大尺寸精密测量技术及其应用分析
浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展精密测量技术是一种应用于工业制造、科学研究和其他领域的高精度测量方法,对于产品质量的控制和工艺改进起着至关重要的作用。
随着科技的不断发展和工业制造水平的不断提高,精密测量技术也不断迭代更新,取得了许多重大突破。
本文将围绕精密测量技术的现状和发展进行详细阐述。
我们可以从精密测量技术的现状入手。
目前,随着3D打印、云计算、大数据、机器学习等先进技术的不断涌现,精密测量技术也得到了有效的推动和促进。
传统的测量方法往往受限于材料、设备、环境等方面,精度、稳定性和精密度都无法达到更高的要求。
而借助于先进的科技手段,精密测量技术在精度、稳定性和可靠性上都得到了较大的提升。
激光干涉计、电子电容式测量、光栅编码器、光学三坐标测量等新技术的应用,使得测量精度得到了大幅度提高。
随着信息技术的快速发展,传感器技术、数据处理技术等也取得了重大突破,大大提升了精密测量技术的全面水平和适用范围。
我们可以从精密测量技术的发展方向进行探讨。
未来,精密测量技术将朝着更高的精度、更广的适用范围、更便捷的操作方式、更高效的数据处理和更智能的系统集成等方向发展。
高精度的测量是精密测量技术的核心要求,未来的精密测量技术将不断追求更高的精度和更小的测量误差,以满足不同领域对精密测量的需求。
随着智能制造和工业互联网的不断发展,精密测量技术将朝着智能化和自动化的方向发展,通过引入机器学习、人工智能等先进技术,实现测量数据的自动分析和处理,提高测量的效率和可靠性。
无人化测量、远程测量、实时监测等也将成为未来精密测量技术的发展方向。
我们可以从精密测量技术的应用领域进行阐述。
精密测量技术广泛应用于机械制造、航空航天、电子电器、医疗健康、生物工程、地质勘探、环境保护等领域。
在机械制造领域,精密测量技术可以用于零部件的尺寸测量、形位公差的测量、表面粗糙度的测量等,为产品质量的控制和工艺改进提供了重要的技术支持。
在航空航天领域,精密测量技术可以用于飞机零部件的测量、航天器的结构测量、火箭发动机的性能测试等,为飞行器的设计和制造提供了关键的技术支持。
精密测量技术的使用方法

精密测量技术的使用方法引言:精密测量技术是一种应用广泛的技术,它在各个领域都有着重要的作用。
无论是在医疗领域、工业生产中,还是在科学研究中,精密测量技术都能提供准确和可靠的数据。
本文将探讨精密测量技术的使用方法,并简要介绍其中一些典型的应用。
一、概述精密测量技术精密测量技术是指利用各种精密设备和仪器对物理、化学以及生物等领域中的各种参数进行准确测量的技术。
它通常包含了测量仪器的选择、实验设计以及数据处理等方面的内容。
精密测量技术的使用方法直接关系到测量结果的准确性与可靠性。
二、典型的精密测量技术1. 光学测量技术光学测量技术是一种应用广泛的精密测量技术。
其中,激光干涉测量技术在长度、形状和位移等方面具有较高的精度和分辨力。
例如,在加工过程中对产品的质量进行检测,通过激光干涉测量技术可以实时监测工件表面的形变,确保加工质量。
2. 电子测量技术电子测量技术是精密测量技术中另一个重要的分支。
电子测量技术主要包括电阻测量、电流测量、电压测量等方面。
在自动化生产中,通过电子测量技术可以精确地监测电路的稳定性和性能,确保产品质量。
3. 机械测量技术机械测量技术是应用最为广泛的精密测量技术之一。
通过机械测量技术可以获得长度、角度、压力等参数的精确数值。
例如,在工业制造中,通过机械测量技术可以确保机械零件的尺寸精确度,以保证产品的质量。
三、1. 选择合适的测量仪器在进行精密测量时,首先需要根据需求选择合适的测量仪器。
不同的测量对象和参数需要不同的仪器。
例如,对于长度的测量,可以选择激光测距仪或者显微镜等仪器,而对于温度的测量,则可以选择热电偶或者红外测温仪。
2. 设计合理的实验方案在进行精密测量时,实验方案的设计非常重要。
合理的实验方案可以提高测量结果的准确性和可靠性。
在设计实验方案时,需要考虑到实验环境的影响因素,并进行相应的控制。
3. 进行数据处理和分析在测量完成后,需要对所得的数据进行处理和分析。
数据处理的方法包括平均值、标准差、回归分析等。
精密工程测量及其应用分析

精密工程测量及其应用分析摘要:在精密工程的测量工作中,由于涉及到了许多的项目并且都有极高的精度要求,就要求精密工程在规模、使用条件、使用方法等方面都具有多样性。
本文就从精密工程在测量过程中的相关定义、分类以及特点,从多个角度进行了全面的分析,并阐述了精密工程测量的价值和相关的应用。
关键词:精密工程测量应用随着近年来测量在各个建筑工程中的使用频率越来越高,并且也越来越广泛。
一般来说,工程测量分为普通工程测量和精密工程测量,按照工程学的定义来说,精密工程测量主要是用来研究地球空间中的一些几何实体的精密测量,精密仪器测量也代表了现代工程测量的发展方向。
一、精密工程测量概述精密工程的测量是测量工程中的一个重要的分支,也是测绘学在大型的建筑工程、特种工程或是高新技术规划等等精密工程建设中的重要应用。
精密工程测量的各项理论、技术以及操作方法等等都是基于大地测量学的,并且所有的测量工作都要涉及到参考线、参考面,例如垂线、经纬线、地球椭圆体、南北方向等等。
精密工程的测量是现代工程测量的发展和延伸的代表,是指在绝对测量精度中能够达到毫米、亚毫米等级进行测量的方法、设备和仪器等能够在特殊条件下进行测量的工具。
精密工程的测量分为许多种,例如,按照工程队测量精度的不同需求就可以分为普通和特种的精密工程测量。
精密测量分为各类大型的特种工程测量、三维的工业测量、变形的测量以及各类大型设备的安装、质量控制和检测,甚至是在军事领域中的应用等等。
精密工程的测量主要有三个方面的特点,首先,是在精度的选择上,必须要完全按照工程师会记得需求来进行。
因为由于大部分工程测量环境的特殊性,对于测量出的精度来说有很高的要求;其次,在一些特殊的情况下需要对测量出来的数据进行分析和处理,因此对测量的仪器和设备的精度要求也非常的高;其中包括了检测仪器的鉴定核查、检测的标准稳定与否、检测标准的合理与否以及各个观测点之间的相互检查能够控制、精细的数量检查和数据处理、监督管理等;第三,要在进行布设控制网的布局过程中,与一般的工程测量进行比较,精密工程的测量有很大的不同,因为他只选择一个单独的控制点,并且只选择一个参考方向,这样一来就能够在最大的程度上确保精密工程的测量准确度和精度。
精密水准测量技术的原理及操作要点解析

精密水准测量技术的原理及操作要点解析精密水准测量技术是一种广泛应用于工程测量领域的高精度测量方法,其原理基于光学原理和几何学原理。
本文将对精密水准测量技术的原理及操作要点进行解析。
一、精密水准测量技术的原理精密水准测量技术依赖于光线的传播和反射原理,通过对比测量点与基准点的光线高差,从而确定测量点的高程。
其主要原理包括天顶线法、水平线法和视线法。
天顶线法是利用天顶望远镜观测到的视线与视线平面的垂直角,通过测量不同点的视线垂直角差值来确定高程差。
该方法适用于近距离、小范围的高程测量。
水平线法是利用水平仪或水平望远镜在不倾斜的情况下,观测到的视线水平角,通过观测不同点间的水平角差值来确定高程差。
该方法适用于相对较远、大范围的高程测量。
视线法是利用反射棱镜接收入射光线,并将反射光线反射回观测仪器,通过观测反射光线的位置,从而确定测量点与基准点间的高差。
该方法适用于中、远距离的高程测量。
二、精密水准测量技术的操作要点1. 仪器准备:在进行精密水准测量之前,必须确保使用的仪器具备高精度的测量能力。
测量仪器的准备包括校准仪器、检查仪器读数的准确性、确认仪器是否处于稳定状态等。
只有准备充分的仪器才能保证测量结果的准确性。
2. 基准点设置:精密水准测量的准确性与基准点的选取有关。
应根据测量范围、地形特点和工程实际需求,合理选择基准点的位置。
基准点应具备稳定性高、标志明显、与测量点之间的距离适宜等特点。
3. 观测过程:精密水准测量的观测过程应井然有序,确保每个步骤都符合规范操作。
在进行观测之前,应先进行预测、估算和预测任务,确保测量结果的精度要求。
观测过程中,应保证观测站的稳定性,避免外界干扰。
4. 数据处理:精密水准测量的数据处理是确保测量结果准确性的重要环节。
数据处理包括测量数据的整理、计算和分析。
在进行数据处理时,应注意对误差的判断和修正,确保测量结果的准确性和可靠性。
5. 测量结果的分析和应用:完成精密水准测量后,需要对测量结果进行分析和应用。
大型零部件几何尺寸测量技术现状及趋势

大型零部件几何尺寸测量技术现状及趋势摘要:大型零件的几何尺寸测量与控制是保证产品交付质量的基础,设备性能和产量的提高对几何尺寸测量的精度及效率提出了更高的要求。
关键词:大型零部件;几何尺寸;尺寸测量大尺寸测量技术的发展和载运执行技术的联合应用,为大型零部件的高精度、高效率测量提供了支撑。
然而,如何在现有技术的基础上构建一个能满足大型零件智能制造需求的测量系统,是现代制造企业面临的普遍问题。
基于此,本文对大型零部件几何尺寸的测量进行了详细的论述。
一、专用大尺寸测量系统专用大尺寸测量系统是利用现有的大尺寸测量技术及载运执行技术构建的,以满足复杂大型零件几何尺寸高效测量的需要。
载运执行技术的发展为大型零件的自动测量提供了一种有效的手段。
用于测量大型零件几何参数测量的执行机构或载运支撑系统,按其功能不同可分为三类:第一类是综合执行测量装置,主要采用高精度直线导轨或旋转轴承作为高精度直线或旋转导向手段,光栅尺作为测长手段,圆光栅或角度编码器作为测角手段,传感测头由电机驱动,载运到被测工件的测量工况位置。
同时采集传感测头、光栅尺或圆光栅数据,经建立的几何误差补偿模型,实现被测大型零件几何参数的高精度、高效率测量。
第二类是传感测量执行装置,用于根据测量范围、角度、稳定性等测量要求,将非接触式或接触式测量传感器载运到被测工况位置,进行高效测量。
传感测量执行装置本身不需高的定位精度,传感器空间位置由大尺寸测量设备独立获得,从而达到高效、可达、经济的测量目的。
第三类是大尺寸测量系统载运支撑装置,用于将测量仪器按计划载运到优化站位,实现站位优化,保证测量过程中支撑的稳定性。
典型代表是航空工业计量研究所研制的高空精测平台,有效提高了“嫦娥”探测器的精测效率。
专用大尺寸测量系统按其工作特点可分为固定测量系统、柔性测量系统。
专用测量系统主要针对大型零件生产测量的需求构建,一般采用执行测量一体化方案或大尺寸测量系统与传感测量执行装置的组合方案。
精密工程测量及相关应用

精密工程测量及相关应用摘要:与普通工程测量相比,精密工程测量对测量精度及可靠性提出了更高要求。
除此之外,在开展精密工程测量工作时,其测量方法、设备鉴定、监测监控以及数据处理等各个环节都要加强控制,将工程测量监督真正落到实处,根据实际情况制定科学合理的测量方案,用于指导实际工作。
精密工程测量技术涵盖计算机技术、电子技术、传感技术、光学技术和自动化技术等多方面内容,属于一项复杂的综合性高端测量技术。
近年来,精密化、集成化和智能化成为精密工程测量技术的发展趋势,三维测量技术更是新型测量技术的典型代表。
本文探讨精密工程测量及其相关应用。
关键词:精密工程测量;含义;分析;应用随着经济的发展和社会进步,工程建设事业有了蓬勃发展。
在工程建设前期,工程测量是一项重要工作,也是工程建设顺利实施的基础和前提。
现阶段,工程建设对测量精度提出了越来越高的要求,精密工程测量工作被广泛应用于多个领域。
随着科学技术不断发展,精密工程测量技术越来越完善。
现代工程测量涉及到工程信息系统、工程测量仪器与精密仪器测量等多方面内容,工程测量逐渐向着精密化方向发展1 精密工程测量概述1.1 精密工程测量的含义及特点在工程建设全过程中,工程测量需要进行地形测绘、监测建筑物变形情况以及开展施工放样等一系列工作。
工程测量向着现代化发展的一项重要标志就是精密工程测量。
精密工程测量是工程测量的重要组成部分。
通过科学先进的测量方式、测量仪器等,在特定环境下开展精密测量的工作被称为精密工程测量,精密工程测量的精度一般为毫米级,其种类也非常多样,比如,大型工程中的精密测量、军事领域中的精密测量、设备安装过程中的三维测量等。
精密工程测量按照测量精度要求可分为两种:普通测量、特种测量。
从工程测量学角度来看,精密工程测量主要是对几何实体的测绘方法进行研究,对精度要求较高是精密工程测量最显著的特点。
精度包含多种含义,如相对精度、绝对精度等。
近年来,人们对精度含义有着更为丰富的解读,精密工程测量技术也越来越完善,因此,要想准确定义精密工程测量难度较大。
精密工程测量及其应用分析

精密工程测量及其应用分析[摘要]:精密工程测量的最突出特点即对测量的可靠性要求非常的高,尤其表现为测量标志比较稳定,同时测量过程中的检测监控、测量方法以及测量设备鉴定和数据处理等都有严格的要求和规定,一定要确保测量监督的落实力度,选择科学合理的测量方案。
本文将对精密工程测量定义、特点以及现代精密测量等问题进行分析,并在此基础上就精密工程测量的未来发展谈一下自己的观点,以供参考。
[关键词]:精密工程测量特点应用发展1、精密工程测量的定义和特点所谓精密工程测量,实际上就是指以毫米级等精度为基准,对工程进行高精度测量,对于测量方案、测量实施以及测量结果的处理及应用等各个阶段,均应当采用误差理论予以分析研究。
通常情况下,精密工程测量主要应用于一些大型的重要科学试验以及复杂工程的测量,比如高能加速器装置安装、导弹发射轨道以及精密机件运行过程中的传送带布设等等,这些精密度要求很高的领域,通常都会实施精密工程测量操作。
在精密工程测量过程中,除专用的工具、设备外,还会用到计量、电子计算机、激光、电子测量以及摄影测量和相关的自动化技术。
对于精密工程测量技术而言,其主要有测量角度、精密地直线定线、测量距离以及测量高差与精密测量标志的设置等内容。
从工程测量学的要求可知,工程测量过程中主要有普通和精密工程测量两种,在未来测量实践中,精密工程测量发展趋势依然为主导。
对于精度而言,通常有绝对精度、相对精度两种,精度范围非常的广泛。
同时,相对精度也包括两种,一种是测量比值和精度,其中比值越大,则说明其精度越低;另一种则是与基准存在着密切关系的精度,其主要是相对基准点而言的,实践中一定要在同种基准点条件下进行测量。
绝对精度有包括两种形式:第一种是观测量精度,其精度应用范围非常的广泛,因此本文所阐释的精度即为该种精度。
实践中我们可以看到,在精密工程测量过程中中其准确值通常被忽略,通常情况下用“最”字代之。
然而,运用该绝对精度实施测量操作,存在着明显的不足之处,这主要是因为绝对精度和工程观测大小之间存在着非常紧密的关联性,比如长度观测量等。
浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展1. 引言1.1 精密测量技术的定义精密测量技术是一种通过精确的测量和分析技术来获取准确数据的方法。
它可以实现在微观和宏观尺度上对各种参数的测量,包括长度、温度、压力、速度等。
精密测量技术的准确性和可靠性通常高于传统测量方法,这使得它在科学研究、工程设计、生产制造等领域具有重要的应用意义。
精密测量技术的定义必须具备高精度、高灵敏度、高稳定性和高可靠性等特征。
它是现代科学技术的重要支撑,可以帮助人们更好地理解和控制自然界的规律,促进工业生产的精细化和智能化发展。
通过精密测量技术,人们可以对物体的特性、结构、性能等进行准确地评价和描述,为科学研究和工程技术提供可靠的数据支持。
精密测量技术是现代科学技术的基础和重要组成部分,它在各个领域发挥着不可替代的作用。
随着科学技术的不断进步和发展,精密测量技术也将不断拓展应用领域,提高测量的精确性和可靠性,促进人类社会的发展进步。
1.2 精密测量技术的重要性精密测量技术在现代工业生产和科学研究中扮演着至关重要的角色。
其重要性主要体现在以下几个方面:精密测量技术可以提高产品质量。
在生产过程中,精密测量技术可以帮助企业实时监测产品的参数和性能,及时发现问题并进行调整,从而保证产品达到最优质的状态。
这对于提升企业竞争力和客户满意度至关重要。
精密测量技术可以提高生产效率。
通过精准的测量,可以避免资源的浪费和重复加工,提高生产效率和节约成本。
精密测量技术还可以减少人为错误的发生,提高工作效率。
精密测量技术对于科学研究也具有重要意义。
在领域如制造、材料、生物等方面,精密测量技术可以帮助科研人员获取准确的数据和实验结果,推动科学的发展和创新。
精密测量技术的重要性不可低估。
它不仅对于产品质量和生产效率有着直接影响,也为科学研究提供了重要的支持。
随着社会的发展和科学技术的进步,精密测量技术将会变得更加重要和必不可少。
1.3 本文目的与意义本文旨在探讨精密测量技术的现状及发展趋势,通过对其发展历程、主要技术及应用领域、现状分析、发展趋势以及挑战与机遇的分析,旨在全面了解该领域的发展现状,为相关研究人员和企业提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大尺寸精密测量技术及其应用分析
摘要:伴随着数字化技术的不断发展,测量技术逐渐从以往的简单测量技术转变为多元化的数字化调查、分析和预测性技术,数字化测量技术是当代地理信息自动化、现代化、实时化的直接表现。
在各类型工程测量当中,大尺度精密测量技术的合理应用不仅可以提升测量工作的整体工作效率,还可以显著控制测量工作的人力资源投入程度,对于降低经济成本和提升人力投入使用价值有着明显的推动作用。
对此,本文详细分析大尺度精密测量技术及其应用。
关键词:大尺度;精密测量技术;应用
引言
伴随着我国科学技术不断发展,高精度的大型工业也处于快速发展阶段,尤其是在机械制造、船舶制造、航天航空制造等领域当中,其成品的尺寸也在不断的提高,同时复杂性也在不断增加,自动化的生产能力也显得越发重要,这也就需要对各种大型工业产品在制造过程中给予较高的精确度,甚至对于一些要求更为苛刻的产品必须给予动态性的质量检测。
大尺度精密测量技术主要是给予高效率、高精确程度的数字化测量系统为基础,例如激光跟踪仪、室内GPS等,再借助不同的数字化测量系统的测量原理、测量方式以及测量范围等,实现大幅度提升测量精准度以及测量效率的效果。
对此,探讨大尺寸精密测量技术及其应用具备显著意义。
1.大尺度精密测量技术
大尺度精密测量技术在工程测量当中的应用的关键性技术相当多,但是无论是怎样的技术,其都是基于数字化测量系统为基础的。
目前,在工业领域当中能够普及使用的大尺度精密测量技术,主要有关节测量臂、三坐标测量机、激光跟踪仪、室内GPS、数字化摄影测量技术以及激光雷达等技术。
在上述的集中大尺度精密测量技术当中,三坐标测量机的测量优势在于精度高、通用性高以及效率高,缺陷在于便携性较弱,测量范围会因为工作台的大小而遭受限制;关节测量臂的测量优势在于便携性较好,自由程度较大,缺陷在于自动化程度较差,测量效率比较低;激光跟踪仪优势在于动态性能较好,测量范围广,便携性较好,缺陷在于单台使用时角度误差比较大,价格较为昂贵;室内GPS的测量优势在于全方位的测量忒单较好,缺陷在于需要多个基站配合使用,经济价格比较高;激光雷达的优势在于测量精度较高,分辨率比较好,但是缺陷在于预热时间比较长,测量的成本比较高;数字化摄影测量工作环境比较低,测量效率比较高,但是缺陷在于误差源比较多。
2.大尺度精密测量技术的应用
大尺度精密测量技术大多数都是应用在大比例尺的产品测量工作当中,例如飞机的乘客舱的建设以及测量工作中。
应用空间数据的采集储存、图形测量、成像输出等一体化的测量方式完成测量工作。
这一种方式的应用准确度相对较高,在工程测量当中的应用非常广泛。
大尺度精密测量技术可以应用一次性的测量获得最终的测量结果,并通过不同比例尺的产品测量,满足不同的专业人员对产品的应用需求,规避开展重复性的测量工作。
在数据采集的过程中,大尺度精密测量技术还可以实现三维坐标的自动采集、储存和处理,消除因为人为参与而导致的误差。
对此,大尺度精密测量技术的合理应用,不仅可以提升测量去准确度,还可以节省人力物力的投入。
随着各种大尺度产品的不断发展,室内GPS技术的不断应用越发重要,因为许多工程中对于地形地貌的测量需求比较苛刻。
对此,
室内GPS技术对于工程测量有着明显的推动和帮助作用,并且借助设计一个平面
直角坐标系,然后对整个产品进行显性的规划。
在确保导线的基本测量规划的水
准面精确度以及垂直线精确度基础上,可以对范围内所有的物体实现导线的测量,并且在根本上保障相关基准线的完整性以及全面性,最终在平面直角坐标系当中
完成所有物体数据的记录,从而达到测量的目的。
为了保障产品的质量,需要对制造产品的每一个零部件给予针对性的质量检验。
在零部件的检验过程中,需要制定相应的检验标准以及检验流程等。
检验规
划主要是确保零部件在检验的过程中,按照确保相应的检验步骤、检验方式、检
验工具等本身的有效性。
借助制定合格的检测工艺顺序、保障检测对象以及检测
要求,并为零部件的现场检验给予针对性的指导和帮助。
构建一个给予三维模型
的检验规划和信息是直接来源于工艺数模和设计数模的,同时还能够有效的改进
以往工艺当中的检验规划、二义性、设计更改等环节在实施过程中的不同步问题。
驱动数字化的测量可以独立执行相应的检验任务,进而实现自动化、数字化的检
验设计以及制造,能够实现数字化的检测设计以及制造的高契合性,从而保障产
品的生产质量。
计算机辅助的三维检测规划主要是构建在基础的三维建模软件的基础上的,
并应用在读取三维设计系统和三维工艺系统的基础上获得产品模型的基本检验与
规划。
按照检验的特征进行研究,对产品本身的模型进行测量检验,检验过程中
能够获得公差值和相应的规范性信息,按照具体的实际要求,达到相应的检验目标。
根据不同检测的实际需求,采用适当的检测方式以及检测工具,并根据相应
的检测顺序进行先后性的检测。
在产品的检测过程中,对稽核表面进行合理的规
划以及布局,并规划测量的路径,最终形成加检测的规划以及测量的程序。
计算
机辅助三维检测的应用流程主要为:1、三维设计并明确工艺系统;2、建立产品
模型;3、明确产品的集合特征以及测量特性并设计检验的需求;4、设备的选择;
5、检测的顺序设计;
6、测量位置的规划;
7、测量路径的规划;
8、测量的仿真
性工作;9、生产检验工艺的主要规程;10、测量程序的后置性处理;11、测量
的程序;12、数控加工以及数字化测量系统的设备进行准确性检验;13、测量结
果的分析,如果测量结果不合格则需要再次进行测量,再第二次测量结果同样不
合格的情况下寻找问题原因并针对性处理。
传统的测量方式,测量结果的评估相对而言较为直观。
但是对于坐标测量而言,测量结果的评估相对而言较为抽象,不容易让人直接观察和认识。
但是对于
坐标测量而言,评价测量结果的质量是一项重要的工作。
其是一个和测量结果想
关联的工序。
在面向具体任务的测量不明确分度的情况下,不仅需要每一个不确
定影响因素的合理叠加,还需要按照任务的影响程度以及因素之间的相关性实现
相应的规律传递。
3.总结
综上所述,在许多领域当中大尺度精密测量技术的存在均有着较大的应用空间,同时对于工程测量工作有着显著的提升和优化效果。
但是,伴随着社会的快
速发展,大尺度精密测量技术必然处于不断创新和发展阶段,这也会为测量技术
应用提出了全新的要求,要求不断改进测量技术本身,持续创大尺度精密测量技术,为我国整体建设和发展提供有力帮助。
参考文献
[1]李伟,戚晓艳,李香. 浅析大尺寸测量的意义及发展趋势[J]. 电脑编程技巧与维护,2012,08:112-113.
[2]钟丽. 大尺寸测量中温度测量与控制关键技术研究[D].哈尔滨工业大学,2007.
[3]郑联语,朱绪胜,姜丽萍. 大尺寸测量技术在航空制造业中的应用及关键技术[J]. 航空制造技术,2013,07:38-41.。