2022年上海中考数学真题(含答案)
2022年上海市中考数学试卷及答案

2022年上海市中考数学试卷一、选择题:(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)(2022•上海)下列运算正确的是( )A .2325x x x +=B .32x x x -=C .326x x x =D .2323x x ÷= 2.(4分)(2022•上海)如果m n >,那么下列结论错误的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n ->- 3.(4分)(2022•上海)下列函数中,函数值y 随自变量x 的值增大而增大的是( )A .3x y =B .3x y =-C .3y x =D .3y x=- 4.(4分)(2022•上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大5.(4分)(2022•上海)下列命题中,假命题是( )A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等6.(4分)(2022•上海)已知A 与B 外切,C 与A 、B 都内切,且5AB =,6AC =,7BC =,那么C 的半径长是( )A .11B .10C .9D .8二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)(2022•上海)计算:22(2)a = . 8.(4分)(2022•上海)已知2()1f x x =-,那么(1)f -= .9.(4分)(2022•上海)如果一个正方形的面积是3,那么它的边长是 .10.(4分)(2022•上海)如果关于x 的方程20x x m -+=没有实数根,那么m 的取值范围是 .11.(4分)(2022•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 .12.(4分)(2022•上海)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.(4分)(2022•上海)在登山过程中,海拔每升高1千米,气温下降6C ︒,已知某登山大本营所在的位置的气温是2C ︒,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是C y ︒,那么y 关于x 的函数解析式是 .14.(4分)(2022•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 千克.15.(4分)(2022•上海)如图,已知直线121//l ,含30︒角的三角板的直角顶点C 在1l 上,30︒角的顶点A 在2l 上,如果边AB 与1l 的交点D 是AB 的中点,那么1∠= 度.16.(4分)(2022•上海)如图,在正边形ABCDEF 中,设BA a =,BC b =,那么向量BF 用向量a 、b 表示为 .17.(4分)(2022•上海)如图,在正方形ABCD 中,E 是边AD 的中点.将ABE ∆沿直线BE 翻折,点A 落在点F 处,联结DF ,那么EDF ∠的正切值是 .18.(4分)(2022•上海)在ABC ∆和△111A B C 中,已知190C C ∠=∠=︒,113AC AC ==,4BC =,112B C =,点D 、1D 分别在边AB 、11A B 上,且ACD ∆≅△111C A D ,那么AD 的长是 .三、解答题(本大题共7题,满分78分)19.(10分)(2022•上海)计算:2331|26823-- 20.(10分)(2022•上海)解方程:228122x x x x-=-- 21.(10分)(2022•上海)在平面直角坐标系xOy 中(如图),已知一次函数的图象平行于直线12y x =,且经过点(2,3)A ,与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC BC =时,求点C 的坐标.22.(10分)(2022•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60︒时,箱盖ADE 落在AD E ''的位置(如图2所示).已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D '到BC 的距离;(2)求E 、E '两点的距离.23.(12分)(2022•上海)已知:如图,AB 、AC 是O 的两条弦,且AB AC =,D 是AO 延长线上一点,联结BD 并延长交O 于点E ,联结CD 并延长交O 于点F .(1)求证:BD CD =;(2)如果2AB AO AD =,求证:四边形ABDC 是菱形.24.(12分)(2022•上海)在平面直角坐标系xOy 中(如图),已知抛物线22y x x =-,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线22y x x =-的“不动点”的坐标;②平移抛物线22y x x =-,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.25.(14分)(2022•上海)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠==∠; (2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABCS S ∆∆的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)(2022•上海)下列运算正确的是( )A .2325x x x +=B .32x x x -=C .326x x x =D .2323x x ÷= 【考点】整式的混合运算【分析】根据整式的运算法则即可求出答案.【解答】解:(A )原式5x =,故A 错误;(C )原式26x =,故C 错误;(D )原式32=,故D 错误; 故选:B .2.(4分)(2022•上海)如果m n >,那么下列结论错误的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n ->-【考点】不等式的性质【分析】根据不等式的性质即可求出答案.【解答】解:m n >,22m n ∴-<-, 故选:D .3.(4分)(2022•上海)下列函数中,函数值y 随自变量x 的值增大而增大的是( )A .3x y =B .3x y =-C .3y x =D .3y x=- 【考点】正比例函数的性质;反比例函数的性质【分析】一次函数当0a >时,函数值y 总是随自变量x 增大而增大,反比例函数当0k <时,在每一个象限内,y 随自变量x 增大而增大.【解答】解:A .该函数图象是直线,位于第一、三象限,y 随x 的增大而增大,故本选项正确.B .该函数图象是直线,位于第二、四象限,y 随x 的增大而减小,故本选项错误.C .该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 的增大而减小,故本选项错误.D .该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:A .4.(4分)(2022•上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【考点】算术平均数;中位数;方差【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为2221[(78)3(88)(98)]0.45⨯-+⨯-+-=; 乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为222221[(68)(78)(88)(98)(108)]25⨯-+-+-+-+-=, ∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低, 故选:A .5.(4分)(2022•上海)下列命题中,假命题是( )A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等【考点】命题与定理【分析】利用矩形的性质分别判断后即可确定正确的选项.【解答】解:A .矩形的对角线相等,正确,是真命题;B .矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C .矩形的对角线互相平分,正确,是真命题;D .矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.(4分)(2022•上海)已知A 与B 外切,C 与A 、B 都内切,且5AB =,6AC =,7BC =,那么C 的半径长是( )A .11B .10C .9D .8【考点】圆与圆的位置关系【分析】如图,设A ,B ,C 的半径为x ,y ,z .构建方程组即可解决问题.【解答】解:如图,设A ,B ,C 的半径为x ,y ,z .由题意:567x y z x z y +=⎧⎪-=⎨⎪-=⎩,解得329x y z =⎧⎪=⎨⎪=⎩,故选:C .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)(2022•上海)计算:22(2)a = 44a .【考点】幂的乘方与积的乘方【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:22244(2)24a a a ==.8.(4分)(2022•上海)已知2()1f x x =-,那么(1)f -= 0 .【考点】函数值【分析】根据自变量与函数值的对应关系,可得答案.【解答】解:当1x =-时,2(1)(1)10f -=--=.故答案为:0.9.(4分)(2022•上海)如果一个正方形的面积是3【考点】算术平方根【分析】根据算术平方根的定义解答. 【解答】解:正方形的面积是3,∴10.(4分)(2022•上海)如果关于x 的方程20x x m -+=没有实数根,那么m 的取值范围是 14m > . 【考点】根的判别式【分析】由于方程没有实数根,则其判别式△0<,由此可以建立关于m 的不等式,解不等式即可求出m 的取值范围.【解答】解:由题意知△140m =-<,14m ∴>. 故填空答案:14m >. 11.(4分)(2022•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是13 . 【考点】列表法与树状图法【分析】先求出点数大于4的数,再根据概率公式求解即可.【解答】解:在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为2163=,故答案为:13.12.(4分)(2022•上海)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 56斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的应用【分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛, 则5352x y x y +=⎧⎨+=⎩,故555x x y y +++=, 则56x y +=. 答:1大桶加1小桶共盛56斛米. 故答案为:56. 13.(4分)(2022•上海)在登山过程中,海拔每升高1千米,气温下降6C ︒,已知某登山大本营所在的位置的气温是2C ︒,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是C y ︒,那么y 关于x 的函数解析式是 62y x =-+ . 【考点】函数关系式【分析】根据登山队大本营所在地的气温为2C ︒,海拔每升高1km 气温下降6C ︒,可求出y 与x 的关系式.【解答】解:由题意得y 与x 之间的函数关系式为:62y x =-+. 故答案为:62y x =-+.14.(4分)(2022•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 90 千克.【考点】用样本估计总体;扇形统计图【分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以30050可得答案. 【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约30010015%9050⨯⨯=(千克),故答案为:90.15.(4分)(2022•上海)如图,已知直线121//l ,含30︒角的三角板的直角顶点C 在1l 上,30︒角的顶点A 在2l 上,如果边AB 与1l 的交点D 是AB 的中点,那么1∠= 120 度.【考点】直角三角形斜边上的中线;平行线的性质【分析】根据直角三角形斜边上的中线性质得到DA DC =,则30DCA DAC ∠=∠=︒,再利用三角形外角性质得到260∠=︒,然后根据平行线的性质求1∠的度数. 【解答】解:D 是斜边AB 的中点,DA DC ∴=,30DCA DAC ∴∠=∠=︒, 260DCA DAC ∴∠=∠+∠=︒, 121//l ,12180∴∠+∠=︒, 118060120∴∠=︒-︒=︒.故答案为120.16.(4分)(2022•上海)如图,在正边形ABCDEF 中,设BA a =,BC b =,那么向量BF 用向量a 、b 表示为 2a b + .【考点】平面向量【分析】连接CF .利用三角形法则:BF BC CF =+,求出CF 即可. 【解答】解:连接CF .多边形ABCDEF 是正六边形, //AB CF ,2CF BA =,∴2CF a =,BF BC CF =+,∴2BF a b =+,故答案为2a b +.17.(4分)(2022•上海)如图,在正方形ABCD 中,E 是边AD 的中点.将ABE ∆沿直线BE 翻折,点A 落在点F 处,联结DF ,那么EDF ∠的正切值是 2 .【考点】翻折变换(折叠问题);正方形的性质;解直角三角形【分析】由折叠可得AE FE =,AEB FEB ∠=∠,由折叠的性质以及三角形外角性质,即可得到AEB EDF ∠=∠,进而得到tan tan 2ABEDF AEB AE∠=∠==. 【解答】解:如图所示,由折叠可得AE FE =,12AEB FEB AEF ∠=∠=∠,正方形ABCD 中,E 是AD 的中点, 1122AE DE AD AB ∴===, DE FE ∴=, EDF EFD ∴∠=∠,又AEF ∠是DEF ∆的外角,AEF EDF EFD ∴∠=∠+∠,12EDF AEF ∴∠=∠,AEB EDF ∴∠=∠,tan tan 2ABEDF AEB AE∴∠=∠==. 故答案为:2.18.(4分)(2022•上海)在ABC ∆和△111A B C 中,已知190C C ∠=∠=︒,113AC AC ==,4BC =,112B C =,点D 、1D 分别在边AB 、11A B 上,且ACD ∆≅△111C A D ,那么AD 的长是53. 【考点】全等三角形的性质【分析】根据勾股定理求得5AB =,设AD x =,则5BD x =-,根据全等三角形的性质得出11C D AD x ==,111AC D A ∠=∠,111A D C CDA ∠=∠,即可求得111C D B BDC ∠=∠,根据等角的余角相等求得111B C D B ∠=∠,即可证得△11C B D BCD ∆∽,根据其性质得出52xx-=,解得求出AD 的长.【解答】解:如图,在ABC ∆和△111A B C 中,190C C ∠=∠=︒,113AC AC ==,4BC =,112B C =,22345AB ∴=+=, 设AD x =,则5BD x =-, ACD ∆≅△111C A D ,11C D AD x ∴==,111AC D A ∠=∠,111A D C CDA ∠=∠, 111C D B BDC ∴∠=∠,90B A ∠=︒-∠,11111190B C D AC D ∠=︒-∠, 111B C D B ∴∠=∠,∴△11C B D BCD ∆∽,∴1111BD BC C D C B =,即52xx-=,解得53x =, AD ∴的长为53,故答案为53.三、解答题(本大题共7题,满分78分)19.(10分)(2022•上海)计算:2331|26823--【考点】分数指数幂;实数的运算【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 【解答】解:231|31|26823--⨯+--3123234=--++-3=-20.(10分)(2022•上海)解方程:228122x x x x-=-- 【考点】解分式方程【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:22282x x x -=-,即2280x x +-=, 分解因式得:(2)(4)0x x -+=, 解得:2x =或4x =-,经检验2x =是增根,分式方程的解为4x =-.21.(10分)(2022•上海)在平面直角坐标系xOy 中(如图),已知一次函数的图象平行于直线12y x =,且经过点(2,3)A ,与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC BC =时,求点C 的坐标.【考点】待定系数法求一次函数解析式;两条直线相交或平行问题 【分析】(1)设一次函数的解析式为y kx b =+,解方程即可得到结论;(2)求得一次函数的图形与x 轴的解得为(4,0)B -,根据两点间的距离公式即可得到结论. 【解答】解:(1)设一次函数的解析式为:y kx b =+, 一次函数的图象平行于直线12y x =, 12k ∴=, 一次函数的图象经过点(2,3)A , 1322b ∴=⨯+,2b ∴=,∴一次函数的解析式为122y x =+; (2)由122y x =+,令0y =,得1202x +=, 4x ∴=-,∴一次函数的图形与x 轴的解得为(4,0)B -,点C 在y 轴上,∴设点C 的坐标为(4,)y -,AC BC =,∴=12y ∴=-,经检验:12y =-是原方程的根,∴点C 的坐标是1(0,)2-.22.(10分)(2022•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60︒时,箱盖ADE 落在AD E ''的位置(如图2所示).已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D '到BC 的距离; (2)求E 、E '两点的距离.【考点】解直角三角形的应用;矩形的性质【分析】(1)过点D '作D H BC '⊥,垂足为点H ,交AD 于点F ,利用旋转的性质可得出90AD AD '==厘米,60DAD ∠'=︒,利用矩形的性质可得出90AFD BHD ∠'=∠'=︒,在Rt △AD F '中,通过解直角三角形可求出D F '的长,结合FH DC DE CE ==+及D H D F FH '='+可求出点D '到BC 的距离;(2)连接AE ,AE ',EE ',利用旋转的性质可得出AE AE '=,60EAE ∠'=︒,进而可得出AEE ∆'是等边三角形,利用等边三角形的性质可得出EE AE '=,在Rt ADE ∆中,利用勾股定理可求出AE 的长度,结合EE AE '=可得出E 、E '两点的距离.【解答】解:(1)过点D '作D H BC '⊥,垂足为点H ,交AD 于点F ,如图3所示. 由题意,得:90AD AD '==厘米,60DAD ∠'=︒. 四边形ABCD 是矩形, //AD BC ∴,90AFD BHD ∴∠'=∠'=︒.在Rt △AD F '中,sin 90sin 60453D F AD DAD '='∠'=⨯︒=厘米. 又40CE =厘米,30DE =厘米, 70FH DC DE CE ∴==+=厘米, (45370)D H D F FH ∴'='+=厘米.答:点D '到BC 的距离为(45370)厘米. (2)连接AE ,AE ',EE ',如图4所示. 由题意,得:AE AE '=,60EAE ∠'=︒,AEE ∴∆'是等边三角形, EE AE ∴'=.四边形ABCD是矩形,∴∠=︒.ADE90在Rt ADEDE=厘米,∆中,90AD=厘米,30223010∴=+=厘米,AE AD DEEE∴'=厘米.3010答:E、E'两点的距离是3010厘米.23.(12分)(2022•上海)已知:如图,AB、AC是O的两条弦,且AB AC=,D是AO 延长线上一点,联结BD并延长交O于点E,联结CD并延长交O于点F.(1)求证:BD CD=;(2)如果2=,求证:四边形ABDC是菱形.AB AO AD【考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质【分析】(1)连接BC,根据AB AC==,即可得出AD垂直平分BC,根据=,OB OA OC线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出ABO ADB BAO∠=∠=∠,求出BD AB=,再根据菱形的判定推出即可.【解答】证明:(1)如图1,连接BC,OB,OC,AB、AC是O的两条弦,且AB AC=,A∴在BC的垂直平分线上,OB OA OC==,O∴在BC的垂直平分线上,AO∴垂直平分BC,BD CD∴=;(2)如图2,连接OB,2AB AO AD=,∴AB ADAO AB=,BAO DAB ∠=∠,ABO ADB∴∆∆∽,OBA ADB ∴∠=∠,OA OB =,OBA OAB ∴∠=∠,OAB BDA ∴∠=∠,AB BD ∴=,AB AC =,BD CD =,AB AC BD CD ∴===,∴四边形ABDC 是菱形.24.(12分)(2022•上海)在平面直角坐标系xOy 中(如图),已知抛物线22y x x =-,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线22y x x =-的“不动点”的坐标;②平移抛物线22y x x =-,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.【考点】二次函数综合题【分析】(1)10a =>,故该抛物线开口向上,顶点A 的坐标为(1,1)-;(2)①设抛物线“不动点”坐标为(,)t t ,则22t t t =-,即可求解;②新抛物线顶点B 为“不动点”,则设点(,)B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(,0)C m ,四边形OABC是梯形,则直线x m =在y 轴左侧,而点(1,1)A -,点(,)B m m ,则1m =-,即可求解.【解答】解:(1)10a =>,故该抛物线开口向上,顶点A 的坐标为(1,1)-;(2)①设抛物线“不动点”坐标为(,)t t ,则22t t t =-, 解得:0t =或3,故“不动点”坐标为(0,0)或(3,3); ②新抛物线顶点B 为“不动点”,则设点(,)B m m , ∴新抛物线的对称轴为:x m =,与x 轴的交点(,0)C m , 四边形OABC 是梯形,∴直线x m =在y 轴左侧, BC 与OA 不平行,//OC AB ∴, 又点(1,1)A -,点(,)B m m ,1m ∴=-,故新抛物线是由抛物线22y x x =-向左平移2个单位得到的, ∴新抛物线的表达式为:2(1)1y x =+-.25.(14分)(2022•上海)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠==∠; (2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABCS S ∆∆的值.【考点】相似形综合题【分析】(1)由题意:90E ADE ∠=︒-∠,证明1902ADE C ∠=︒-∠即可解决问题. (2)延长AD 交BC 于点F .证明//AE BC ,可得90AFB EAD ∠=∠=︒,BF BD AF DE=,由:2:3BD DE =,可得2cos 3BF BF ABC AB AE ∠===. (3)因为ABC ∆与ADE ∆相似,90DAE ∠=︒,所以ABC ∠中必有一个内角为90︒因为ABC ∠是锐角,推出90ABC ∠≠︒.接下来分两种情形分别求解即可.【解答】(1)证明:如图1中,AE AD ⊥,90DAE ∴∠=︒,90E ADE ∠=︒-∠,AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠, ADE BAD DBA ∠=∠+∠,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠, 1190(90)22E C C ∴∠=︒-︒-∠=∠.(2)解:延长AD 交BC 于点F .AB AE =,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,E CBE ∴∠=∠,//AE BC ∴,90AFB EAD ∴∠=∠=︒,BF BD AF DE =, :2:3BD DE =,2cos 3BF BF ABC AB AE ∴∠===.(3)ABC ∆与ADE ∆相似,90DAE ∠=︒, ABC ∴∠中必有一个内角为90︒ ABC ∠是锐角,90ABC ∴∠≠︒.①当90BAC DAE ∠=∠=︒时, 12E C ∠=∠, 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒,30ABC ∴∠=︒,此时2ADE ABCS S ∆∆=- ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC ∆与ADE ∆相似,45ABC ∴∠=︒,此时2ADE ABCS S ∆∆= 综上所述,30ABC ∠=︒或45︒,2ADE ABC S S ∆∆=2.。
2022年上海中考数学真题(word解析版)

【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.
二.填空题
7.计算:3a-2a=__________.
【答案】a
【解析】
【详解】根据同类项与合并同类项法则计算:3a-2a=(3-2)a=a
8.已知f(x)=3x,则f(1)=_____.
【答案】3
故选:D.
【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.
5.下列说法正确的是()
A. 命题一定有逆命题B. 所有的定理一定有逆定理
C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题
【答案】B
【解析】
【分析】根据反比例函数性质求】解:∵反比例函数y= (k≠0),且在各自象限内,y随x的增大而增大,,
∴k=xy<0,
A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;
D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.
故选:A.
【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.
2022年上海中考数学真题
一.选择题
1.8的相反数是()
A. B.8C. D.
【答案】A
【解析】
2022年上海市中考数学试卷及其答案

2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:8的相反数为:﹣8.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=a.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.(4分)已知f(x)=3x,则f(1)=3.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.(4分)解方程组:的结果为.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是m<3.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为20%.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是88.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:y=﹣x+1(答案不唯一).【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=﹣2+.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为400π.(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S=π×OB2=400π,⊙O故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=或.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为2﹣.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC +S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.(10分)解关于x的不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt △AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,=×3|m|=3,∴S△OPB∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2(舍),∴n=﹣3=3,∴P点的坐标为(2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x 的值,则可得出答案;(2)方法一:由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.方法二:设EP=x,则AE=2x,CE=2x,证出∠DCE=90°,延长AP交DC的延长线于点Q,则CQ=CD,由勾股定理可得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:方法一:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.方法二:设EP=x,则AE=2x,CE=2x,∵AE=AF,BE=CF,∴AB垂直平分EF,∠AGF=90°,∴∠DCE=90°,,延长AP交DC的延长线于点Q,则CQ=CD∴EQ=ED=4x,由勾股定理得CD =2x,∠DEC=∠CEQ=45°,由DE=4x可得BE=2x,∴BP ==x,∴AB:BC =2x :2x =.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.第21页(共21页)。
2022年上海市中考数学试卷及答案(上海市中考数学真题)

2022年上海市初中学业水平考试数学试卷一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( ) A .8 B . -8 C .18 D .-182.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 2 3.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A .平均数 B .中位数 C .众数 D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 6.有一个正n 边形旋转90°后与自身重合,则n 为( ) A .6 B .9 C .12 D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.10.已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人 1-2小时 10人 2-3小时14人 3-4小时16人 4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留π)17. 如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DEAB BC=,则AEAC=_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.三.解答题(本大题共7题,满分78分)19.(本大题满分10分)计算:11221312.331-⎛⎫-- ⎪-⎝⎭20.(本大题满分10份)解关于x的不等式组3442 3x xxx>-⎧⎪+⎨>+⎪⎩21.(本大题满分10分)一个一次函数的截距为-l,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值。
中考数学2022年上海宝山区中考数学真题汇总 卷(Ⅱ)(含答案详解)

2022年上海宝山区中考数学真题汇总卷(Ⅱ)考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列哪个数不能和2,3,4组成比例()A.1 B.1.5 C.223D.62、下列分数中不能化成有限小数的是()A.916B.38C.518D.7503、若甲比乙大10%,而乙比丙小10%,则甲与丙的大小关系是()A.甲=丙B.甲>丙C.甲<丙D.无法确定4、下列说法中错误的是()A.如果整数a是整数b的倍数,那么b是a的因数B.一个合数至少有3个因数C.在正整数中,除2外所有的偶数都是合数D.在正整数中,除了素数都是合数5、如图所示,把一条绳子对折成线段AB,从P处把绳子剪断,已知12AP PB,若剪断后的各段绳·线○封○密○外子中的最长的一段为10cm ,则绳子的原长为( )A .40cmB .15cmC .30cmD .15cm 或30cm6、如果1a =,2b =,4c =,那么下列说法正确的是( ) A .a ,b ,c 的第四比例项是6 B .2a ,2b ,2c 的第四比例项是18 C .c 是a ,b 的比例中项D .b 是a ,c 的比例中项7、下列命题正确的有几个( )①如果整数a 能被整数b (不为0)除尽,那么就说a 能被b 整除; ②任何素数加上1都成为偶数;③一个合数一定可以写成几个素数相乘的形式; ④连续的两个正整数,它们的公因数是1. A .0B .1C .2D .38、若0a b <<,则( ) A .33a b -<-B .22a b <C .33a b >D .c a c b ->-9、现调查六(1)班暑期旅游意向,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去蒲松龄故居参观的学生数”的扇形圆心角为60°,则下列说法正确的是( ) A .想去蒲松龄故居参观的学生占全班学生的60% B .想去蒲松龄故居参观的学生有12人 C .想去蒲松龄故居参观的学生肯定最多D .想去蒲松龄故居参观的学生占全班学生的1610、如果x ,y 都不为零,且23x y =,那么下列比例中正确的是( )A .23x y = B .32x y =C .32x y=D .23x y =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、定义运算如下:若{}11,a x y =,{}22,b x y =,,则1212a b x x y y ⋅=+,现已知11,23a ⎧⎫=⎨⎬⎩⎭,1334,b ⎧⎫=⎨⎬⎩⎭,则计算⋅=a b ____________.2、已知一个扇形的面积是12.56平方厘米,它所在的圆的面积是50.24平方厘米,则该扇形的圆心角是_______.3、30分解素因数是_______.4、如图,在△ABC 中,AB =4,BC =6,∠B=60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.5、分解素因数:45=_____________. 三、解答题(5小题,每小题10分,共计50分) 1、同学们一定知道,盈利率与进价售价三者之间满足关系:盈利率=售价进价进价-×100%,(1)现请你变形这一关系式,若用进价,盈利率来表示售价,则售价=___________. (2)如果商品进价为a 元,它的盈利率是40%,则它的售价=___________(用a 表示). (3)某种商品的盈利率是40%;如果进货价降低20%,售价保持不变,那么盈利率将是多少? 2、某汽车厂一个车间有39名工人.车间接到加工两种汽车零件的生产任务,每个工人每天能加工甲种零件8个,或加工乙种零件15个.每一辆汽车只需甲零件6个和乙零件5个,为了能配套生产,每天应如何安排工人生产?·线○封○密○外3、某学校举行“迎世博”知识竞赛;需要制作长条形会议横幅如图所示,已知边空:字宽3:2=,字宽:字距3:1=.(1)将边空:字宽:字距化成最简整数比;(2)如果字距是15米,横幅的字数为10,求长条形会议横幅的长度.4、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米?5、下面是某班在一次每分钟踢锥子比赛的成绩表,其中缺少了60~69次/分的人数.若把每分钟踢69次及以下为不合格,其余的为合格,又已知不合格的人数是合格人数的213,那么这班60~69次/分的人数有多少名?-参考答案-一、单选题1、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A .1423⨯≠⨯,不可以组成比例;B .1.5423⨯=⨯,可以组成比例;C .223243⨯=⨯,可以组成比例;D .2634⨯=⨯,可以组成比例; 故选:A . 【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键. 2、C 【分析】把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 【详解】解:916分母中只含有质因数2,所以能化成有限小数;38分母中只含有质因数2,所以能化成有限小数;518分母中含有质因数3.所以不能化成有限小数; 750分母中只含有质因数2和5,所以能化成有限小数;故选:C .【点睛】 本此题主要考查什么样的分数可以化成有限小数,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.·线○封○密○外3、C【分析】设丙为单位“1”,根据乙比丙小10%算出乙,再根据甲比乙大10%算出甲,比较甲和丙的大小.【详解】解:设丙为单位“1”,-⨯=,∵乙比丙小10%,∴乙= 1110%0.9+⨯=,∵甲比乙大10%,∴甲= 0.90.910%0.99∴甲<丙.故选:C.【点睛】本题考查百分数的意义,需要注意不能直接根据乙比丙小10%,甲比乙大10%,得到甲和丙相等,而是需要计算的.4、D【分析】根据题意,逐项进行分析即可,进而得出结论.【详解】A.根据因数和倍数的意义可知:如果整数a是整数b的倍数,那么b是a的因数,故正确;B.根据合数的含义:除了1和它本身外,还能被其他整数整除,得出:一个合数至少有3个因数,故正确;C.因为正整数不包括0,所以除2外所有的偶数,都至少有1,2和本身3个约数,所以都是合数,说法正确;D.在正整数中,1既不是素数也不是合数,故在正整数中,除了素数就是合数,说法错误.故选:D.【点睛】本题主要考查了素数、合数、因数以及倍数,熟练掌握其概念是解题的关键. 5、D 【分析】本题没有给出图形,在画图时,应考虑到绳子对折成线段AB 时,哪一点是绳子的端点或者哪一点是绳子的对折点的多种可能,再根据题意正确地画出图形解题. 【详解】 ①当点A 是绳子的对折点时,将绳子展开如图1.∵:1:2AP BP =,剪断后各段绳子中最长的一段为10cm , ∴210cm AP =,5cm AP =,10cm PB =,∴绳子的原长()()22251030cm AB AP PB ==+=⨯+=; 当点B 是绳子的对折点时,将绳子展开如图2.∵:1:2AP BP =,剪断后各段绳子中最长的一段为10cm , ∴210cm BP =,5cm BP =, 2.5cm AP =,∴绳子的原长()()222 2.5515cm AB AP PB ==+=⨯+=. 故选D .【点睛】 在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.·线○封○密·○外6、D 【分析】根据第四比例项和比例中项的性质作答即可. 【详解】解:∵1a =,2b =,4c =,设a ,b ,c 的第四比例项为x ,则有:a c b x=,解得:2481bcxa ,故A 选项错误;设2a ,2b ,2c 的第四比例项为y ,则有:222acb y,解得:2224161bc y a ,故B 选项错误;如果c 是a ,b 的比例中项,则有2c ab =,解得:122c ab,故C 选项错误;如果b 是a ,c 的比例中项,则有2b ac =,解得:142b ac,故D 选项正确; 故选:D . 【点睛】本题主要考查了第四比例项和比例中项的性质,熟悉相关性质是解题的关键. 7、C 【分析】①除尽是指被除数除以除数(除数≠0),除到最后没有余数,就说一个数能被另一个数除尽;而整除是指一个整数除以一个非0整数,得到的商是整数还没有余数,就说一个数能被另一个数整除; ②根据质数的定义,2为最小的质数,但是2+1=3,3为质数;③根据合数的定义:一个数除了1和它本身以外还有别的因数,这样的数叫做合数,分解质因数就是把一个合数写成几个质数的连乘积形式,所以任何一个合数都可以写成几个质数相乘的形式; ④相邻的两个正整数是互质数,互质数的公因数是1,由此即可解答. 【详解】①根据“整除”和“除尽”概念的不同,可知能被b 除尽的数不一定能被b 整除. 如:15÷2=7.5,15能被2除尽,但不能被2整除,故①错误;②由于2为最小的质数,2+1=3,3为奇数,所以任何质数加1都成为偶数的说法是错误的,故②错误;③任何一个合数都可以写成几个质数相乘的形式,故③正确; ④根据相邻的两个自然数是互质数,互质数的公因数是1,故④正确; 综上,正确的是③和④,共2个. 故选:C . 【点睛】 本题考查了数的整除,合数的定义以及分解质因数的意义,因数、公因数的概念,解题的关键是理解“整除”和“除尽”的意义以及两个数互质,最大公因数是1,最小公倍数是它们的积. 8、D 【分析】直接根据一元一次不等式的基本性质直接排除选项即可. 【详解】A 、因为0a b <<,所以33a b -->,故错误;B 、因为0a b <<,所以22a b >,故错误;C 、因为0a b <<,所以33a b <,故错误;D 、因为0a b <<,所以,a b c a c b --∴->->,故正确. 故选D .·线○封○密○外【点睛】本题主要考查一元一次不等式的性质,熟练掌握不等式的性质是解题的关键.9、D【分析】根据扇形统计图的相关知识,“想去蒲松龄故居参观的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去蒲松龄故居参观的学生数”就是总人数的601=3606,据此即可求解.【详解】解:A、想去蒲松龄故居参观的学生数占全班学生的百分比为60÷360=116.7%6,故选项错误;B、想去蒲松龄故居参观的学生数有48×60360=8人,故选项错误;C、想去蒲松龄故居参观的学生数肯定最多,没有其它去处的数据,不能确定为最多,故选项错误;D、想去蒲松龄故居参观的学生数占全班学生的601=3606,故选项正确.故选:D【点睛】本题考查的是扇形统计图的综合运用,读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.10、B【分析】逆用比例的基本性质作答,即在比例里,两个外项的积等于两个内项的积.【详解】解:因为x,y都不为零,且2x=3y,所以x:y=3:2;即32x y =或32x y = 故选:B 【点睛】 本题主要是灵活利用比例的基本性质解决问题.二、填空题 1、512 【分析】 直接依据新定义的运算法则结合分数的乘法和加法计算即可; 【详解】 解:∵11,23a ⎧⎫=⎨⎬⎩⎭,1334,b ⎧⎫=⎨⎬⎩⎭∴111311235===233464121212⋅=⨯+⨯++a b 故答案为:512 【点睛】本题是新定义题,主要考查了分数的乘法和加法运算及理解应用能力,正确的理解题意,熟练掌握分数的乘法和加法运算是解题的关键. 2、90° 【分析】扇形面积占它所在圆面积的几分之几,这个扇形的圆心角度数就占周角的几分之几,先求出扇形面积占圆面积的几分之几,再根据一个数乘分数的意义解答即可. 【详解】 解:12.561360=360=9050.244⨯⨯ ·线○封○密○外故答案为:90°【点睛】此题考查的目的是理解掌握扇形面积公式、圆的面积公式、以及周角的意义.3、30235=⨯⨯【分析】根据题意直接进行分解素因数即可.【详解】30分解素因数为:30235=⨯⨯.故答案为30235=⨯⨯.【点睛】本题主要考查分解素因数,关键是根据分解素因数的方法直接分解即可.4、12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=. 故答案为:12. 【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等. 5、3×3×5 【详解】 解:根据素因数的概念可知:分解素因数:45=3×3×5. 故答案为:3×3×5 三、解答题 1、(1)进价×(1+盈利率);(2)1.4a ;(3)75%. 【分析】 (1)根据等式的性质变形即可得答案; (2)根据(1)中得出的关系式即可得答案; (3)设原进价为x ,即可表示出降价后的进价,根据(1)中关系式可表示出售价,根据盈利率=售价进价进价-×100%,即可得答案. 【详解】 (1)∵盈利率=售价进价进价-×100%, ∴售价=进价×盈利率+进价=进价×(1+盈利率),故答案为:进价×(1+盈利率)(2)∵售价=进价×(1+盈利率),进价为a 元,它的盈利率是40%,·线○封○密○外∴它的售价=a×(1+40%)=1.4a,故答案为:1.4a(3)设原进价为x,则降价后的进价为80%x,∴售价=x×(1+40%)=1.4x,∴降价后的盈利率=1.480%80%x xx-×100%=75%.【点睛】本题考查利率问题及等式的性质,考查了关系式盈利率=售价进价进价-×100%,熟练掌握等式的性质是解题关键.2、应安排27人生产甲种零件,12人生产乙种零件【分析】设应分配x人生产甲种零件,y人生产乙种零件,根据每个工人每天能加工甲种零件8个或加工乙种零件15个,而一辆轿车只需要甲零件6个和乙零件5个,列方程组求解.【详解】设应分配x人生产甲种零件,y人生产乙种零件,由题意得39 58615x yx y+=⎧⎨⨯=⨯⎩,解得:2712xy=⎧⎨=⎩.答:应安排27人生产甲种零件,12人生产乙种零件.【点睛】本题考查了二元一次方程组的应用,关键是设出生产甲和乙两种零件的人数,以配套的比例列方程求解.3、(1)边空:字宽:字距9:6:2=;(2)长条形会议横幅的长度为9.6米.【分析】(1)根据比的性质解答即可;(2)根据问题一先求出一份的长度进而得出长条形会议横幅的长度解答.【详解】解:(1)因为边空:字宽=3:2=9:6,字宽:字距=3:1=6:2,所以边空:字宽:字距=:9:6:2;(2)一份的长度:15÷2=0.1(米); 两边的两个边空的长度为:0.1×9×2=1.8(米); 10个字的字宽:0.1×6×10=6(米); 10个字的间隔数为:10-1=9个,间隔总长是:0.1×2×9=1.8(米); 所以长条形会议横幅的长度是:1.8+6+1.8=9.6(米); 答:长条形会议横幅的长度是9.6米. 【点睛】 本题考查了植树问题和求三个数的连比,知识点是:间隔数=字的个数-1,总长度=间隔数×间距;知识链接(沿直线上栽):栽树的棵数=间隔数-1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端). 4、49厘米 【分析】 先算出每本书的厚度,再乘以书的总本数即可得到解答. 【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米. ·线○封○密○外【点睛】本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键.5、这班60~69次/分的人数有3名.【分析】求出合格人数乘分率再减去“59以下”人数即可.【详解】解:(8+10+8)×213-1=26×213-1=4-1=3答:这班60~69次/分的人数有3名.【点睛】此题考查的是分数应用题,掌握比较量=单位“1”×分率是解题关键.。
2022年上海中考数学试题(含答案)

2022年上海市初中学业水平考试数学卷一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( ) A .8 B . -8 C .18 D .-182.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 2 3.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A .平均数 B .中位数 C .众数 D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 6.有一个正n 边形旋转90°后与自身重合,则n 为( ) A .6 B .9 C .12 D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.10.已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的 频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人1-2小时 10人2-3小时14人3-4小时16人4-5小时6人),若共有200名学生,则该学校六年级 学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为_____.(结果保留π)17.如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,AD DEAB BC=,则AEAC=_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.三.解答题(本大题共7题,满分78分)19.(本大题满分10分)计算:11221312.331-⎛⎫-- ⎪-⎝⎭20.(本大题满分10份)解关于x的不等式组3442 3x xxx>-⎧⎪+⎨>+⎪⎩21.(本大题满分10分)一个一次函数的截距为-l,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值。
上海市2022年中考数学真题试题(含扫描答案)

上海市 2022年中考数学真题试题考生注意:1.本试卷共25题.2.试卷总分值150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题〔本大题共6题,每题4分,总分值24分〕 1.182的结果是〔 〕A. 4B.3C.222 2.以下对一元二次方程230x x +-=根的情况的判断,正确的选项是〔 〕 A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根3.以下对二次函数2y x x =-的图像的描述,正确的选项是〔 〕A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧局部是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是〔 〕A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,30POQ ∠=︒,点A 、B 在射线OQ 上〔点A 在点O 、B 之间〕,半径长为2的A 与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是〔 〕 A. 59OB << B. 49OB << C. 37OB << D. 2二、填空题〔本大题共12题,每题4分,总分值48分〕 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元〔用含字母a 的代数式表示〕. 11.反比例函数1k y x-=〔k 是常数,1k ≠〕的图像有一支在第二象限,那么k 的取值范围是 .图1PBA O12.某学校学生自主建立了一个学习用品义卖平 台,九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,37π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+〔k 是常数,0k ≠〕的图像经过点〔1,0〕,那么y 的值随着x 的增大而 〔填“增大〞或“减小〞〕15.如图3,平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点〔如图5〕,那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题〔共7题,总分值78分〕19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.O -4-2321y x金额(元)人数805030105040302010O图2图4 图3 图5 图6 D B A GF A ED A20.先化简,再求值:2221211a a a a a a+⎛⎫-÷ ⎪-+-⎝⎭,其中5a =.21.如图7,ABC ∆中,AB =BC =5,3tan 4ABC ∠=. 〔1〕求AC 的长;〔2〕设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y 〔升〕与行驶路程x 〔千米〕之间是一次函数关系,其局部图像如图8所示.〔1〕求y 关于x 的函数关系式〔不需要写定义域〕;〔2〕当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图8 C B A图723.:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.〔1〕求证:EF =AE -BE ; 〔2〕联结BF ,假设AF DFBF AD=,求证:EF =EP .24.在平面直角坐标系xOy 中〔如图10〕,抛物线解析式212y x bx c =-++经过点A〔-1,0〕和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. 〔1〕求抛物线的表达式; 〔2〕求线段CD 的长度;〔3〕将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图10 O yx 图9PFEDCBA25.O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F.〔1〕如图11,如果AC =BD ,求弦AC 的长;〔2〕如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;〔3〕联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n+4)边形的一边,求ACD ∆的面积.图12图11备用图OFE D C B A OFEDCBA参考答案2022中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午, 2022年上海市初中毕业统一学业考试数学科目顺利开考。
2022年上海市中考数学试题及答案

2022年上海中考数学试题一、选择题:〔本大题共6题,每题4分,总分值24分〕1.在以下代数式中,次数为3的单项式是〔 〕 A 2xy ; B 33+x y ; C .3x y ; D .3xy .2数据5,7,5,8,6,13,5的中位数是〔 〕A .5;B .6;C .7 ;D .8.3.不等式组2<62>0x x ⎧⎨⎩--的解集是〔 〕A .>3x -;B .<3x -;C .>2x ;D .<2x .4〕ABC; D.5在以下列图形中,为中心对称图形的是〔 〕A .等腰梯形;B .平行四边形;C .正五边形;D .等腰三角形.6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是〔 〕A .外离;B .相切;C .相交;D .内含.二、填空题:〔本大题共12题,每题4分,总分值48分〕7.计算112-=. 8.因式分解=xy x -.9.正比例函数()=0y kx k ≠,点()2,3-在函数上,那么y 随x 的增大而〔增大或减小〕.10的根是.11.如果关于x 的一元二次方程26+=0x x c -〔c 是常数〕没有实根,那么c 的取值范围是.12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命平安知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示〔其中每个分数段可包括最小值,不包括最大值〕,结合表1的信息,可测得测试分数在80~90分数段的学生有名.分数段 60—70 70—80 80—90 90—100 频率 0.2 0.25 0.2515.如图,梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC〔用a ,b 表示〕.16.在△ABC 中,点D 、E 分别在AB 、AC 上,=ADE B ∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为.17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为.18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为.三、解答题:〔本大题共7题,总分值78分〕19.〔此题总分值10分〕()112211231++32221-⎛⎫⨯-- ⎪ ⎪-⎝⎭. 20.〔此题总分值10分〕解方程:261393x x x x +=+--. 21.(此题总分值10分,第〔1〕小题总分值4分.第〔2〕小题总分值6分〕如图在Rt △ABC 中,∠=90ACB ,D 是边AB 的中点,BE ⊥CD ,垂足为点E .己知=15AC ,3=5cosA . 〔1〕求线段CD 的长;〔2〕求sin ∠DBE 的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的本钱y 〔万元/吨〕与生产数量x 〔吨〕的函数关系式如下列图.〔1〕求y 关于x 的函数解析式,并写出它的定义域;〔2〕当生产这种产品的总本钱为280万元时,求该产品的生产数量.〔注:总本钱=每吨的本钱×生产数量〕23.〔此题总分值12分,第〔1〕小题总分值5分,第〔2〕小题总分值7分〕己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G .〔1〕求证:=BE DF〔2〕当要DF FC =AD DF 时,求证:四边形BEFG 是平行四边形. 24.〔此题总分值12分,第〔1〕小题总分值3分,第〔2〕小题总分值5分,第〔3〕小题总分值4分〕如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F . 〔1〕求这个二次函数的解析式;〔2〕求线段EF 、OF 的长〔用含t 的代数式表示〕;〔3〕当∠ECA =∠OAC 时,求t 的值.25.〔此题总分值14分,第〔1〕小题总分值3分,第〔2〕小题总分值5分,第〔3〕小题总分值6分〕如图,在半径为2的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个动点〔不与点A 、B 重合〕OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .〔1〕当=1BC 时,求线段OD 的长;〔2〕在△DOE 中是否存在长度保持不变的边如果存在,请指出并求其长度,如果不存在,请说明理由;〔3〕设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.参考答案1.A .2.B .3.C .4.C .5.B . 6.D .7.21.8.()1x y -.9.减小. 10.3x =. 11.>9c . 12.2=+2y x x -. 13.31. 14.150. 15.2a b +. 16.3. 17.4. 18.31-. 19.3.GFD E B C A解 :原式=23122324-+++- =231232-+++- =3.20..1x =.解:x(x-3)+6=x-3x 2-4x+3=0x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根 21.225〔或12.5〕; 257. 22.① y=-101x+11〔10≤x ≤50) ② 40.23.24.25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年上海市初中学业水平考试数学卷
一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( )
A .8
B . -8
C .
D .- 2.下列运算正确的是…… ( )
A .a ²+a ³=a 6
B . (ab )2 =ab 2
C . (a +b )²=a ²+b ²
D . (a +b )(a -b )=a ² -b 2 3.已知反比例函数y =
(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )
A . (2,3)
B . (-2,3)
C . (3,0)
D . (-3,0)
4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A .平均数 B .中位数 C .众数 D .方差
5.下列说法正确的是( )
A .命题一定有逆命题
B .所有的定理一定有逆定理
C .真命题的逆命题一定是真命题
D .假命题的逆命题一定是假命题 6.有一个正n 边形旋转90°后与自身重合,则n 为( ) A .6 B .9 C .12 D .15 二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____. 9.解方程组的结果为_____.
10.已知x -x +m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.
12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.
1818
k
x
2
2
13
x y x y +=⎧⎨
-=
⎩
13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的 频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人1-2小时 10人2-3小时14人3-4小时16人4-5小时6人),若共有200名学生,则该学校六年级 学生阅读时间不低于3小时的人数是_____.
14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.
15.如图所示,在口ABCD 中,AC ,BD 交于点O ,则_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留)
17. 如图,在△ABC 中,△A =30°,△B =90°,D 为AB 中点,E 在线段AC 上,
,则_____.
18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.
,,BO a BC b ==DC =πAD DE
AB BC
=AE
AC
=
三.解答题(本大题共7题,满分78分)
19.(本大题满分10分)
计算:
20.(本大题满分10份)
解关于x 的不等式组
21.(本大题满分10分)
一个一次函数的截距为-l ,且经过点A (2,3). (1)求这个一次函数的解析式;
(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,
求cos △ABC 的值。
11
2
2112.3-⎛⎫-- ⎪
⎝⎭34423
x x x x >-⎧⎪
+⎨>+⎪⎩
22.(本大题满分10分)
我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长。
(1)如图(1)所示,将一个测角仪放置在距离灯杆AB 底部a 米的点D 处,测角仪高为b 米,从C 点测得A 点的仰角为,求灯杆AB 的高度.(用含a ,b ,的代数式表示) (2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图(2) 所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木杆 沿着BC 方向移动1.8米至DE 的位置,此时测得其影长DF 为3米,求灯杆AB 的高度
23.(本大题满分12分,第(1)、(2)问满分各6分)
如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE ²=AQ ·AB
求证:(1)△CAE =△BAF ;(2) CF ·FQ =AF ·BQ
α
α
24.已知:2
12
y x bx c =
++经过点()21A --,
,()03B -,. (1)求函数解析式;
(2)平移抛物线使得新顶点为(),P m n (m >0).
△倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围; △P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠=时,求P 点坐标.
25.平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,联结CE . (1)若AE CE =, △证明ABCD 为菱形;
△若5AB =,3AE =,求BD 的长.
(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F
,且
CE =.若F 在直线CE 上,求
AB
BC
的值.
B
参考答案: 一.选择题
1.B
2.D
3.B
4.D
5.A
6.C 二.填空题
7. a 8.3 9.x =2,y =-1 10. m <3 11.
12.20% 13.y =-x +1(k <o ,b >0,答案不唯一) 14.88 15. 16. 400 17. 18. 2
三.
解答题 19. -8 20.-2<x <-1 21. (1)y =x
22.(1)atan +b 米;(2)3.8米
23.(1)证△ACE △△
ABF △CAE =△BAF ;
(2)证△ACE △△AFQ △C =△AFQ ,再证△ACF △△BFQ CF ·FQ =AF ·BQ . 24.(1);(2)k ≥2;(3). 25.(1)△证AC △BD ;△; (2)
.13
2a b -+π11
24
或α⇒⇒⇒2
132
y x =
-P 5。