Gaussian简介
《Gaussian培训》课件

Gaussian软件的发展历程
• Gaussian软件的发展历程可以追溯到上世纪80年代,自1980年代中期以来,Gaussian软件不断推出新的版本,并逐渐实 现了从单一的量子化学计算软件到计算化学综合平台的转变。目前,Gaussian软件已经成为全球使用最广泛的计算化学软 件之一。
Gaussian软件的主要功能和应用领域
06
参考文献
参考文献
Gaussian 09, Revision A.01, Mopac 2012, and associated
tutorials and examples.
Gaussian 09, Revision A.01, Mopac 2012, and associated
tutorials and examples.
依据。
金属表面的结构和性质研究
要点一
总结词
Gaussian软件可用于金属表面结构的研究,预测表面 形貌、电子结构以及化学反应活性等性质。
要点二
详细描述
借助Gaussian软件,科研人员可以模拟金属表面的电 子云分布、能带结构以及化学反应活性等性质,为催 化剂设计、能源存储与转化等应用提供理论支持。
Gaussian培训
2023-11-12
目录
• Gaussian软件概述 • Gaussian计算方法介绍 • Gaussian软件操作流程 • Gaussian软件应用实例 • Gaussian软件的优缺点及未来发展 • 参考文献
01
Gaussian软件概述
Gaussian软件简介
• Gaussian软件是一款广泛应用于计算化学领域的软件,由美国 Gaussian公司开发。它提供了一系列的计算化学工具,包括分 子建模、量子化学计算、分子动力学模拟等,被广泛应用于药 物设计、材料科学、能源研究等领域。
高斯的介绍和使用

AO轨 道
轨道系数 LUMO
注: • 输出的MO系数是未经归一化过的; • 1s, 2s等符号并非真正意义上的AO, 它与计算 所采用的基组 有关. 对于上例, 采用的是6-31G基组, 可知, 对于价层AO是 分裂为两组的, 故对于O原子, 输出的2s和3s 实际上均为价 轨道, 其它类推. • 当基函数较多时, 若只考察前线附近的轨道成 分, 可用关键 词: pop=regular, 此时只给出5个占据轨道和5 个空轨道组成.
距离矩阵
各原子的直角坐标
需核查!
注意:计算结果是以该坐标系为准
需核查!
MO初始猜测
迭代次数 收敛指标
自洽场迭代求解部分
迭代次数 收敛指标
自洽场迭代求解部分
偶极矩及多极矩
对主要计算结果进行总结
分子轨道系数的输出:关键词: pop=full说明: 有时为 了分析MO成分, 则需利用该关键词输出各MO的成 分, 以H2O为例:
Mulliken电荷分布
说明: 电荷的绝对值是没有意义的,其数值受到所用方法, 尤其是 基组的影响较大: 以H2O为例: 方法/基组 B3LYP/STO-3G B3LYP/3-21G B3LYP/6-31G HF/6-31G O H
-0.329 -0.637 -0.705
-0.795
0.165 0.318 0.353
二、安装高斯对计算机的要求
现在的 PC 速度非常快,成本低廉,是使用 Gaussian 的一 个经济实惠的平台。 对稍懂计算机的人我会建议组装一台 Linux 工作站,基本的配备应包括 64 位 Dual-Core CPU, 如 Intel P4 8xxD, 9xxD, Core Duo, 或 AMD Athlon 64X2 等, 2 GB DDR2 667 以上内存, 2 台 200 GB 以上 SATA 硬盘以 弹 性 使 用 Raid 0/1 。 Linux 操 作 系 统 可 选 择 免 费 下 载 之 Fedora Core 4 或 5,Suse 10 等,记得要使用 64 位的版本。 旧的 32 位 PC 也可以用,只是效能上会差很多。接下来要依 照你的系统种类选择适当的 Gaussian 03 版本,请参阅本站 首页。目前 Window XP 的版本 (G03W) 还不能发挥 64 位的 运算效能, 使用上的便利性及功能性也都不如 Linux 的版本
gaussian函数

Gaussian函数简介Gaussian函数,又称高斯函数,是一种特殊的数学函数,由德国数学家卡尔·高斯于1809年提出。
它的形式为:$$f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$其中,$\mu$是均值,$\sigma$是标准差,$\pi$是圆周率。
Gaussian函数的特点Gaussian函数有着多种特点,主要有以下几点:1. 均值和方差Gaussian函数的均值是$\mu$,方差是$\sigma^2$,这两个参数决定了函数的形状。
2. 对称性Gaussian函数是对称的,即$f(x)=f(-x)$,它的图像是一个对称的椭圆形,可以通过改变$\mu$和$\sigma$来改变椭圆的形状。
3. 非负性Gaussian函数的值始终为非负的,即$f(x)\geq0$,因此它的图像是一个“山”的形状。
4. 无穷性Gaussian函数的值在无穷大处可以接近于0,即$\lim_{x\to\infty}f(x)=0$,因此它的图像是一个“鼻子”的形状。
Gaussian函数的应用Gaussian函数在数学、物理、工程和计算机科学等领域都有着广泛的应用。
其中,最常见的应用有:1. 概率分布Gaussian函数可以用来描述某一种随机变量的概率分布,即$f(x)$表示$x$取值的概率。
2. 滤波器Gaussian函数可以用来构造滤波器,即在图像处理中,可以用它来消除噪声,从而提高图像的清晰度。
3. 信号处理Gaussian函数可以用来描述信号的时间变化,即$f(x)$可以表示信号在$x$时刻的幅度变化情况。
4. 机器学习Gaussian函数也可以用来描述模型的参数分布,即$f(x)$可以表示模型参数$x$的概率分布。
5. 其他应用Gaussian函数还可以用来拟合实验数据,用来求解特殊的微分方程等等。
总结Gaussian函数是一种特殊的数学函数,它的形式为$f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$,其中,$\mu$是均值,$\sigma$是标准差,$\pi$是圆周率。
gaussian09 计算旋轨耦合

根据您提供的主题,我将为您撰写一篇关于Gaussian09计算旋轨耦合的文章。
Gaussian09是一个广泛使用的量子化学计算软件,它可以用于研究分子的结构、能量、振动频率等性质。
旋轨耦合是指自旋轨道相互作用,它在研究分子的磁性质和光学性质时具有重要作用。
在本文中,我们将探讨如何使用Gaussian09计算旋轨耦合,以及其在理论化学研究中的应用。
一、Gaussian09简介1. Gaussian09是由Gaussian, Inc.开发的一款用于量子化学计算的软件,它可以进行从量子力学到分子动力学等多种计算。
2. Gaussian09具有强大的功能和灵活的使用方式,广泛应用于理论化学、生物化学、材料科学等领域。
二、旋轨耦合的理论基础1. 旋轨耦合是量子力学中的重要概念,它描述了自旋和轨道运动之间的相互作用。
2. 在分子中,电子的自旋和轨道运动相互作用会导致分子的磁性质和光学性质发生变化,因此对旋轨耦合的研究具有重要意义。
三、Gaussian09计算旋轨耦合的方法1. 在Gaussian09中,可以通过设置适当的计算参数来进行旋轨耦合的计算。
2. 通过在输入文件中指定旋轨耦合的计算方法和相关的分子结构信息,可以使用Gaussian09进行旋轨耦合的计算。
四、旋轨耦合在理论化学研究中的应用1. 旋轨耦合的计算结果可以用于研究分子的磁性质和光学性质,为理论化学研究提供重要的参考数据。
2. 通过对旋轨耦合进行计算和分析,可以揭示分子中电子的运动规律和相互作用机制,为理论化学研究提供重要的理论基础。
五、结论通过对Gaussian09计算旋轨耦合的方法和应用进行探讨,我们可以看到旋轨耦合在理论化学研究中的重要性和应用前景。
使用Gaussian09进行旋轨耦合的计算不仅可以为理论化学研究提供重要的数据支持,也为研究者提供了一个强大的工具和评台,有助于推动理论化学研究的发展。
致力于提供高质量的理论化学研究工具和支持,Gaussian09的不断发展和完善将为理论化学研究提供更多的可能性和机遇。
Gaussian计算软件的使用综述(完整版)

TD相关关键词
• Singlets 只算单重态 • Triplets 只算三重态 • 50-50 单重和三重态各占一半 • Root=N 研究TD计算的第几个激发态Direct
加快计算速度,减小硬盘使用空间 • Read 从Chk文件中读 TD (G03有,好
像G98 A11.2也有) • SOS Do sum-over states polarizabilities,
maxcycle=200,restart) SCF(direct,maxcycle=200) GFINPUT IOP(6/7=3) TEST • • td at 12.26
• 01 • …..
频率或者NMR计算
• #P B3LYP/6-31G* FREQ GFINPUT IOP(6/7=3) TEST
etc.
Gaussian中NBO计算
• # B3LYP/6-31G(d,p) Pop=(NBO, NPA, NBORead)
• Example of NBO bond orders
• 01 • C 0.000000 0.665676 0.000000 • H 0.919278 1.237739 0.000000 • H -0.919239 1.237787 0.000000 • C 0.000000 -0.665676 0.000000 • H -0.919278 -1.237739 0.000000 • H 0.919239 -1.237787 0.000000
• $nbo bndidx file … $end
消除自旋污染
• SCF Done: E(UHF) = -111.945340085 A.U. after 19 cycles
高斯软件的介绍

题 目:高斯软件的简介 指导老师:徐畅老师 姓 名:马乃宇 学 号:C13201045 专 业:高分子化学与物理专业
Gaussian是一个量子化学软件包,它是目前 应用最广泛的计算化学软件之一,Gaussian 软件的出现降低了量子化学计算的门槛, 使得从头计算方法可以广泛使用,从而极 大地推动了其在方法学上的进展。
4).最简单的关键词输入是#或#p,其含义是采用HF方法和 STO-3G基组计算体系的能量;
能量的计算: 如何计算一个体系的能量是获取分子各种性质的基础,因此 首先来看如何计算体系的能量,即进行单点能计算: (1). 计算方法的选择: g98提供的常用计算方法有: 1) 半经验方法: 关键词:AM1, PM3, CNDO, INDO, MINDO 它们主要用于大的有机分子体系(由上百个原子组成),一般 对于含金属体系不适用。这些方法只有在特殊场合适用。 2) 从头算(ab initio)方法: HF方法:即基于Hartree-Fock原理的方法 关键词:HF,RHF,UHF,ROHF 说明:I)当关键词为HF时,会自动根据自旋多重度选择 RHF还是UHF; Ii)ROHF为限制性开壳层HF方法,与UHF区别在 此时除了成单电子外,其余的和电子仍配对, 通常该方法得到的能量要较UHF略高。 Iii)HF方法可以看作是最低级的从头算方法,该方 法除了在构型优化时有使用外,不适合计算能量。
(2).基组的选择: 1). 全电子基组: 关键词:sto-3g, 3-21g, 4-31g, 6-21g, 6-31g, 6-311g, d95/d95v 说明:I). 不同的基组适用范围是不同的: STO-3G(H-Xe);3-21G(H-Xe);6-21G(H-Cl) 4-31G(H-Ne);6-31G(H-Kr);6-311G(H-Kr) D95(H-Cl 除了Na, Mg);D95V(H-Ne)
Gaussian软件简介

国家超级计算深圳中心科学计算相关软件
Gaussian简介
国家超级计算深圳中心科学计算相关软件Gaussian最早是由美国卡内基梅隆大学的约翰〃波普在60年度末、70年代初主导开发,是一个功能强大的商业化量子化学综合软件包。
Gaussian软件的出现大大降低了计算化学的门槛,使得从头计算方法可以广泛用于研究各种化学问题。
Gaussian 可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。
常常与gaussview连用。
目前国家超级计算深圳中心配置了Gaussian、TCP-Linda、GaussView三个模块,主要用来进行半经验计算和从头计算。
gaussian的介绍

F、第三周期以后的原子的基组
第三周期以上的原子的基组很难处理。 由于存在非常大的核,原子核附近的电子通 过有效核电势方法(ECP)进行了近似,这一处 理同时也包含了相对论效应。这其中, LANL2DZ 是最有名的基组。
常用基组总结:
应用原子 基组 [H-Xe] STO-3G [H-Xe] 3-21G [H-Cl] 6-31G(d)(6-31G*) 6-31G(d, p) (6-31G**)[H-Cl] [H-Cl] 6-31+G(d) [H-Cl] 6-31+G(d,p) [H-Br] 6-311+G(d,p) [H-Br] 6-311+G(2d,p) [H-Br] 6-311+G(2df,2p) [H-Br] 6-311++G(3df,2pd) 描述与说明
C、超SCF方法:考虑一些电子相关的理论有很多
种。一般的,这些方法被称为超SCF方法,因为都是在 Hartree-Fock方法上增加了电子相关的因素。 Moller-Plesset 微扰由二级到五级的关键词是MP2, MP3,MP4,MP5。提供优化方法的有 MP2 和 MP3, MP4(不包括MP4SDQ),频率分析提供 MP2。在密度泛函 方法得到广泛应用之前,MP2 方法是考虑电子相关的最便 宜的方法,它可以成功应用于很多领域,一般都能得到很精 确的结果,是理论化学中非常有力的工具。在实践上,只有 MP4得到比较广泛的应用。MP3对于 MP2处理不好的体系 一般也没有好的结果。 二次 CI,一般包括三重和四重QCISD,QCISD(T), QCISD(TQ),QCISD提供优化。
E、高角动量基组
现在使用的更大的基组,是在分裂基组基础上增加多个 角动量。比如 6-31G(2d)就是在6-31G基础上增加两个 d 轨道 的函数,而 6-311++G(3df,3pd)则增加了更多的极化函数, 包括三个分裂的价键基组,在重原子和氢原子上加的弥散函 数,在重原子上加的三个 d 函数和一个 f 函数,在氢原子上 加的三个 p 函数和一个 d 函数。这样的基组在电子相关方法 对于描述电子之间的作用有很重要意义。这些基组一般不用 于HF计算。 一些大的基组根据重原子的周期数而增加不同的极化函 数。如 6-311+(3df,2df,p)基组在第二周期以及以上都采用 三个 d 函数和一个 f 函数的极化,而对于第一周期采用两个 d 函数和一个 f 函数的极化。注意一般从头算所说的周期是没 有氢原子所在的周期的。即碳处于第一周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gaussian简介Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。
计算可以模拟在气相和溶液中的体系,模拟基态和激发态。
Gaussian 03还可以对周期边界体系进行计算。
Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
功能①基本算法②能量③分子特性④溶剂模型Gaussian03新增加的内容①新的量子化学方法②新的分子特性③新增加的基本算法④新增功能(1)基本算法可对任何一般的收缩gaussian函数进行单电子和双电子积分。
这些基函数可以是笛卡尔高斯函数或纯角动量函数多种基组存储于程序中,通过名称调用。
积分可储存在内存,外接存储器上,或用到时重新计算对于某些类型的计算,计算的花费可以使用快速多极方法(FMM)和稀疏矩阵技术线性化。
将原子轨(AO)积分转换成分子轨道基的计算,可用的方法有in-core(将AO积分全部存在内存里),直接(不需储存积分),半直接(储存部分积分),和传统方法(所有AO积分储存在硬盘上)。
(2)能量使用AMBER,DREIDING和UFF力场的分子力学计算。
使用CNDO, INDO, MINDO/3, MNDO, AM1,和PM3模型哈密顿量的半经验方法计算。
使用闭壳层(RHF),自旋非限制开壳层(UHF),自旋限制开壳层(ROHF) Hartree-Fock 波函数的自洽场SCF)计算。
使用二级,三级,四级和五级Moller-Plesset微扰理论计算相关能。
MP2计算可用直接和半直接方法,有效地使用可用的内存和硬盘空间用组态相互作用(CI)计算相关能,使用全部双激发(CID)或全部单激发和双激发(CISD)。
双取代的耦合簇理论(CCD),单双取代耦合簇理论(CCSD),单双取代的二次组态相互作用(QCISD), 和Brueckner Doubles理论。
还可以计算非迭代三组态(以及QCISD和BD的四组态)的贡献。
泛函数理论(DFT),包括LSDA, BLPY, Becke的1993三参数混合方法,Becke的1996单参数混合方法,和由此产生的变体,以及由使用者自行组合的Hartree-Fock和DFT的混合方法。
自动化的高度准确能量方法:G1理论,G2理论和G2(MP2)理论;完全基组(CBS)方法: CBS-4, CSB-q, CBS-QCBS-Q//B3和CBS-QCI/APNO,以及一般CBS外插方法。
广义MCSCF,包括完全活性空间SCF(CASSCF),并允许包含MP2相关作用计算。
算法的改善使得Gaussian 98可处理12个以内的活性轨道。
广义价键结-完全配对(GVB-PP) SCF方法。
对Hartree-Fock和DFT方法计算在取消限制后,测试SCF波函数的稳定性。
使用单激发组态相互作用(CI-Singles)方法,HF和DFT的含时方法,和ZINDO半经验方法,计算激发态能梯度和几何优化解析计算RHF,UHF,ROHF,GVB-PP,CASSCF,MP2,MP3,MP4(SDQ),CID,CISD,CCD,QCISD,密度泛函和激发态CIS能量的核坐标梯度。
以上后-SCF方法可以利用冻结核近似。
使用内坐标,笛卡尔坐标或混合坐标,自动进行几何优化到能量最小或鞍点结构。
不论输入结构使用何种坐标系统,优化计算的默认执行使用冗余内坐标。
使用同步过渡引导的准Newton方法,自动进行过渡态搜寻。
使用反应内坐标(IRC)计算化学反应路径。
对能量和几何优化进行二或三层ONIOM计算。
同时优化过渡态和反应路径。
使用态平均CASSCF进行圆锥截面优化计算。
沿着指定的反应路径对过渡结构定位能量最大点的IRCMax计算。
直接动力学轨迹计算,其中的经典运动方程集成了解析二级导数。
频率和二级导数对RHF,UHF,DFT,RMP2,UMP2,和CASSCF方法,和用CIS方法计算的激发态等的力常数(对核坐标的二次导数),极化率,超极化率,和偶极矩解析导数的解析计算方法。
对MP3,MP4(SDQ),CID,CISD,CCD,和QCISD方法的能量或梯度的数值微分,计算力常数,极化率和偶极矩导数。
使用任意同位素,温度,和压强做谐振分析和热化学分析。
决定振动跃迁的红外和拉曼光谱强度。
(3)分子特性使用SCF,DFT,MP2,CI,CCD,QCISD方法求解各种单电子性质,如Mulliken 布居分析,多极矩,自然布居分析,静电势,以及使用Merz-Kollman-Singh 方法,CHelp方法,或CHelpG 方法由静电势计算的原子电荷。
用SCF,DFT和MP2方法,计算NMR屏蔽张量和分子的磁化系数。
振动圆二色性(VCD)强度。
分子内原子理论的成键分析和原子性质。
用传播算子方法计算电子亲和能和电离势。
CASSCF计算中可计算两自旋状态间的近似自旋轨道耦合。
(4)溶剂模型所有这些模型使用自洽反应场(SCRF)方法模拟在溶液中的分子系统。
Onsager模型(偶极和球反应场),包括在HF和DFT级别解析的一级和二级导数,在MP2,MP3,MP4(SDQ),CI,CCD和QCISD级别的单点能计算。
Tomasi等人的解析HF,DFT,MP2,MP3,MP4(SDQ),QCISD,CCD,CID和CISD 能量与HF和DFT梯度的极化连续重叠球状反应场(PCM)模型。
在HF和DFT级别上,解析能量的IPCM(静态等密度曲面)模型。
在HF和DFT级别上的SCI-PCM(自洽等密度曲面)模型,用解析方法计算能量和梯度,数值方法计算振动频率。
2003年,Gaussian从98升级到03,参见Gaussian 03简介。
G03W的界面和G98W 相比,没有什么变化,G98W的用户不需要重新熟悉界面。
Gaussian 03新增加了以下内容:新的量子化学方法(1) ONIOM模块做了增强对ONIOM(MO:MM)计算支持电子嵌入,可以在QM区域的计算中考虑MM区域的电特性。
通过算法的改善,ONIOM(MO:MM)对大分子(如蛋白质)的优化更快,结果更可靠。
ONIOM(MO:MM)能够计算解析频率,ONIOM(MO:MO)的频率计算更快。
提供对一般分子力场(MM)的支持,包括读入和修改参数。
包含了独立的MM优化程序。
支持任何ONIOM模拟的外部程序。
(2) 修改和增强了溶剂模块改善和增强了连续介质模型(PCM):默认是IEFPCM模型,解析频率计算可以用于SCRF方法。
此外改善了空穴生成技术。
模拟溶液中的很多特性。
可以对Klamt 的COSMO-RS程序产生输入,通过统计力学方法,用于计算溶解能,配分系数,蒸汽压,以及其它整体性质。
(3) 周期性边界条件(PBC)增加了PBC模块,用于研究周期体系,例如聚合物,表面,和晶体。
PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger方程。
周期体系可以用HF和DFT研究能量和梯度;(4) 分子动力学方法动力学计算可以定性地了解反应机制和定量地了解反应产物分布。
计算包含两个主要近似:Born-Oppenheimer分子动力学(BOMD), 对势能曲面的局域二次近似计算经典轨迹。
计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善10倍以上。
还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。
提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于Hartree-Fock和DFT。
吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程。
与Car-Parrinello不同之处在于,ADMP传递密度矩阵而不是MO。
如果使用了原子中心基组,执行效率会更高。
这一方法解决了Car-Parrinello 存在的一些限制,例如,不再需要用D代替H以获得能量守恒,纯DFT和混合DFT均可使用ADMP也可以在溶剂存在的情况下执行,ADMP可以用于ONIOM(MO:MM)计算。
(5) 激发态激发态计算方面做了增强:由于改善了在完全组态相互作用计算中求解CI矢量的算法,提高了CASSCF执行效率。
对能量和梯度计算可以使用约14个轨道(频率计算仍是8个)。
限制活性空间(RAS)的SCF方法。
RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑)计算中作为双占据的RAS1空间,包含对所研究问题非常重要分子轨道的RAS2空间,弱占据的RAS3空间,以及未占据轨道(计算中做冻结处理)。
因此,CASSCF在RAS计算中分成三个部分,考虑的组态通过定义RAS1空间允许的最少电子数和RAS3空间允许的最多电子数,以及三个RAS 空间电子总数来产生。
NBO轨道可用于定义CAS和RAS活性空间。
对于对应成键/孤对电子的反键轨道可提供相当好的初始猜测。
对称性匹配簇/组态相互作用(SAC-CI)方法,用于有机体系激发态的高精度计算,研究两个或更多电子激发的过程(例如电离谱的扰动),以及其它的问题。
CIS,TD-HF和TD-DFT的激发态计算中可以考虑溶剂影响。
新的分子特性(1) 自旋-自旋耦合常数,用于辅助识别磁谱的构像。
(2) g张量以及其它的超精细光谱张量,包括核电四次常数,转动常数,四次离心畸变项,电子自旋转动项核自旋转动项,偶极超精细项,以及Fermi接触项。
所有的张量可以输出到Pickett的拟合与光谱分析程序(3) 谐性振-转耦合常数。
分子的光谱特性依赖于分子振、转模式的耦合。
可用于分析转动谱。
(4) 非谐性振动及振-转耦合。
通过使用微扰理论,更高级的项可以包含到频率计算中,以产生更精确的结果。
(5) 预共振Raman光谱,可以产生基态结构,原子间连接,以及振动态的信息。
旋光性以及旋光色散,通过GIAO计算,用于识别手性体系的异构体。
(7) 电子圆二色性(ECD)。
这一特性是光学活性分子在可见-紫外区域的差异吸收,用于归属绝对构型。
预测的光谱还可用于解释已存在的ECD数据和归属峰位,含频极化和超极化,用于研究材料的分子特性随入射光波长的变化。
(9) 用量度无关原子轨道(GIAO)方法计算磁化率,它类似于电极化率,用于研究分子的顺磁/反磁特性。
(10) 预测气相和在溶剂中的电、磁特性和光谱。
(11) ONIOM预测电、磁特性。
新增加的基本算法(1) 更好的初始轨道猜测。
Gaussian 03使用Harris泛函产生初始猜测。
这个泛函是对DFT非迭代的近似它产生的初始轨道比Gaussian 98要好,例如,对有机体系有所改善,对金属体系有明显改善。