计算方法复习题.doc

合集下载

(完整word版)《数值计算方法》试题集及答案

(完整word版)《数值计算方法》试题集及答案

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 两点式高斯型求积公式⎰10d )(x x f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

计算方法复习题

计算方法复习题

《计算方法》复习题一 选 择(每题3分,合计42分)1. x* = 1.732050808,取x =1。

7320,则x 具有 位有效数字。

A 、3 B 、4 C 、5 D 、62. 取73.13≈(三位有效数字),则≤-73.13 。

A 、30.510-⨯B 、20.510-⨯C 、10.510-⨯D 、0。

5 3. 下面 不是数值计算应注意的问题。

A 、注意简化计算步骤,减少运算次数B 、要避免相近两数相减C 、要防止大数吃掉小数D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B xk k+=+)()1(收敛的充分必要条件是 。

A 、11<B B 、1<∞BC 、1)(<B ρD 、21B <5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)1(-k rka ,使得)1(-k rk a = 。

A 、 )1(1max -≤≤k ikni a B 、 )1(max -≤≤k ikni k a C 、 )1(max -≤≤k kjnj k a D 、 )1(1max -≤≤k kjnj a6. 设ƒ(x)= 5x 3-3x 2+x +6,取x 1=0,x 2=0。

3,x 3=0。

6,x 4=0.8,在这些点上关于ƒ(x )的插值多项式为3()P x ,则ƒ(0.9)—3(0.9)P =__________。

A 、0 B 、0.001 C 、0。

002 D 、0.0037. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =ϕ(x ),则f (x )=0的根是: .A 、y =x 与y =ϕ(x )的交点B 、 y =x 与y =ϕ(x )交点的横坐标C 、y =x 与x 轴的交点的横坐标D 、 y =ϕ(x )与x 轴交点的横坐标8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。

计算方法复习题

计算方法复习题

计算方法复习题一、判断题1.四舍五入得到的最后一位数字是有效数字。

( )2.运算量是衡量一个算法好坏的唯一指标。

( )3.从计算方法近似解角度考虑,方程组都有解。

( )4.最小二乘拟合本质是解矛盾方程组。

( )5.高斯—塞德尔迭代法一定比雅可比迭代法收敛速度快。

( )6.数值积分中求积系数与被积函数f (x )有关。

( )7.同一组数据采用拉格朗日插值与牛顿插值的结果不同。

( )8.迭代法求非线性方程f (x )=0收敛的条件是|f ’(x)|<1。

( )9.常微分方程数值解中龙格库塔法的系数可由Taylor 公式展开求取。

( )10.线性方程组的迭代法不适合用于求解大型稀疏矩阵。

( )11.加减计算量是衡量一个算法好坏的最重要的指标。

( )12.计算方法应考虑各种误差的影响。

( )13.插值法是函数逼近的唯一方法。

( )14.求解同一个问题时,结果的有效数字位数越多说明的近似解精度越高。

( )15.高斯—塞德尔迭代法不一定比雅可比迭代法求解精度高。

( )16.所有插值法都是只要求构造的φ(x )与f (x )在给定点的函数值相等。

( )17.f(x)没有解析表达式,只有数表形式时,可以对f (x )进行积分。

( )18.线性方程组的直接解法适合用于求解小型稠密矩阵。

( )19.可以用代数精确度度量数值积分的精度。

( )20.计算方法中各种算法只考虑舍入误差。

( )21.计算方法考虑数学问题的近似解,信息量越少近似解越准确。

( )22.所有插值法只要求构造的φ(x )与f (x )在给定点的函数值相等。

( )23.线性方程组迭代收敛与矩阵A 的特征值有关。

( )24.可以用代数精确度度量数值积分的精度。

( )二、填空题1.微分方程离散化的方法有:数值积分、差商和_________________。

2.你学习或知道的线性方程组求解方法,除了简单迭代法(雅克比)外,还有____________等。

(完整word版)数值计算方法期末复习答案终结版

(完整word版)数值计算方法期末复习答案终结版

一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。

2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。

如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。

3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。

4。

向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。

5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。

6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。

矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。

(完整)数值计算方法复习

(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1。

了解数值分析的研究对象与特点。

2。

了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0。

229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。

了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3。

理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4。

掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。

为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。

计算方法复习资料

计算方法复习资料

第一章 引论一、判断题1.*x =–12.0326作为x 的近似值一定具有6位有效数字,且其误差限≤41021-⨯。

( )2. 对两个不同数的近似数,误差越小,有效数位越多。

( )3. 一个近似数的有效数位愈多,其相对误差限愈小。

( )4. 3.14和3.142作为π的近似值有效数字位数相同。

( ) 二、填空题1. 为了使计算()()2334912111y x x x =+-+---的乘除法次数尽量少,应将该表达式改写为 ;2. *x =–0.003457是x 舍入得到的近似值,它有 位有效数字,绝对误差限为 ,相对误差限为 ;3. 用四舍五入得到的近似数0.550,有 位有效数字,其相对误差是 。

三、选择题1.*x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x 近似表示e x所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用221gt s =表示自由落体运动距离与时间的关系式 (g 为重力加速度),t s 是在时间t 内的实际距离,则s *是( )误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。

(A) 3; (B) 4; (C) 5; (D) 6。

四、计算题1. 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字? 2. 14159.3=π具有4位有效数字的近似值是多少?3. 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?4. 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?5. 设x 的相对误差为%a ,求nx y =的相对误差。

计算方法-习题第一、二章答案.doc

第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。

解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x*有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系。

解 利用有效数字与相对误差的关系。

这里n=2,a 1是1到9之间的数字。

%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。

解 a 1是1到9间的数字。

1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。

4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。

分析 本题应利用有效数字与相对误差的关系。

解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n ra x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

《计算方法》复习题

ZH 计0520 九州0520《计算方法》复习题f (x^x3x -1 =0在区间[0,1]内的根,进行一步后根所在区1计算积分.xdx,取4位有效数字,用梯形公式计算求得的近似值为0.55x2=1.Ax? = °的高斯—赛德尔迭代格式为以迭代格式是收敛的5 4 3 216x 17x 18x -14x "XT 改写为((((16x 17)x 18)x —14)x —13)x -1 ((x216)x 8)x -1 ,为了减少舍入误差的影响,应将、填空1、为了使计算y =103+ ----x -1乙63的乘法运算次数尽量地少,应将(x-1)2(x-1)3表达式改写为t ,八10 (3 (4-6t)t)tx「1用辛卜生公式求得的近似值为公式的代数精度为30.4309,梯形公式的代数精度为,辛卜生x1k 1)x2k 1)=(1 -5x2k))/31 (k 1)=(x1/45,该迭代格式的迭代矩阵的谱半径T(G)二1—,所12用二分法求方程间为[0.5,1],进行二步后区间为[0.5,0.75]。

设A,_-22Tx h 3,Ax肿15。

[0.4268 ],求解线性代数方程组为了减少运算次数,应将表达式x416x28x -1表达式 200^ 1999改写为 一37、 用二分法求方程f(x)=2x -5x-1=0在区间[0,1]内的根,进行一步后根所在区间为[1,2 ],进行二步后所在区间为 [1.5,2 ]b — a b8、 记h,X i 二a ,ih,i =0,1,…,n.计算 f(x)dx 的复化梯形公式为 n an 二[f(x 。

)-27 f(x i ) f(X n )] /2,他是 2 阶,代数精度为 1| 5x 1 - 3x 2 - 0.1X 3 —159、求解线性方程组《-2x 1 +6x 2 +0.7x 3 = 0的高斯一塞德尔迭代格式为、_ 捲 +2x 2 +3.5x 3 =1x 严珂1 +3x 2k)+O.1x 3k)]/5x 2k 1)[2x ;k° -O.7x 3k)]/6x 3k 1)二[1 -x ;k 1)-22k 1)]/3.5-0.38,-0.2 4 3,30.5 3 3 310、 设 f (0) =0, f(1) -16, f (2) =46,则 f[0,1,2] = 16, f[0,1,2] = 7f (x)的二次牛顿插入值多项式为0 16(x-0) 7(x-0)(x-1)、计算和证明x 1 x 2 x 3 = 61、用列主元高斯消去法解线性代数方程组$洛+ 3X 2 - 2X 3 = 12% _2x 2 +x 3 =1-211〕 1 1 rH^-)r1,r^^-)r13 -2 1 2 1 1 6 一 2-2 1 10 4 -5/2 1/2 ]0 0 7/4 21/4 一■111 61■2解: 1 3-2 112 —2 1 1 一1 _2 -2 1 1 〕1 r34(」.)r20 4 —5/2 1/2 --------------2一-'021/211/2 一2x 1 -2x 2 x 3 = 1回代得 x 3 = 3, x 2 = 2, x 1 = 12、 设有一个长方形水池,由测量知长为50_0.01米,宽为25 _ 0.01,深为20一0.01,试按所给数据求出该水池的容积, 并分析所得近似值的绝对误差和相对误差给出绝对误差限和相对误差限。

计算方法复习题-试题卷

一计算题
1. 能不能用迭代法求解以下方程,如果不能时,试将方程改写成能用迭代法求解的形式。

2. 用矩阵的LU分解算法求解线性方程组
X1+2X2+3X3 = 0
2X1+2X2+8X3 = -4
-3X1-10X2-2X3 = -11
3. 用高斯消去法求解线性方程组
解:消元过程
4. 给定常微分初值问题试构造一个求解常微分初值问题的两步差分格式。

5. 用矩阵的Doolittle分解算法求解线性方程组
2X1+X2+X3 = 4
6X1+4X2+5X3 =15
4X1+3X2+6X3 = 13
6. 利用Doolittle分解法解方程组Ax=b,即解方程组
解:用公式
7. 用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1
2X1– X2+9X3 = 0
-3X1+ 4X2+9X3 = 1
解:
8. 用Doolittle分解法解方程组
解:方程组的系数矩阵为
根据分解公式得
9. 方程将其改写为
10. 用高斯消元法解方程组
解:方程组的扩大矩阵为
11. 方程将其改写为
解:注意到迭代公式的形式,
12. 用Doolittle三角分解法求解线性代数方程组:
解:由公式
13. 用高斯消去法求解线性方程组
2X1- X2+3X3 = 2
4X1+2X2+5X3 = 4
-3X1+4X2-3X3 = -3
解:方程组的扩大矩阵为
14. 给定方程
〔1〕分析该方程存在几个根;
〔2〕构造迭代公式,说明迭代公式是收敛的。

15. 用Euler方法求解
(取h=0.2)。

计算方法复习题

计算方法复习题一、单项选择题1. 以下误差公式不正确的是( )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 辛卜生公式的余项为( )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--3. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( ) A .1 B .12C .–1D .–24. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ϕ=的,则()0f x = 的根是( )A . y x =与()y x ϕ=的交点B . y x =与与x 轴的交点的横坐标的交点的横坐标C . y x =与()y x ϕ=的交点的横坐标D . ()y x ϕ=与x 轴的交点的横坐标5. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( )A .1 B. 2 C. 3 D. 4二、 填空题1、乘幂法可求出实方阵A 的 特征值及其相应的特征向量.2、欧拉法的绝对稳定实区间为 。

3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x 具有的有效数字是___4、消元法的步骤包括 .5、对于n+1个节点的插值求积公式至少具有___次代数精度.6、插值型求积公式的求积系数之和___7、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_8、若则矩阵A的谱半径(A)= ___9、解常微分方程初值问题的梯形格式是___阶方法10.欧拉法的局部截断误差阶为___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习试题一、填空题:
A 4
1
1
4
1
A
1、0 1 4
,则A的LU 分解为。

2、已知 f (1) 1.0, f (2) 1.2, f (3) 1.3 ,则用辛普生(辛卜生)公式计算求得
3
1
f ( x)dx _________
,用三点式求得 f (1 )。

3、f (1 )1, f (2) 2, f (3) 1,则过这三点的二次插值多项式中 2
x 的系数为,拉格朗日插值多项式为。

x* 0.231关于真值x0.229有( )位有效数字;
4、近似值
5、设f (x) 可微,求方程x f (x)的牛顿迭代格式是( );
3 x
6、对() 1
f x x ,差商 f [ 0,1,2,3] ( ), f [ 0,1,2,3,4 ]( );
7、计算方法主要研究( )误差和( )误差;
8、用二分法求非线性方程 f (x)=0 在区间(a,b)内的根时,二分n 次后的误差限为
( );
9、求解一阶常微分方程初值问题y= f (x,y) ,y(x0)= y0 的改进的欧拉公式为
( );
10、已知f(1)=2,f(2)=3,f(4)=5.9,则二次Newton 插值多项式中x
2 系数为();
1
f ( x)dx
11、两点式高斯型求积公式≈( ),代数精度为();
12、解线性方程组A x=b的高斯顺序消元法满足的充要条件为()。

y 10
3 4
2
x 1 ( x 1) ( x
6
3
1)
13、为了使计算
的乘除法次数尽量地少,应将该表
1
1
y 10 (3 (4 6t)t)t , t
达式改写为x 1
,为了减少舍入误差,应将表达式
2001 1999改写为。

3 x
14、用二分法求方程( ) 1 0
f x x 在区间[0,1]内的根,进行一步后根的所在区间
为,进行两步后根的所在区间为。

15、计算积分1
0.5
x d x
,取4 位有效数字。

用梯形公式计算求得的近似值为,用辛
卜生公式计算求得的近似值为,梯形公式的代数精度为,辛卜生公式的代数精度为。

3x
1 5x
2
1 ( k
x
1
1)
(1 ( k) 2
5x
) / 3
16、求解方程组0.2 4 0
x x
1 2
( k 1) (k 1)
的高斯—塞德尔迭代格式为x x / 20
2 1
,该迭
代格式的迭代矩阵的谱半径(M ) = 。

17、设f (0) 0, f (1) 16, f (2) 46 ,则l1 (x) l1 (x) x( x 2) ,f (x) 的二次牛顿
插值多项式为N2( x) 16x 7x(x 1) 。

18、求积公式
n
b
f ( x)dx A f ( x )
k
k a
k
的代数
精度以
( )
( )
求积公式为
最高,
具有
次代数精度。

5
1
f (x)dx
19、已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求≈( )。

20、设f (1)=1,f(2)=2,f (3)=0,用三点式求 f (1) ( )。

x3 x 在区间[1,2] 内的根精确到三位小数,需对分()次。

21、如果用二分法求方程
4 0
22、已知
3
x
S( x )
3
2
1
(x 1) a(x 1)
2
b(x 1) c
0 1
x x
1 3
是三次样条函数,则
a =(
), b =(
), c =(
)。

23、
( ), ( ), , ( )
l 0 x l x l n x 是以整数点
1
x 0 ,x 1, ,为节点的 Lagrange 插值基函数,则
x
n n
n l k (x)
( ) ,
0 k 0
x k l (x )
j
k
n ( ),当 n
2时
k 0
(
4 x 2
l x x
k
3) k ( )
k
(
)。

k
2
y f (x, y) y x
y
的改
进欧拉法
( )
24、解初值问题
y n 1 [0]
y n
1 y n h
2 [ f y n
( x n , h f y n (x ) n
, f
y ) n ( x n 1
,
[ 0] y n 1
)]

阶方法。

25、区间 a,b 上的三次样条插值函数 S( x ) 在 a,b 上具有直到 __________阶的连续导数。

26 、 改 变 函 数
f ( x) x 1 x
(
x
1 ) 的 形 式 , 使 计 算 结 果 较 精 确
f
x
x 1
1
x。

27、若用二分法求方程
f x 0
在区间 [1,2] 内的根,要求精确到第
3 位小数,则需要对分 次。

3
2x , 0 x 1
S x
3
2
28、设
, 1
2
x
ax
bx c
x
a=
, b=
, c=。

是 3 次样条函数,则 29、若用复化梯形公式计算 积节点。

1 0
x
e dx
,要求误差不超过
6
10 ,利用余项公式估计,至少用
个求
x
1
1.6 x 2
1 30 、 写 出 求 解 方 程 组 0.4
2
x
x
1
2

Gauss-Seidel 迭 代 公 式
k 1
k
x
1 1.6x
1
k 2
,
k 1 k 1
x
2 0. 4x
2
1
0 ,1,
0 1.6 ,迭代矩阵为
0.64
,此迭代法是否收敛
收敛 。

31、设
5 4 A
4 3 ,则 A。

4 8
2
4 8 2
U
0 1 6
A 2 5 7 1 3 6

A LU ,则 U
0 0
1 2
32、设矩阵 。

33、若
4
f x 3x 2x 1,则差商 f [2,4,8,16,32]。

( )
1 1
2
f ( x)dx
[ f ( 1) 8f (0) f (1)] 9
34、数值积分公式
的代数精度为。

1 2 1
0 1 5
x
1 1
2 1
1 0 3 1
35、线性方程组
的最小二乘解为。

3
3 2 1
36、设矩阵A
3 2 1
2 0 4
1 3 5
分解为
A LU,则U
4 10
3 3
21
0 0
2 。

二、单项选择题:
1、Jacobi迭代法解方程组A x b的必要条件是()。

A.A 的各阶顺序主子式不为零B.( A) 1
ii 0, 1, 2, , D. A 1
C. a i n
2 2 3
A 0 5 1
2、设0 0 7
,则(A)为( ).
A. 2 B. 5 C.7 D. 3
3、三点的高斯求积公式的代数精度为( )。

A. 2 B.5 C. 3 D. 4
4、求解线性方程组A x=b的LU 分解法中,A 须满足的条件是( )。

A.对称阵B.正定矩阵
C.任意阵D.各阶顺序主子式均不为零
5、舍入误差是( )产生的误差。

A. 只取有限位数B.模型准确值与用数值方法求得的准确值
C.观察与测量D.数学模型准确值与实际值
6、3.141580是π的有( )位有效数字的近似值。

A. 6 B. 5 C. 4 D.7
x
7、用1+x 近似表示e 所产生的误差是( )误差。

A.模型B.观测C.截断D.舍入
4。

相关文档
最新文档