小学奥数——抽屉原理题库2(含详细答案)

合集下载

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)1、礼堂里有253人开会,这253人中至少有多少人的属相相同?2、一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。

问:至少有多少名学生订阅的杂志种类相同?3、把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?5、体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个。

问:至少有几名同学拿球的情况完全一样?5、口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球。

要保证有4人取出的球的颜色完全相同,至少应有多少人取球?6、10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?7、抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿多少枝才能才能保证至少有1枝蓝色铅笔?8、盒子里有5个红球,6个蓝球和7个白球,一次拿出多少个球才能保证至少有1个白球?9、有红、黄、蓝、白四色球各10个,一次摸出5个球,至少有多少个球的颜色是相同的?10、有红、黄、蓝3种颜色的小珠子各4颗混放在口袋里,为了保证一次能取出2颗颜色相同的珠子,一次至少取多少颗?11、一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出多少个球才能保证有2个球的颜色相同?12、某班学生去买语文书、数学书和英语书。

买书的情况是:有买一本的,有买两本的,有买三本的,至少要去多少人才能保证一定有两位同学买到相同的书?(每种书最多买一本)13、某班学生去买数学书、语文书、美术书、自然书,买书的情况是:有买一本的、两本的、三本的和四本的。

至少去多少人才能保证一定有两人买的书是相同的。

(每种书最多买一本)14、学校图书室有历史、文艺、科普三种图书。

每个学生从中任意借两本,至少要多少个同学才能保证一定有两人所借的图书属于同一种?15、学校买来红、黄、蓝、绿四种颜色的球,每个学生最多只能借2个球,至少要有多少个学生借球,才能保证其中必然有两个学生所借的球一样?16、某班学生去买书,A、B、C、D四种,每人可买一本,二本,三本或四本.至少有( )位同学才能保证一定有两位同学买到相同的书?(每种书最多买一本)。

四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理抽屉原理是四年级的学生非常头疼的奥数题目,多做多练多学,这样对于有这类型的题目就轻而易举了,快来看看吧!习题一构造抽屉最关键的在于找到题目中的苹果和抽屉,并确定它们的数量。

对于四年级孩子,我们只要求能解决一些简单的问题。

例:幼儿园新购了熊猫、大象、长颈鹿3种玩具分给7个小朋友,每种玩具都有很多,每个小朋友可以选择两个玩具,可以相同也可以不同。

请证明肯定有两个小朋友选的玩具是相同的。

分析:三种玩具选两个,因为可以相同,所以共有六种不同的选择方式:[(熊,熊)(象,象)(鹿,鹿)(熊,象)(熊,鹿)(象,鹿)];7个小朋友可看作7个苹果,6种选择方式看作6个抽屉,7÷6=1(人)……1(人)所以肯定至少有两个小朋友选的玩具是相同的!习题二例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问:(1)至少取几根筷子才能保证取到颜色相同的一双筷子?(2)至少取几根筷子才能保证取到颜色相同的两双筷子?(3)至少取几根筷子才能保证取到颜色不同的两双筷子?分析:(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。

1+1+1+1+1=5(根)(2)要取颜色相同的两双筷子,即是要取颜色相同的4根筷子,从最倒霉的角度去思考,需要每种颜色各取3根,再任取1根,而红色只有1根,取完即可。

1+3+3+3+1=11(根)(3)要取颜色不同的两双筷子,即是要取颜色不同的筷子各两根,则先把数量最多的颜色先取完,其他颜色各取一根,再任取一根即可。

8+1+1+1+1=12(根)这类问题中要注意:筷子,袜子这些东西都是成双成对的,一双由两只组成。

习题三这里要注意理解两个词的含义,保证:确定,肯定,万无一失!最不利:最倒霉,最繁琐,最糟糕!最不利原则要求我们从最极端的角度去考虑事件。

我们分两类去讨论:例:口袋里共有5个红球,4个黄球,3个绿球;问:(1)至少取几个球才能保证取到一个红球?(2)至少取几个球才能保证取到三种颜色的球各一个?分析:(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,所以共计4+3+1=8(个)(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取到5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10(个) (这里要注意下顺序,从最多数量的颜色开始取)。

高斯小学奥数六年级下册含答案第05讲_抽屉原理

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二本讲知识点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标.二、抽屉原理:形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员.练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法.练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?「分析」思考一下:哪两个数的和是50?练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34?例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于「分析」通过把正六边形均分,来构造“抽屉”1.四大发明之印刷术印刷术是中国古代的四大发明之一,是中国古代汉族劳动人民经过长期实践和研究才发明的.活字印刷的方法是先制成单字的阳文反文字模,然后按照稿件把单字排列在字盘内涂墨印刷.自从汉朝发明纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻便、经济多了,但是抄写书籍还是非常费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间(公元172~178 年),出现了摹印和拓印石碑的方法.大约在公元600 年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早发明了雕版印刷术.雕版印刷是在一定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透明的稿纸正面和木板相贴,字就成了反体,笔划清晰可辨.雕刻工人用刻刀把版面没有字迹的部分削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业发展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;第二,大批书版存放不便;第三,有错字不容易更正.北宋平民发明家毕昇总结了历代雕版印刷的丰富的实践经验,经过反复试验,在宋仁宗庆历年间(公元1041~1048)制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格一致的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,如果事前没有准备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂稍微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加一定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不容易分开等原因,所以毕昇没有采用.毕昇的胶泥活字版印书方法,如果只印二三本,不算省事,如果印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比拟的,但是基本原理和方法是完全相同的.活字印刷术的发明,为人类文化做出了重大贡献.这中间,中国的平民发明家毕昇的功绩是不可磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推测为活字印刷的佛经外,中原地区无发现活字印刷的中文印刷品!作业1. (1) 一个班有37个人,那么至少有多少人是同一星座的?(2) 一副扑克牌,共54张,那么至少从中摸出多少张牌,才能保证至少有6张牌的花色相同?2. 动物王国举行运动会,共有101位运动员,有短跑、跳高、跳远、10米跳台、3米跳板五个项目,每位运动员最多选三个项目,最少选一个项目. 那么至少有多少位运动员所选的项目都相同?3. 1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1至40这40个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4的倍数?5. 在半径为1的圆内,画13个点,其中任意3点不共线?请证明:一定存在3个点,以6它们为顶点的三角形面积小于6第五讲抽屉原理二例7.答案:12.解答:共有C6215种不同的选择方式,而173 15 11L 8 ,所以至少有12 个人买的饮料完全相同.例8.答案:46.解答:共有C52C5115 种参加方法,所以至少15 3 1 46 人.例9.答案:27.解答:可构造出26个组数:(1 , 49)、( 2, 48)、…、(24, 26)、(25)、( 50).所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46, 37.解答:由题意可知,如果取出的数没有两个数的和是7的倍数,则:除以7余 1 的数与除以7余6的数不能共存,除以7 余 2 的数与除以7 余 5 的数不能共存,除以7 余 3 的数与除以7 余 4 的数不能共存.而除以7余0的数只能取1个,且100 14 7L 2,所以最不利的情况是取尽余1、余2、余3和一个余0的数, 共45 个数, 所以至少选出46个数才可满足要求.同理至少选出37个数才能保证是 6 的倍数.(注意此时除以 6 余 3 和余0 的数都只能选 1 个)例11 .答案:52.解答:可构造出51 个组数:(1 , 8)、( 2 , 9)-( 7, 14 ); (15, 22 )、(16, 23 )???( 21, 28);……(85, 92)、(86 , 93)-( 91, 98); (99)、(100).每组数中的两数的差为7 ?只取出每个数组中较小的数显然不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成 6 个边长为 2 的正三角形,再将每个三角形等分成 4 个边长为 1 的正三角形,这样就把正六边形分割成24 个边长为 1 的正三角形,则由抽屉原理知,必有 3 点在一个等边三角形中,以它们为顶点的三角形面积显然不大于1.(边长是 1 的等边三角形面积小于1)练习1、答案:14.简答:共有C426种不同的选择方式,而83 6 13 5 ,所以至少有14 个人买的饮料完全相同.练习2、答案:57.简答:共有C43C42C4114 种参加方法,所以至少14 4 1 57 人.练习3、答案:20.简答:可构造出19个组数:(1, 33)、( 2, 32)、…、(16,18)、(17)、(34)、( 35).所以至少要取20个数才能保证取到一组和为34的数.练习4、答案:42.简答:1~99这99 个数中除以5余 1 的有20个,余 2 的有20个,余3的有20个,余4的有20个, 余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数一定符合题意,20 20 1 1 42 个.作业6. 答案:(1)4个;(2)23 张.简答:(1)抽屉原理;(2)最不利原则.7. 答案:5位.简答:首先运动员的项目有C5 Cf c3 25种可能,根据抽屉原理,至少有5位运动员的项目相同.8. 答案:36个.简答:每12个数中最多取出6个.9. 答案:12个.简答:将1~40按照除以4的余数分为四组:A 组:{1 , 5,…,37};B 组:{2 , 6,…,38};C组:{3,7,…,39};D 组:{4 , 8,…,40}.首先,B、D组最多取一个?取了A组就不能取C组.所以最多能取12个.10. 证明:将半径为1的圆六等分,分为六个扇形,每个扇形的面积是在同一部分中,这三个点组成的三角形不会大于所在的扇形,即-6 根据抽屉原理,至少有三个点6。

小学奥数抽屉原理习题及答案【三篇】

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。

A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。

7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。

8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。

9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。

10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。

摸到红球的概率为%。

三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。

13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。

小学数学抽屉原理完整版题型训练+详细答案

小学数学抽屉原理完整版题型训练+详细答案

小学数学抽屉原理完整版题型训练+详细答案抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。

2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。

17÷8=2……1,2+1=3名。

3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。

六位数可以截取出5个两位数,所以必有重复。

4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。

详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。

5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。

选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。

必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。

小学四年级奥数抽屉原理(二)例题、练习及答案

小学四年级奥数抽屉原理(二)例题、练习及答案

抽屉原理(二)这一讲我们讲抽屉原理的另一种状况。

先看一个例子:假如将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。

道理很简洁。

假如每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。

剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

这个例子所表达的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品随意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。

假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相冲突。

这说明一开场的假定不能成立。

所以致少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。

为了使抽屉中的物品不少于(m+1)件,最不利的状况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。

这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。

即抽屉原理2是抽屉原理1的推广。

例1某幼儿班有40名小挚友,现有各种玩具122件,把这些玩具全局部给小挚友,是否会有小挚友得到4件或4件以上的玩具?分析与解:将40名小挚友看成40个抽屉。

今有玩具122件,122=3×40+2。

应用抽屉原理2,取n=40,m=3,马上知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小挚友得到4件或4件以上的玩具。

例2一个布袋中有40块一样的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码一样的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,依据抽屉原理2,至少要有4×2+1=9(件)物品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数——抽屉原理题库2(含详细答案)
一.解答题(共40小题)
1.一个体育代表团共有997名运动员,他们着装运动服上的号码数两两不同,但都小于1992. 证明:至少有一名运动员的号码数恰等于另外两名运动员的号码数之和.
2.某校初中二年级共有210名学生,则至少有18名同学是在同一个月里出生的.
3.证明:从1,2,3,⋯,11,12这12个数中任意取出7个数,其中至少有两个数之差
为6.
4.对于任意给定的n 个自然数,其中一定存在若干个数,它们的和是n 的倍数.
5.从1,2,3,⋯,n 中任取10个数,使得其中两个数比值大于
23,小于32
,那么n 的最大值是91.
6.从1到100这100个自然数中,任意取出51个数,其中一定存在两个数,这两个数中的
一个是另一个的整数倍.
7.证明:在121-,221-,321-,⋯,121n --这1n -个数中,至少有一个数能被n 整除
(其中n 为大于1的奇数).
8.在1,2,3,⋯,90,91这91个自然数中,任取k 个数,使得其中必有两个自然数p 、
q 满足2332q p 剟,试确定自然数k 的最小值并说明理由. 9.证明:如果在边长分别为3和4的矩形中有任意6个点,那么一定可以选出两个点,它

10.如果在长度为1的线段上有1n +个点,那么其中必有两点,它们之间的距离不超过1n
. 11.我们把在直解坐标平面内横坐标都是整数的点称为整点.证明:对于平面内任意给定的
五个整点,其中一定存在两个整点,这两个点的连线的中点仍为整点.
12.在边长为1. 13.将59⨯的长方形分成边长为整数的长方形,无论怎样分法,分得的长方形中必有两个
是完全相同的,请你说明理由.
14.从1到100这100个自然数中至少要取出多少个数,才能保证一定存在两个数是互质的.
15.对于平面上给定的25个点,如果其中任何3个点中都有某两个点的距离小于1,那么
在这些给定的点中,一定可以找到13个点,这13个点都位于一个半径为1的圆内.
16.证明:在任意给定的100个整数中,一定存在两个数,它们的和或差是100的倍数.
17.将2002张卡片分别标记1,2,3,⋯,2002的数,数字面朝上放在桌上.二位玩家轮
流自桌上各取一张牌,直到桌上的牌取光为止.先计算每个人所有取的牌的数之总和,再比较这两个总和的个位数,较大者为胜方.请问两位玩家中哪一位有必胜之策略(无论对手如何对应)?如果有,这个必胜策略是什么?
18.如果三个完全平方数之和能被9整除,那么可以从这三个数中选出两个来,使得这两个
完全平立数之差也能被9整除.
19.某夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人必须去一处,
至多去两处游览.求证:至少有332人游览的地方完全相同.
20.设1a ,2a ,3a ⋯,41a 是任意给定的互不相等的41个正整数.问能否在这41个数中找
到6个数,使它们的一个四则运算式的结果(每个数不重复使用)是2002的倍数?如果能,请给出证明;如果不能,请说明理由.
21.一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这
棋手必在连续几天内恰好下了21盘棋.
22.证明:对任意三角形,一定存在两条边,它们的长u ,v 满足1u v <…. 23.在1818⨯的方格纸上的每个方格中均填入一个彼此不相等的正整数.求证:无论哪种填
法,至少有两对相邻小方格(有一条公共边的两个小方格称为一对相邻小方格),每对小方格中所填之数的差均不小于10.
24.在1,4,7.10⋯,100中任选20个数,其中至少有不同的两组(每组两个数),其和
等于104,试证明之.
25.从连续自然数1,2,3,⋯,2008中任意取n 个不同的数,
(1)求证:当1007n =时,无论怎样选取这n 个数,总存在其中的4个数的和等于4017.
(2)当1006(n n …是正整数)时,上述结论成立否?请说明理由.
26.求证:在小于100的27个正奇数中,必可找到两个数,它们的和等于102.
27.设X 是一个56元集合.求最小的正整数n ,使得对X 的任意15个子集,
只要它们中任何7个的并的元素个数都不少于n ,则这15个子集中一定存在3个,它们的交非空.
28.在100个连续自然数1,2,⋯,100中,任取51个数.证明:这51个数中,一定有
两个数,其中一个数是另一个数的倍数.
29.设有22n n ⨯个正方形方格棋盘,在其中任意的3n 个方格中各有一枚棋子.求证:可以
选出n行和n列,使得3n枚棋子都在这n行和n列中.
30.从1,2,3,⋯,3919中任取2001个数.证明:一定存在两个数之差恰好为98.31.有17个科学家,他们中的每一个都和其他的科学家通信,在他们的通信中仅仅讨论三个问题,每一对科学家互相通信时,仅仅讨论同一个问题.证明至少有三个科学家关于同一个题目互相通信.
32.从1,2,⋯,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.
33.环行跑道的一周插了若干红、黄两种颜色的彩旗,已知一共变色了46次(一个红旗与一个黄旗相邻或一个黄旗与一个红旗相邻,称为一次变色),现可将相邻的旗子对调,如果若干次对调后,变色次数减少为26次.试说明:在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.
34.九条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形.证明:这九条直线中至少有三条经过同一点.
35.连接圆周上9个不同点的36条直线染成红色或蓝色,假定由9点中每3点所确定的三角形都至少含有一条红色边.证明有四点,其中每两点的连线都是红色的.
36.一个口袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个.从袋中任意取球,如果要求一次取出的球中至少有15个球的颜色相同,那么至少要从袋中取出多少个球?
37.把1到3这三个自然数填入1010
⨯的方格内,每格内填一个数,求证:无论怎样填法都能使在各行、各列、两条对角线上的数字和中,必有两个是相同的.
38.有50名同学站在操场上玩游戏,他们彼此间的距离都各不相等.每人手中有一把水枪,游戏规则是:每人都向离自己最近的人打一枪.试证明:每一个人至多挨了5枪.(提示:也就是要证明:假定有一个人至少挨6枪是不可能的)
39.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,证明至少有5人植树的株数相同.
40.41名运动员所穿运动衣号码是1,2,⋯,40,41这41个自然数,问:
(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?
若能办到,请举一例;若不能办到,请说明理由.。

相关文档
最新文档