光束传输信息。
由于激光具有高度聚焦和窄束宽的特点,激光通信在传输容量大、传输距离远的情况下具有优势。
5.激光雷达:激光雷达使用激光脉冲来测量目标物体的距离和速度。
与传统的雷达相比,激光雷达具有更高的分辨率和更精确的测量结果。
参考文献1.Mourou, G. (2017). 100 GW,1 Hz,3 ps – is PW even the limit?. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(13), 132003.2.Svelto, O. (2010). Principles of Lasers. Springer.3.Saleh, B., & Teich, M. (2007). Fundamentals of Photonics. Wiley-Interscience.mb, W. E. (1964). Laser physics. Reviews of Modern Physics, 36(4), 450.5.Dhillon, S. S., & Taday, P. F. (2009). Terahertz spectroscopy and imaging: Modern techniques and applications. Reports on Progress in Physics,70(10), 1607.。
激光原理及应用
激光原理及应用近年来,激光技术已经渗透到我们的日常生活中。
无论是医疗、军事、电子、半导体等行业,都离不开激光技术的应用。
那么,什么是激光?激光有哪些应用呢?本文将从原理和应用两个方面,为您介绍激光技术。
一、激光的原理激光是光的一种,它具有单色性、相干性和高直线性。
从物理学的角度来理解,激光是利用物质放射出能量的过程,其放射过程是在一定的能级结构下进行的。
1.激光的放大原理激光的放大来自于物质在两个能级之间跃迁的辐射。
一般来说,能够产生激光的有两种:一种是固体激光,包括了晶体激光、玻璃激光等;另一种是气体激光,包括了He-Ne激光、氩离子激光等。
它们放出的光线波长不同,普遍在几百纳米到几微米之间。
放大过程中,光线进入放大器后,通过能级结构跃迁过程向加入能量,从而放大了光线,使它得到了更高的能量。
而放大过程的根本机理在于,多个光子通过能级跃迁后,将激励一个带有更高能量的光子,使其跃迁至更高的能级状态,从而实现了对光线的放大。
2.激光的无衰减传输激光具有无衰减传输的特性,这意味着,激光传输距离可以远达几百公里,甚至上千公里。
这一特性在通信、军事等领域得到了广泛应用。
3.激光的相干性激光具有非常高的相干性,它的相位一致性很高,不同光束之间的相位差异非常小,因此可以形成干涉图案。
在光学干涉仪、激光测量、光学成像等领域得到了广泛应用。
二、激光的应用激光在医疗、半导体、电子、军事等领域中都有广泛应用。
下面将从医疗、制造业、军事三个方面介绍激光的应用。
1.激光在医疗领域中的应用激光在医疗领域的应用极为广泛。
激光可以通过切割、钻孔、焊接等方式,帮助医生完成手术。
同时,激光还可以用于治疗、美容等,如激光去斑、激光祛痘、激光除皱等。
激光治疗相较于传统的手术方式来说,具有创伤小、恢复快、无出血等优点。
2.激光在制造业领域中的应用激光在制造业领域的应用也是非常广泛的。
激光可以对金属、陶瓷、玻璃等材料进行细微加工,如切割、钻孔、打标等。
激光的原理和应用论文
激光的原理和应用论文概述激光(Laser)是一种特殊的光源,具有高单色性、高亮度、高方向性等特点,广泛应用于科学研究、医疗、通信等领域。
本文将介绍激光的原理和应用。
一、激光的原理激光的原理基于激光介质中的受激辐射和增强反射。
以下是激光的原理的详细解释:1.受激辐射激光的产生依赖于受激辐射过程。
当激发能量施加到激光介质上时,介质中的一个激发原子释放出能量,引起其他原子被激发。
这个连锁反应会形成光子,产生一束相干光。
2.增强反射当光子在激光介质中来回传播时,它们会受到介质两端的衰减和失能。
为了保持光子的能量和相干性,需要在介质两端放置反射镜。
这种增强反射形成了光的反馈回路。
3.非线性光学效应除了受激辐射和增强反射,激光的原理还涉及到非线性光学效应。
这些效应包括倍频、自聚焦和自相位调制等,可以进一步改变激光的频率、强度和相位。
二、激光的应用由于其独特的特性,激光在多个领域有广泛的应用。
下面将列举一些主要的应用领域和案例:1.科学研究–激光在原子物理、核物理和粒子物理等研究中扮演着重要角色。
通过调控激光的频率和强度,科学家可以研究和操纵物质的微观结构。
–激光也广泛应用于光谱学研究中,例如拉曼光谱和荧光光谱等。
这些研究对于分析物质的成分和性质非常重要。
2.医疗–激光在医疗领域有多种应用,例如激光手术和激光疗法。
激光手术可以用于切割组织、凝固血管和焊接皮肤等。
激光疗法可以用于治疗癌症和其他疾病。
3.通信–激光在光纤通信中起着至关重要的作用。
激光束可以通过光纤传输大量数据,实现高速和远程的通信。
激光还可以用于光纤传感技术,监测和测量环境中的参数。
4.制造业–激光在制造业中被广泛应用于切割、焊接和打标等工艺。
激光切割能够实现高精度和高速度的切割过程。
激光焊接可以用于精细和复杂的零部件连接。
5.娱乐–激光在娱乐行业中有多种应用,例如激光演出和激光展示。
激光灯光效果可以创造出炫目的光影效果,给观众带来视觉盛宴。
以上只是激光应用的一部分例子,随着科技的不断进步和应用的扩大,激光将在更多领域发挥重要作用。
激光的原理和应用
激光的原理和应用激光,全称为光子激发放射。
它是由震荡原子发出的强光束,具有高亮度、单色性和方向性,广泛应用于医疗、通信、工业、科学研究等领域。
激光作为一种新兴的光源,其原理和应用非常值得关注。
一、激光的原理激光的产生是利用原子、分子或离子等粒子在外界刺激下产生电子从低能量级跃迁到高能量级,然后再自发辐射出同一频率和相位的光,最后形成强、单色、准相干、方向性好的激光束。
激光的原理主要包括三种:受激辐射、光学共振腔原理和增益介质。
其中,受激辐射原理是指在外界光的刺激下,具有一定能量的电子从低能量级跃迁到高能量级,同时放出一个与外界光频率、同相位,且能量和方向相同的光子。
光学共振腔原理则是利用两面反射镜将介质中的激光束反复反射,使光子增多,从而放大了激光束的强度。
增益介质是激光发射过程中具有产生激光所必需的放大介质,它能够将吸收的能量转化为激光能量,从而提高激光功率和稳定性。
二、激光的应用激光作为一种新兴的光源,应用范围非常广泛,下面介绍几个典型的激光应用领域:1、医学领域激光在医学领域的应用主要是通过激光束去照射人体的组织或器官,实现医疗治疗的效果。
例如,激光手术是一种高科技医疗手段,可以在减轻病人痛苦的同时提高手术的精度和效果。
其他如激光治疗近视、皮肤光纤激光剥脱术、激光疤痕修复等,也成为了常见的激光医疗领域应用。
2、工业领域激光在工业领域的应用非常广泛,例如激光切割、激光打标、激光焊接等。
激光切割技术是将激光束照射到金属板上进行切割,提高了切割的精度和效率,同时还可应用于各种形状和尺寸的材料切割。
激光打标则是用激光束对物体进行标记,可以应用在各种材料上,加工效果好,标记质量高。
3、通信领域激光在通信领域的应用主要是光纤通信。
光纤通信是一种利用激光发射器将光信号传输到纤维内,然后通过纤维将光信号传输到目标点的通信方式,与普通的电信传输方式相比,光纤通信传输的速度快、损耗低、带宽高、安全可靠。
总之,激光的原理和应用是现代科技中的必备知识,在不同领域的应用中,能够为我们带来前所未有的便利和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续激光器原理(1)
1、介质中发生受激辐射与吸收时光强随路程z的变化规律,热平衡状态 和粒子数密度呈反转分布有何不同;
2、实现受激光放大的条件; 3、激光器的基本结构由那三个部分组成,各有何作用; 4、三能级系统与四能级系统的原理和特点; 5、光学谐振腔的作用; 6、稳定腔及其条件; 7、激光器的输出频率必须满足的三个条件; 8、激光器的模式,何为纵模何为横模,模式产生的原因; 9、速率方程组,以四能级系统为例建立速率方程组; 10、小信号粒子数密度反转的概念及其影响因素; 11、增益系数、小信号增益系数与线型函数关系;
4
连续激光器原理(2)
12、均匀增宽型介质的激光器工作时的增益饱和现象,产生增益饱和的 原因,增益饱和与线型函数的关系;
13、非均匀增宽型介质,一般情况下增益饱和产生粒子数密度反转分布 有烧孔效应,以及增益系数的烧孔效应的原因;
14、非均匀增宽型介质激光器的对称烧孔现象; 15、激光器的损耗的分类,各种损耗产生的原因; 16、激光器内形成稳定光强的过程,形成稳定光强的条件; 17、激光器出光的阈值条件,阈值与总损耗系数关系; 18、影响均匀增宽型介质的激光器的输出功率的因素; 19、非均匀增宽型介质的激光器的输出功率; 20、均匀增宽型介质的激光器的输出单纵模而非均匀增宽型介质的激光
角放大率)
M f2 M
f1 0
0
14
激光应用的有关计算
1、激光干涉测长的系统框图和光学系统图
激光干涉测长的测量方程
L N
2
2、两种激光测速的光学系统图
激光测速的测量方程
u
i D 2 sin
2
3、激光准直仪的结构框图
激光准直仪发射光学系统对高斯光束的发散角压缩比
MM0ff120
15
激光应用的有关计算(续)
sf[1(f2)2]f
0
f
0 f 0 s
2、当入射高斯光束的腰处于透镜的焦点时,出射光束正好聚焦在透
镜另一侧的焦点上,即 s f
入射光的腰粗越小,聚焦点的光斑尺寸越大。这和前面一种情 况不同。在 s f 时是不能用几何光学的规律来处理高斯光 束的,出射光束束腰半径为
0
f 0
3、倒置望远镜对高斯光束进行准直(M是倒置望远镜对普通光线的
要求:掌握计算方法
9
激光器输出光频率的计算P93-95
1、方形镜共焦腔内谐振频率 mn q 4cL(2qmn1)
纵模频率间隔
纵
c
2L
横模频率间隔
横
c
4L
2、圆形镜共焦腔内谐振频率
纵模频率间隔
纵
c
2L
plq4cL(2q2pl1)
横模频率间隔 横p 2cL纵 横l 4cL12纵
10
高斯光束参数
•
波阵面曲率半径
0 1(s02 )2
• 用上页的公式计算出出射光束的波阵面半径和有效截面半径 • 利用出射光束在镜面处的波阵面半径和有效截面半径计算出其束腰半
径和束腰位置
Rs[1(s0 2)2] 0 21( R 22)2 0 1(s0 2)2s1( R R2)2
13
高斯光束的聚焦与准直
1、高斯光束入射到短焦距透镜时的聚焦情形
激光原理与应用 复习要求
定性概念与定量计算
1
定性概念部分
要求:回答有关概念问题
2
激光原理的物理基础
1、激光的三个基本特点; 2、基态,激发态和简并度; 3、波尔兹曼分布; 4、辐射跃迁和非辐射跃迁; 5、单色辐射能量密度和普郎克黑体辐射能量密度; 6、光和物质相互作用的三个基本过程; 7、自发辐射、受激辐射和受激吸收,三个爱因斯坦系数及其相互关系; 8、受激辐射的特点,自发辐射和受激辐射强度的比较; 9、光谱线型函数定义及其对光与物质的作用的影响; 10、常见的三种线型函数分别是由于何种原因造成的; 11、均匀增宽和非均匀增宽,常见的三种线型函数分别是何种增宽。
器的输出多纵模的原因;
5
激光器输出光束特性
1、激光器对称共焦腔镜面上场分布积分方程。方形镜面的对称共焦 腔,近轴的情况下,积分方程有解析解;
2、镜面上场分布导出激光器谐振腔内外的行波方程; 3、由行波方程出发导出激光器输出光束的波阵面方程以及轴上点波
振面即高斯光束曲率半径的变化规律; 4、由行波方程出发导出激光器输出光束的波阵面即高斯光束有效截
4、激光脉冲测距仪的简化结构图 激光脉冲测距的测量方程
d ct 2
5、位相测距的原理(包括测尺频率的选择与确定) 位相测距的测量方程
d22Ls2
16
面半径及其变化规律; 5、激光的极限线宽;
6
激光的基本技术
1、激光器的选单纵模的原因及有关方法; 2、激光器的稳频及有关方法; 3、兰姆凹陷稳频的原理; 4、激光调Q技术; 5、激光锁模技术
7
激光在精密测量中的应用
1、激光干涉测长; 2、激光脉冲和相位测距原理; 3、激光多普勒测速原理;
8
定量计算部分
• 透镜的变换应用到高斯光束上,如下图所示,有以下关系
f
1 11 R R f
0
0
R R
• 前式是薄透镜假设: 透镜足够薄至使入射高度和出射高度不变
S
S
图(3.5.2)高斯光束通过薄透镜的变换
12
高斯光束通过薄透镜时的计算
• 入射光束在镜面处的波阵面半径和有效截面半径分别
Rs[1( 02 )2] s
R0
z0
[1(02)2] z0
• 光束半径
z0 0 1(z002)2
• 镜面光斑半径
1 2 20
• 远场发散角
220 22L
•
束腰半径(腰粗) 0
L 2
• 类似的计算也适用于高阶横模,当m=n时可以ቤተ መጻሕፍቲ ባይዱ似地用
z0m 2m1z0 来描述TEMmn光束的有效截面的粗细。
11
高斯光束通过薄透镜时的变换