眼图分析

合集下载

通信原理中眼图的应用

通信原理中眼图的应用

通信原理中眼图的应用什么是眼图眼图是通信原理中用于评估和分析数字信号质量的重要工具。

它通过对数字信号的采样和显示,以一种直观的方式展示信号的稳定性和失真情况。

眼图通常用于分析和判断数字通信系统的性能,并对其中的问题进行诊断和调试。

眼图的生成过程1.信号采样:在生成眼图之前,需要对数字信号进行采样。

采样过程中,根据信号的时钟信号来确定采样时机,通常使用快速采样仪来进行高速、精确的采样。

2.信号显示:采样后的信号会通过一个显示设备进行展示。

在传统的眼图中,信号通常会被划分为许多由采样点组成的窗口,然后通过展示这些窗口来形成眼图。

现代的眼图仪器一般都具备高分辨率的显示屏,可以直接以高质量的图像形式呈现眼图。

3.眼图优化:在生成眼图之后,可能需要对眼图进行一定的优化。

例如,可以通过调整采样时机、增加采样点数等方式来改善眼图的质量。

这样可以更清晰地观察到眼图中的细节,有助于对信号质量进行更准确的评估。

眼图的应用眼图作为一种直观的信号展示方式,在通信原理中具有广泛的应用,以下列举了一些常见的应用场景:1. 信号质量评估眼图可以直观地显示信号的稳定性和失真情况。

通过对眼图的观察可以判断信号是否存在幅度失真、时钟抖动、时序偏移等问题,评估信号的质量是否符合预期要求。

这对于设计和优化数字通信系统至关重要。

2. 噪声分析眼图可以帮助分析信号受到的噪声干扰情况。

通过观察眼图的展开,可以判断信号在传输过程中受到的各种噪声的影响程度,进而进行噪声的分析和统计。

这对于优化传输链路、提高传输性能非常有帮助。

3. 时钟同步评估眼图中的时钟信号是通过采样时机生成的,所以眼图展示的时钟信息非常直观和准确。

通过眼图可以观察时钟信号的稳定性和抖动情况,进而评估时钟同步的精度和可靠性。

对于需要精确时序的通信系统,这是一个非常有用的工具。

4. 相位偏差分析眼图中的时钟信息还可以用于分析信号的相位偏移情况。

通过观察眼图中的相位偏移,可以评估信号传输中的相位稳定性和补偿需求。

眼图的定义、原理及模型

眼图的定义、原理及模型

图1 无失真及有失真时的波形及眼图
图1中可以看出,眼图是由虚线分段的接收码元 波形叠加组成的。眼图中央的垂直线表示取样时 刻。当波形没有失真时,眼图是一只“完全张开” 的眼睛。在取样时刻,所有可能的取样值仅有两 个:+1或-1。当波形有失真时,在取样时刻信号 取值分布在小于+1或大于-1附近,“眼睛”部分 闭合。这样,保证正确判决所容许的噪声电平就 减小了。换言之,在随机噪声的功率给定时,将 使误码率增加。“眼睛”张开的大小就指明失真 的严重程度。
眼图的定义、原理及模型
在实际的通信系统中,数字信号经过非理 想的传输系统必定要产生畸变,信号通过 信道后,也会引入噪声和干扰,也就是说, 总是在不同程度上存在码间干扰的。在码 间干扰和噪声同时存在情况下,系统性能 很难进行定量的分析,常常甚至得不到近 似结果。为了便于实际评价系统的性能, 常用所谓“眼图”。眼图可以直观地估价 系统的码间干扰和噪声的影响,是一种常 用的测试手段。
END
衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2∆U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图 的开启度应为100%。 其中U=U+ + U2.“眼皮”厚度2∆U/U 指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比, 无畸变眼图的“眼皮”厚度应等于0。 3.交叉点发散度∆T/T 指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发 散度应为0。 4.正负极性不对称度 指在最佳抽样点处眼图正、负幅度的不对称程度。无畸变 眼图的极性不对称度应为0。
眼图定义
所谓“眼图”,就是由解调后经过低通滤 波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰 和失真所产生的传输畸变,可以在眼图上 清楚地显示出来。因为对于二进制信号波 形,它很象一只人的眼睛。

眼图分析

眼图分析

清风醉明月 slp_art随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

眼图实验(含总结)

眼图实验(含总结)

实验报告20 年度春季学期数字通信原理课程名称实验二眼图实验名称实验名称:眼图实验目的:理解升余弦滚降系统的特性;理解眼图的含义。

实验要求:1.绘制滚降系数分别为0,0.5,1的升余弦系统的时域波形和频谱,并分析之。

2.画出滚降系数为1的升余弦系统的眼图。

实验过程:1.打开MATLAB新建一个文件,然后按照老师所给的PPT的实验教程指南打上以下的程序:Ts=1;N=17;dt=Ts/N;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;a=[0,0.5,1];for n=1:length(a)for k=1:length(f)if abs(f(k))>0.5*(1+a(n))/TsXf(n,k)=0;elseif abs(f(k))<0.5*(1-a(n))/TsXf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(a(n)+eps)*(abs(f(k))-0.5*(1-a(n))/Ts)));end;end;xt(n,:)=sinc(t/Ts).*(cos(a(n)*pi*t/Ts))./(1-4*a(n)^2*t.^2/Ts^2+eps);endsubplot(211);plot(f,Xf);axis([-1 1 0 1.2]);xlabel('f/Ts');ylabel('升余弦滚降频谱');subplot(212);plot(t,xt);axis([-10 10 -0.5 1.1]);xlabel('t');ylabel('升余弦滚降波形');图1 升余弦滚降函数代码2.之后点击运行,然后能看见结果:图2 升余弦滚降3.然后在按照老师所给的实验操作指南,打上眼图的源代码,如下:图3眼图源代码(1)图4 眼图源代码(4)4.之后自己编写一段sigexpand函数,然后运行它之后在运行眼图代码,得到结果如下:图5 眼图运行结果实验小结:通过本次对眼图与升余弦滚降系统的特性分析让我对于其的结构理解、更加的深刻,我不断地翻阅书籍和网上的相关知识得到了滚降系数α:在无码间串扰条件下所需带宽W 和码元传输速率Rs 的比值(即奈奎斯特频率),将本来很模糊的概念到最后的融会贯通。

光眼图测试分析

光眼图测试分析

retsU6.84 dB (86105B#101) 6.23 dB (86105B#102)Page 2确定比特能量需要在比特周期内积分瞬态的功率。

ER = the ratio of:the energy used to transmit a logic level ‘1’energy used to transmit a logic level ‘0’retsPage 4retsnU执行完消光比较准后,典型残留量为2 µW ±2% (86105C)Page 6retsretsPage 11典型的激光发射机波形Page 12ü0.75 x 速率@-3dB(4阶贝塞尔汤姆逊滤波器)ü两个滤波器都符合规范ü实际情况并不完全是理想的Un Re gi st er edPage 13AB•比较相同的Scale 下,两个模块测试眼图只见的差异,可以判断是否存在AC Gain•比较存在测量差异的两个模块的平均功率,”1”,”0”电平,可以判断是否存在DC GainPage 14实际滤波器频响影响消光比测量不同的模块,不同的配置造目前的条件和标准下,我们不可能对消光比测试提出更高的要求Re gi st er edretsPage 1886105C pre-installed its typical ER CF value for each rateUn Rst erretsigePage 21Page 22参考消光比测试装置Un Rgi st er edPage 23我们的建议Un Re gi st e r edPage 25选择具有比较理想的波形的发射机(Golden Device )安捷伦提供刚送到安捷伦实验室进行过ER “校准”的GoldenDelta 的标准器件的ER模块测试结果,对每个模块计算相应过校准的模块被测模块st er ed。

眼图实验报告

眼图实验报告

眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。

通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。

本实验旨在通过眼图分析方法,对数字信号进行测量和评估。

一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。

二、实验原理眼图是一种通过示波器观察信号波形的方法。

在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。

通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。

在眼图中,水平轴代表时间,垂直轴代表信号的电压。

每个“眼睛”由上下两条边界线和中间的开放区域组成。

边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。

边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。

三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。

2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。

3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。

4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。

注意观察边界线的平整程度和开放区域的大小。

5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。

可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。

6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。

四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。

在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。

实验中,我们还观察到了一些常见的眼图特征。

例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。

眼图的概念

眼图的概念

眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。

它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。

眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。

眼图的原理是基于信号的采样和重构过程。

当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。

而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。

眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。

在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。

而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。

眼图的开口宽度反映了信号的峰-峰值。

如果开口很窄,代表峰-峰值很小,即信号的幅度很小。

而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。

通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。

眼图的深度则反映了信号中的噪声。

如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。

而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。

通过对眼图深度的观察,可以判断信号的信噪比和误码率。

眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。

这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。

通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。

眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。

眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。

眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。

而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。

在实际应用中,眼图常用于数字通信系统的调试和优化。

通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。

眼图——概念与测量

眼图——概念与测量

眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眼图测试及其疑难问题探讨关键词:DWDM,眼图,城域网,MAN摘要:目前,在长途干线和城域网中,密集波分复用(DWDM)系统的应用越来越多,对DWDM 系统的光接口测试要求也越来越高,其中包括光发送信号的眼图测试。

在实际进行眼图测试时,经常遇到不符合标准模板的情况,在不断实践中发现,其中大部分是因为测试方法不完善造成的误判断,只有小部分真正不符合ITU-T规范。

文章介绍正确测试眼图的要点。

1、码间串扰的形成1.1光纤线路码在光纤数字传输中,一般不直接传输由电端机传送来的数字信号,而是经过码型变换,变换成适合在光纤数字传输系统中传输的光纤线路码(简称线路码)。

有多种线路码型,最常用的有mBnB分组码、插入比特码和简单扰码。

在选择线路码时,不仅要考虑光纤的传输特性,还要考虑光电器件的特性。

一般来说,由于光电器件都有一定的非线性,因此采用脉冲的“有”、“无”来表示“1”和“0”的二进制码要方便得多。

但是简单的二进制信号有三个实际问题需要解决,否则无法取得良好效果。

a)不能有长连“0”或长连“1”出现。

因为长连“0”和长连“1”会使定时信息消失,给再生中继器和终端接收机的定时提取带来困难。

b)简单的二进制码中含有直流成分,“0”、“1”码出现个数的随机变化会使直流成分的大小也随机变化。

目前,在光接收机中普遍采用交流耦合,直流成分的变化会引起信号基线浮动,给判决再生带来困难。

c)简单的二进制信号在业务状态下无法监测线路误码率。

为此,在光纤传输之前,需将简单二进制信号变换成适合光纤传输系统的光纤线路码型。

CCITT最终采用简单扰码方式(如RZ、NRZ码),目前又有基于RZ码新的编码方式,如CS-RZ、DCS-RZ、CRZ、D-RZ、DPSK-RZ码等。

1.2线性网络的无失真传输条件密集波分复用(DWDM)的工作原理是:发送端将不同波长的光信号通过光合波器合成一束光,送入光纤中进行传输;在接收端由光分波器将这些不同波长的光信号区分开来,再经过光电转换送入线路终端设备。

这个过程既包括光通道也包括电通道。

对于光通道来说,主要是光纤的色散和非线性效应引起传输的光脉冲展宽,导致“0”、“1”判决出错,增加了传输误码率。

通过运用色散补偿光纤、色散斜率补偿技术等色散管理来降低光纤的色散。

对于光纤非线性效应,一般可通过降低入纤功率,采用新型大孔径光纤、喇曼放大、奇偶信道偏振复用等方法加以抑制。

采用特殊的码型调制技术也可有效提高光脉冲抵抗非线性效应的能力,增加非线性受限传输距离,从而达到光通道的无失真传输这种理想化的状态。

对于电通道来说,实际传输中无法满足无失真传输条件,特别是由于信道频率特性不理想,使矩形脉冲在经过传输后有明显的上升时间和下降时间,会使波形有明显展宽。

每个符号(码元)在时间上前后展宽会对其前后符号(码元)造成干扰,通常把这类干扰称为符号(或码元)间干扰,它会引起传输系统的误码率恶化。

1.3时域均衡系统线性失真引起的符号间干扰是影响传输质量的主要因素。

线性失真的主要原因是发送滤波器、接收滤波器及信道共同组成的波形形成系统的传递函数偏离理想状态。

在不考虑噪声影响时,大多数高、中速数字数据传输设备的判决可靠性都建立在消除取样点的符号间干扰的基础上,按此要求建立的线性失真补偿系统称为时域均衡器,其原理是利用接收波形本身进行补偿,消除取样点的符号间干扰,提高判决的可靠性。

时域均衡系统结构如图1所示。

图1时域均衡系统结构时域均衡系统的主体是横截滤波器,它由多级抽头延迟线、可变衰减器(或可变增益放大器)和求和器组成的线性系统。

输入信号x(t)经过2N节全通延迟线,每节的群时延T=(2fH)-1(fH为传输系统的奈氏频率)。

在每节延迟线的输出端都引出相应的信号x (t-nT)(或简写成xn),分别经过增益系数为Ck(k=-N,…,N)的乘法器加权后在求和器中相加(代数和),形成输出信号y(t)。

其中加权系数Ck是可调的,可正可负。

所有系数值都对中心抽头系数Co归一化。

设符合奈氏第一准则要求的理想传输系统的脉冲响应是h(t),实际系统的脉冲响应是x(t)。

由于信道等缺陷,数字数据信号通过实际传输系统后会产生线性失真,使x(t)在各奈氏取样点(t=k/2fH,k=±1,±2,…)的取样值不再为0,其符号间干扰为(这里的求和符号表示求和时不包括k=0的一次)。

接入由横截滤波器组成的均衡器后,输出响应为:其中,q(t)是横截均衡器的冲激响应。

按图1结构,将(2)式说明,接入横截均衡器后,系统输出波形y(t)为2N+1个经过不同时延的x (t)的加权和。

对于一个x(t),只要适当选择横截均衡器的抽头增益系数Ck(k=0,±1,±2,…±N),就可能使y(t)在除k=0外的各奈氏取样点的取样值趋于0,即。

虽然均衡的范围只在k=±N之内,但y(t)通常总是随T的增加迅速衰减的,因此,只要抽头数(2N+1)足够,就能保证在k=±N之外的所有yk所 形成的符号间干扰足够小,不会影响符号判决的可靠性。

根据以上分析,横截均衡器要能消除控制长度内的符号间干扰(共包括2N个取样点),关键在于选择最佳各个抽头增益系数Ck。

对取样点n来说,它前后N个符号(k=0,±1,±2,…±N)在n取样时对第n个符号造成的符号间干扰应为零(共有2N个方程),加上在n点,yn本身应为1(规一化值),共可建立起长度为2N的横截均衡器的(2N+1)个独立线性方程组:这个联立方程的解就是使符号间干扰极小的最佳横截均衡器抽头增益系数集合Ck(k=0,±1,±2,…±N)。

由于建立最佳抽头增益系数的方法不同,可把横截均衡器分为手动均衡器、自动预置式均衡器和自适应均衡器三大类。

2、眼图测试方法2.1眼图基本概念眼图(eye pattern)是一种直观而实用的分析符号间干扰的手段。

在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。

这种图形看起来象眼睛,称为数字信号的眼图。

二电平数据信号眼图如图2所示。

图2二电平数据信号眼图二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。

眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

眼图显示了数据波形可能取得的所有瞬间值。

在完全随机输入情况下,各个波形叠加后会在眼图中形成若干眼孔。

眼孔的开启状况能充分说明传输信号的质量。

在有符号间干扰和噪声的情况下,眼图由许多有一定偏移的线条组成,看起来尤如构成眼图的线条变宽了。

这等效于眼图聚焦点扩散,水平和垂方向眼睛的张开程度都减小了。

为了便于说明,常把二电平信号的眼图模式化。

眼孔在水平轴上的交叉点称为水平聚焦点,两个聚焦点间的距离称为眼图的水平张开距离。

眼孔的最大垂直距离称为眼图的垂直张开距离。

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。

当有码间串扰时,波形失真,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个传输系统性能的优劣。

另外也可以用眼图对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。

ITU-T以发送眼图模板的形式规定发送机的光脉冲形状特性,它包括上升、下降时间、脉冲及振荡。

2.2测试框图眼图测试框图如图3所示。

图3眼图测试框图图案发生器是一个统称,接在被测设备的输入口。

使用的仪表与被测设备的输入口等级有关。

示波器也是一个统称,实际使用的仪表可以是通信信号分析仪。

光标准接收机可以是通信信号分析仪的一个附件,也可以是一台独立的仪表。

2.3测试步骤a)按图3接好电路。

b)按输入口的速率等级,图案发生器选择适当的二位式伪随机信号(PRBS),接入输入口。

c)调整光衰减器,使光/电转换器有合适的输入光功率。

d)调整示波器,调用相应模板,获得稳定的波形,并由人工调整或由仪器自动对准,使波形与模板之间位置最佳。

2.4测试参数光发送信号眼图模框如图4所示,参数见表1。

图4光发送信号眼图模框表1光发送信号眼图模框参数对于STM-16,直角眼图模板的X2和X3相对于0UI和1UI处纵轴不一定等距离,偏差范围有待进一步研究。

考虑到STM-16系统的频率及相应的滤波器实现的困难性,用于STM-16的参数值需要根据经验稍做调整。

3、主要测试仪表及疑难问题3.1主要测试仪表光发送信号眼图的测试工具光示波器主要有安捷伦公司(Agilent)的83480A、86100B和泰克公司(Tektronix)的CSA803A、CSA8000、CSA7154等。

据笔者对上述仪表的使用经验,它们各有优缺点。

1)仪表的组成结构不同安捷伦公司的83480A、86100B和泰克公司的CSA8000、CSA7154只有一台主机,它们的光/电转换器集成在主机的测试模块中,仪表紧凑,相对体积较小。

泰克公司的CSA803A包括一台主机和多个外接式光/电转换器,相对体积较大。

2)测试方案不同安捷伦公司的83480A、86100B对被测光发送信号进行光/电转换,获得稳定的测试信号显示后,从仪表程序中调出标准模板,再进行人工调整,看被测试信号是否落入标准模板之内。

由于仪表响应速度慢,而操作人员手动调整过快,可能造成测试困难,特别是当被测信号不符合模板时,会使测试时间延长。

但是采用这种方案不会对被测光发送信号的眼图是否符合眼图模板做出误判断。

泰克公司的光示波器对被测光发送信号进行光/电转换,获得稳定的测试信号显示后,从仪表程序中调出标准模板,仪表能自动对被测光信号进行调整,使其适应模板的比例,测试速度快,操作人员易于操作。

但是由于是自动测试,对那些被测光信号的眼图位于标准模板临界位置时,可能会造成误判断,此时需要人工进行微调,看被测光信号的眼图是否超出标准模板。

3.2测试疑难问题1)被测光信号的强度对测试准确度的影响光示波器的接收端配有一个光/电转换器,将被测光信号转换成电信号,此电信号又分成两路,一路作为触发信号对光示波器的扫描进行控制,另一路作为被测信号。

由于扫描周期与被测信号的周期是相同的,因此,在示波器荧光屏上能观察到稳定的眼图。

从光示波器的测试过程可见,光示波器接收端的光/电转换的准确与否对眼图的正确测试有很大影响。

众所周知,光强度的强弱对光器件的正常工作有一定影响,光强度太强会使光接收机产生“饱和”,时间一长甚至会损坏光器件。

相关文档
最新文档