机载LiDAR数据获取技术规范60页PPT
机载激光雷达数据获取规范讲义

规范不再重复规定,直接引用这两个标准。
三、重点说明
POS系统
规定IMU测角精度要求:侧滚角和俯仰角一般不
大于0.007°;航偏角不大于0.02°。在征求 意见稿中规定,侧滚角和俯仰角一般不大于
0.005°,根据生产单位反馈的意见,当侧滚 角和俯仰角不大于0.008°时,就能得到比较 理想的结果,综合考虑后,改为现在的指标。
数码相机 系统综合检校 机载激光雷达检校场及检校飞行方案 技术设计
5. 技术准备:仪器设备
激光扫描仪
• 根据作业区域的地形条件,以及成果对点云 数据密度及精度的要求,选择适宜的激光扫 描仪,并确定回波次数、扫描角度、扫描频 率等相关参数; • 激光测距精度和扫描测角精度经过检校; • 系统零点位置经过检校。
网间距按2m计算。
4. 总则
点云密度
以1米格网间距为基准:点云密度为4,表示每半米1个点。
假设平均穿透率为50%,则一个格网内有一个点。依次类 推,0.5米格网DEM则应在1米格网DEM对点云密度的基础上 乘4,点云密度为16;2米格网DEM,则应除以4,点云密度
为1;5米格网DEM,4除以16,为0.25。。。
三、重点说明
系统综合检
系统综合检校主要是确定POS系统与激光 扫描仪、数码相机之间的位置和角度 关系。
三、重点说明
机载激光雷达检校场及检校飞行方案
检校场,是对机载激光雷达设备的整体进行检校,其中包 括激光扫描仪、POS系统、数码相机及其附属装备。 因为不同的机载激光雷达设备内部结构差异较大,各厂家
数字航摄仪获取的数字影像,飞行质量和影 像质量应符合《GB/T XXXX数字航空摄 影规范第1部分:框幅式数字航空摄影》
激光遥感 第4讲 LiDAR数据获取重要参数

第四讲机载LiDAR数据获取重要参数主要内容LiDAR数据获取重要参数——与LiDAR系统性能、数据质量相关的参数关系式或计算公式;——是进行激光遥感系统选择及航线设计的重要依据!⏹(1)瞬时视场角⏹(2)视场角⏹(3)脉冲频率⏹(4)扫描频率⏹(5)垂直分辨率⏹(6)最大飞行高度(最大量测距离)⏹(7)最小飞行高度⏹(8)激光脚点光斑的特性(9)扫描带宽(10)每条扫描带上的激光脚点数(11)激光脚点间距(12)必须航线数(13)实际量测面积(14)激光脚点密度(15)发射及接收激光束间隔内的飞行距离参数类型又称激光发散角,是指激光束发射时其发散的角度。
瞬时视场角的大小取决于激光的衍射(diffraction),是发射孔径D和激光波长λ的函数。
瞬时视场角(instantaneous field of view ,IFOV )DIFOV λ44.2=由上式,可以计算得到IFOV =0.026 mrad 。
瞬时视场角的单位一般为毫弧(mrad ),Leica ALS50II 的瞬时视场角为0.22/0.15 毫弧。
nm1064=λcmD 10=算例:视场角(Field Of View,FOV)激光束的扫描角,指激光束通过扫描装置所能达到的最大角度范围。
早期LiDAR系统的扫描角一般较小,大约在30度,目前比较先进的LiDAR系统的扫描角都在60度-75度左右,基本能够达到航摄像机的视场角度范围。
脉冲频率单位时间内激光器所能够发射的激光束数量。
并不是脉冲频率越大越好,过于密集的激光脚点会带来大量的冗余数据,影响数据处理的效率和效果。
扫描频率扫描频率指线扫描方式,每秒钟所扫描的行数,即扫描镜每秒钟摆动的周期。
很明显,扫描频率越大,每秒钟的扫描线就越多扫描频率小扫描频率大脉冲通过的路径上所能够区分不同目标间的最小距离。
垂直分辨率若脉冲宽度为10ns ,则在一个脉冲宽度内,不同目标距离至少为1.5m ,其回波能量才可能经接收器检出,并区别开来。
基于机载LiDAR点云数据的建筑物提取方法研究

基于机载LiDAR点云数据的建筑物提取方法研究目录1. 内容概要 (2)1.1 研究背景 (2)1.2 研究目的 (3)1.3 研究意义 (4)1.4 国内外研究现状 (5)2. 数据预处理 (7)2.1 数据获取与格式转换 (8)2.2 数据清洗与降采样 (9)2.3 数据配准与融合 (12)3. 特征提取 (13)3.1 LiDAR点云数据分类 (14)3.2 建筑物几何信息提取 (15)3.3 建筑物表面纹理信息提取 (16)3.4 建筑物语义信息提取 (17)4. 建筑物提取方法 (19)4.1 基于区域生长的建筑物提取方法 (20)4.2 基于边缘检测的建筑物提取方法 (22)4.3 基于深度学习的建筑物提取方法 (23)5. 实验与分析 (24)5.1 实验数据集介绍 (25)5.2 实验结果对比分析 (26)5.3 结果可视化展示 (27)6. 结论与展望 (28)6.1 主要研究成果总结 (30)6.2 存在问题与不足之处 (30)6.3 进一步研究方向建议 (31)1. 内容概要本文针对基于机载LiDAR点云数据提取建筑物的研究问题,深入探讨了高效、准确的建筑物提取方法。
简要概述了建筑物特征及其在LiDAR数据中的体现,并分析了目前常用的建筑物提取方法的优缺点。
介绍了本文采用的基于多尺度融合特征的建筑物提取方法,包括数据预处理、特征提取、分割算法和后处理环节。
详细阐述了融合不同层级特征的策略、算法选择及其原理。
通过实际案例验证了所提方法的有效性,并对提取结果的精度和效率进行了评估,分析了方法的局限性以及未来展望。
1.1 研究背景随着城市化进程的加快和高精度测绘技术的发展,对于城市三维信息的获取与应用需求日益增加。
尤其在高密度城市区域,传统平面地图已不能满足现代城市规划、应急响应和环境保护等需求,转而需要三维精细化模型来全面反映建筑地貌的复杂细节。
机载激光雷达(LiDAR)技术由于其高分辨率、高密度的数据采集能力,成为了获取城市三维结构的关键手段之一。
机载LiDAR数据获取技术规范

表1中数字高程模型成果高程中误差取自CH/T 9008.2-2010《基础地理信
1:100000数字高程模型》规定的一级精度。点云数据高程中误差按数
字高程模型成果高程中误差的0.7倍计算后近似取为0.5的整倍数。0.7 倍的依据按以下推得:设数字高程模型成果高程中误差为M,其误差源
自点云数据高程中误差M1和内插中误差M2,由误差传播公式得
确。
四、内容1、范围来自2、规范性引用文件3、术语和定义 4、总则 5、技术准备 6、飞行计划
7、飞行实施
8、数据预处理 9、数据质量检查 10、成果整理与上交
1、范围 2、规范性引用文件
3. 术语
术语的数量和选择
• 一些通用的术语,例如POS、GPS、IMU等没有列于
• 具体定义有可能与其他地方有差异
网间距按2m计算。
4. 总则
点云密度
以1米格网间距为基准:点云密度为4,表示每半米1个点。 假设平均穿透率为50%,则一个格网内有一个点。依次类
推,0.5米格网DEM则应在1米格网DEM对点云密度的基础上
乘4,点云密度为16;2米格网DEM,则应除以4,点云密度
0.005°,根据生产单位反馈的意见,当侧滚
角和俯仰角不大于0.008°时,就能得到比较
理想的结果,综合考虑后,改为现在的指标。
三、重点说明
系统综合检
系统综合检校主要是确定POS系统与激光 扫描仪、数码相机之间的位置和角度 关系。
三、重点说明
机载激光雷达检校场及检校飞行方案
检校场,是对机载激光雷达设备的整体进行检校,其中包
样化、专业化、差异性大,且多数高于基础测绘生
产的精度要求,故本规范以基础测绘为标准适用对
第3讲LiDAR数据获取基本原理(2)3-数据格式技术对比

第三讲机载激光雷达数据获取基本原理——参数及数据格式常用商业LiDAR系统性能指标▪Leica公司LiDAR设备▪Optech公司LiDAR设备▪Riegl公司LiDAR设备Leica公司LiDAR设备Leica公司简介创建于1819年总部位于瑞士Heerbrugg,在瑞士证券交gg易市场挂牌上市Leica ALS系列Leica ALS50-II部件L i ALS50II▪激光扫描仪长56cm、宽37cm、高24cm、重30kg▪操作与控制终端(计算机)控制宽▪电源控制器长47cm、宽45cm、高36cm、重40kg▪CCD相机DSS,130万像素(1280×1024)▪波形记录器▪其它设备,包括:连接电缆、控制/显示器等。
Leica ALS50-II参数▪扫描模式:摆镜(线扫描)方式▪°最大扫描角度:75▪最大扫描频率:90HZ▪最大发射频率:150KHZ▪最大发射频率的范围:150KHZ<550m;100KHZ<800m;50KHZ<1800m50KHZ1800▪激光器安全等级:四级▪POS系统:Applanix 510(美)、Honeywell(加)Leica ALS50-II精度▪高程精度:0.11m (500m)、0.15m (1000m)、0.13m (2000m)水平精度:0.11m (500m)、0.11m (1000m)、0.24m (2000m)▪0.11m(500m)0.11m(1000m)0.24m(2000m)▪垂直分辨率:2.8m▪回波次数:4▪数据采集高度:200-6000mLeica ALS50-II其他参数▪温度:0-40°,配有恒温控制▪存储器容量:300GB,可满足17小时飞行记录▪具有滚动补偿装置▪年产量:1214台-Leica ALS50-II数据处理▪POS系统是Leica IPAS10-CUS6。
它包括控制单元、GPS接收机及其天线,IMU和相应的软件。
机载激光雷达数据制作技术规程

机载激光雷达数据制作技术规程1. 引言1.1 背景介绍机载激光雷达是一种先进的遥感技术,通过搭载在飞行器或卫星上的激光雷达设备,可以对地表进行高精度三维测绘。
随着航空航天技术的不断发展,机载激光雷达在地质勘探、地形测绘、城市规划等领域有着广泛的应用。
在遥感领域,激光雷达技术的应用越来越普遍,但是其数据处理和制作技术依然是一个重要的研究方向。
在这个背景下,本文将围绕机载激光雷达数据的获取、处理、制作等方面展开研究,旨在总结相关技术规程,提高数据处理效率和数据质量,推动激光雷达技术的应用与发展。
1.2 研究目的1. 系统总结机载激光雷达数据获取、处理和制作过程中的关键技术和方法,建立标准化的操作流程,提高数据质量和准确性;2. 探索数据处理流程和制作方法中存在的问题和挑战,寻求相应的解决方案,提升技术水平和应用效果;3. 推动机载激光雷达数据制作技术的创新和进步,为相关领域的应用提供更加可靠、高效的支持,助力科学研究和生产实践的发展。
1.3 研究意义机载激光雷达数据制作技术在遥感领域具有重要的应用价值和广阔的发展前景。
其研究意义主要体现在以下几个方面:机载激光雷达技术在地理信息领域具有广泛的应用,可以实现高精度的地形测量和地物识别。
通过对机载激光雷达数据进行有效的处理和制作,可以为城市规划、土地利用、资源调查等领域提供重要的数据支持。
机载激光雷达数据制作技术对于环境监测和灾害预警具有重要意义。
利用机载激光雷达数据获取的三维地理信息,可以有效监测城市环境的变化,及时预警地质灾害等自然灾害,为相关部门提供决策支持。
机载激光雷达数据制作技术在国防领域也具有重要作用。
可以利用机载激光雷达数据获取的高分辨率地理信息进行军事目标识别和态势分析,提高军事作战效率和战略规划能力。
研究机载激光雷达数据制作技术具有重要的意义,不仅可以推动地理信息领域的发展,还可以为环境监测、国防安全等领域提供技术支持,具有广泛的应用前景和社会意义。
机载激光雷达数据获取技术规范

实用文档
16
4. 总则
总则内容和范围的选择
• 通用的原则性的内容没有列于,例如坐标基准。
实用文档
17
4. 总则
点云密度
点云密度按不大于1/2数字高程模型成果格网间距计算的理论依shannon 采样定理,即当采样间隔能使在函数g(x)中存在的最高频率中每周期 取有两个样本时,则根据采样数据可以完全恢复原函数g(x)。点云内 插数字高程模型,其实质为重采样,应符合香农采样定理。为使用方便, 表1中5m的数字高程模型格网间距按4m计算,2.5m的数字高程模型格 网间距按2m计算。
实用文档
18
4. 总则
点云密度 以1米格网间距为基准:点云密度为4,表示每半米1个点。 假设平均穿透率为50%,则一个格网内有一个点。依次类 推,0.5米格网DEM则应在1米格网DEM对点云密度的基础上 乘4,点云密度为16;2米格网DEM,则应除以4,点云密度 为1;5米格网DEM,4除以16,为0.25。。。
论依据是shannon采样定理,即当采样间隔能使在函数 g(x)中存在的最高频率中每周期取有两个样本时,则 根据采样数据可以完全恢复原函数g(x)。点云内插数 字高程模型,其实质为重采样,应符合香农采样定理。 为使用方便,表1中5m的数字高程模型格网间距按4m计 算,2.5m的数字高程模型格网间距按2m计算。
CH/T XXXXX—XXXX
机载激光雷达数据获取技术规范 培训会
标准编写组
目录
一、一般说明 二、编制原则 三、重点说明 四、内容
一、编制过程一般说明
2009年3月提出标准制定计划、批准立项; 2009年5月成立标准编制课题组; 2010年3月完成讨论稿; 2010年7月完成征求意见稿,发函征求意见; 2010年9月汇总返回意见,修改征求意见稿; 2010年11月完成送审稿
机载LiDAR数据获取技术规范PPT文档60页

48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非