高等数学知识点归纳知识讲解
高等数学知识点归纳

六. 凹凸与拐点(必求导!):
1. y " 表格; ( f "(x0 ) 0 )
2. 应用: (1)泰勒估计; (2) f ' 单调; (3)凹凸.
七. 罗尔定理与辅助函数: (注: 最值点必为驻点)
(1)区别: *单变量与双变量?
* x [a,b] 与 x [a, ), x (, ) ?
(2)类型: * f ' 0, f (a) 0 ;
* f ' 0, f (b) 0
5
* f " 0, f (a), f (b) 0 ; * f "(x) 0, f '(x0) 0, f (x0) 0
(5)隐式(方程): F (x, y) 0
x x(t)
(6)参式(数一,二):
y
y (t )
(7)变限积分函数:
F(x)
x
f (x,t)dt
a
(8)级数和函数(数一,三): S (x) anxn, x n0
2. 特征(几何):
(1)单调性与有界性(判别); ( f (x) 单调 x0 , (x x0 )( f (x) f (x0 )) 定号)
f
(x)
;
f
'(x0 )
lim
x x0
f (x) f (x0) x x0
(1) f '(0) lim f (x) f (0) (注: lim f (x) A( f 连续) f (0) 0, f '(0) A )
x0
x
x0 x
(2)左右导:
高等数学知识点考研总结

高等数学知识点考研总结一、高等数学的知识点1.极限与微积分极限是微积分的基础,通过研究极限,可以建立微积分理论体系。
极限的概念是数学分析的核心,包括函数的极限、无穷小量、洛必达法则等内容。
微积分则是极限理论的应用,包括导数、积分、微分方程等内容。
2.多元函数微分学在高等数学中,多元函数微分学是一个重要的知识点。
它包括偏导数、全微分、多元函数极值、拉格朗日乘数法等内容。
多元函数微分学是微积分理论在多元空间中的拓展,对于理解多元函数的性质和求解实际问题中的应用具有重要意义。
3.级数与收敛性级数是数学分析中的一个重要概念,包括数项级数、函数项级数、幂级数、傅里叶级数等内容。
收敛性是级数理论的核心问题,包括级数收敛的判别法、柯西收敛判别法、绝对收敛和条件收敛等内容。
4.常微分方程常微分方程是现代数学中一个重要的研究方向,包括一阶微分方程、高阶微分方程、线性微分方程、非线性微分方程等内容。
常微分方程的理论和方法在科学与工程领域有着广泛的应用,对于建模和求解实际问题具有重要意义。
以上是高等数学中的一些重要知识点,它们构成了数学分析的基本理论体系,对于理解数学的基本概念、方法和技巧具有重要的意义。
二、高等数学的考试重点在高等数学的考研过程中,以下是一些较为重要的考试重点知识点。
1. 极限和微分极限和微分是高等数学的基本理论,对于研究生入学考试而言,它们是比较重要的考试重点。
在考试中,可能涉及到函数的极限、无穷小量、导数、微分等内容,考生需要熟练掌握相应的定义、定理和求解方法。
2. 积分和微分方程积分和微分方程是微积分的重要应用,也是研究生入学考试的考试重点。
在考试中,可能涉及到不定积分、定积分、导数与积分的关系、常微分方程的基本理论和方法等内容,考生需要对这些知识点有所掌握。
3. 级数与收敛性级数与收敛性是数学分析中的一个重要概念,也是研究生入学考试的考试重点。
在考试中,可能涉及到数项级数、函数项级数、级数收敛的判别法等内容,考生需要对级数理论有所了解。
(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
高等数学知识点总结

高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。
本文将对高等数学的知识点进行总结,以供参考。
一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。
极限的性质包括保号性、保序性等。
连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。
2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。
导数的计算方法包括定义法、导数法则和高阶导数等。
微分是导数的一种应用,主要研究函数在某一点的微小变化。
3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。
积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。
不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。
级数是数学分析中的重要部分,研究函数的和式。
常见的级数包括幂级数、泰勒级数和傅里叶级数等。
级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。
5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。
主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。
重积分是研究函数在空间区域上的累积变化。
重积分的计算方法包括一重积分、二重积分和三重积分等。
7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。
常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。
二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。
矩阵的运算包括加法、减法、数乘和矩阵乘法等。
矩阵的行列式用于判断线性方程组的解的情况。
2.线性方程组线性方程组是实际问题中常见的数学模型。
线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。
3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。
线性变换是从一个向量空间到另一个向量空间的线性映射。
4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。
高等数学基本知识点大全

高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高等数学知识点总结pdf

高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。
高等数学知识点汇总

高等数学知识点高等数学知识点汇总通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
下面小编给大家介绍高等数学知识点汇总,赶紧来看看吧!高等数学知识点汇总第一章函数与极限知识点1:函数的概念、函数定义域的求法知识点2:函数的分类、特殊类型的函数知识点3:函数的基本性质知识点4:数列极限的概念与性质知识点5:函数极限的概念与性质知识点6:证明极限式与证明极限不存在的方法知识点7:无穷小与无穷大的概念与关系知识点8:极限的四则运算法则知识点9:复合函数的极限运算法则知识点10:极限存在的两个准则知识点11:两个重要极限知识点12:无穷小的比较知识点13:函数连续性的概念及判断知识点14:函数间断点的求法及分类知识点15:闭区间上连续函数的性质第二章导数与微分知识点16:导数的概念知识点17:导数的几何意义、平面曲线的切线与法线方程的求法知识点18:复合函数的求导知识点19:反函数的求导知识点20:隐函数及参数方程的求导知识点21:微分的概念及运算知识点22:一元函数微分形式的不变性知识点23:导数的物理意义知识点24:按定义求导的题目类型知识点25:可导、可微与连续三个概念之间的关系知识点26:奇偶函数与周期函数的导数的性质知识点27:用求导公式与法则求导数知识点28:函数的高阶导数第三章微分中值定理与导数的应用知识点29:罗尔定理、拉格朗日中值定理的应用知识点30:柯西中值定理的应用知识点31:有关中值定理证明题的典型实例知识点32:洛必达法则求极限知识点33:求极限的方法总结知识点34:函数的零点(方程的根)存在性与唯一性的证明知识点35:函数的零点(方程的根)个数的讨论知识点36:不等式的证明方法总结知识点37:泰勒公式的求法知识点38:泰勒公式的应用知识点39:函数的单调性及判别知识点40:函数的极值及判别知识点41:函数的最值及判别知识点42:渐近线的分类与求法知识点43:曲线的凸凹性和拐点知识点44:曲率、曲率圆及曲率半径(数学一、二)知识点45:弧微分知识点46:导数在经济领域的应用(数学三)第四章不定积分知识点47:不定积分的概念与性质知识点48:不定积分的换元积分法知识点49:不定积分的分部积分法知识点50:有理函数与三角有理式的不定积分知识点51:不定积分计算技巧的典型实例第五章定积分知识点52:定积分的概念与基本性质知识点53:变上限的积分及其导数知识点54:奇偶函数与周期函数的积分性质知识点55:涉及定积分证明题型的典型实例知识点56:用牛顿-莱布尼兹定理计算定积分知识点57:定积分的换元积分法知识点58:定积分的分部积分法知识点59:定积分的特殊计算方法的典型实例知识点60:无穷限的.反常积分的概念与计算知识点61:无界函数的反常积分的概念与计算第六章定积分的应用知识点62:用定积分求平面图形的面积知识点63:用定积分求特殊立体的体积知识点64:用定积分求弧长知识点65:定积分的物理应用(数一、二)知识点66:连续函数的平均值(数一、二)第七章空间解析几何与向量代数知识点67:空间直角坐标系及相关概念(数一)知识点68:向量的属性、向量的长度与夹角(数一)知识点69:向量的各类运算及其运算法则(数一)知识点70:用向量解决的几何问题(数一)知识点71:平面的法向量与平面方程(数一)知识点72:直线的方向向量与直线方程(数一)知识点73:两个平面间的关系(数一)知识点74:两条直线间的关系(数一)知识点75:直线与平面的关系(数一)知识点76:点到平面的距离的计算(数一)知识点77:点到直线的距离的计算(数一)知识点78:旋转曲面(数一)知识点79:柱面(数一)知识点80:二次曲面(数一)知识点81:空间曲线的方程及其在坐标面上的投影(数一)第八章多元函数微分法及其应用知识点82:多元函数的概念和几何意义知识点83:二元函数的极限知识点84:二元函数的连续性知识点85:偏导数的概念与常规计算知识点86:高阶偏导数知识点87:多元函数可微与全微分知识点88:连续,可偏导,可微的关系知识点89:多元复合函数的求导法则知识点90:多元函数的微分形式不变性知识点91:多元隐函数的求导知识点92:多元函数的极值问题知识点93:条件极值问题、拉格朗日乘数法知识点94:多元函数的最值问题知识点95:方向导数(数一、二)知识点96:数量场的梯度(数一、二)知识点97:空间曲线的切线与法平面(数一、二)知识点98:空间曲面的切平面与法线(数一、二)知识点99:二元函数的二阶泰勒公式(数一)第九章重积分知识点100:重积分的概念与性质知识点101:直角坐标下二重积分的定限与计算知识点102:极坐标下二重积分的定限与计算知识点103:直角坐标下三重积分的定限与计算知识点104:柱面坐标下三重积分的定限与计算知识点105:球面坐标下三重积分的定限与计算知识点106:重积分积分次序的交换知识点107:利用积分区域的对称性及被积函数的奇偶性求重积分的技巧第十章曲线积分与曲面积分知识点108:第一类曲线积分的概念与计算知识点109:第二类曲线积分的概念与计算知识点110:两类曲线积分之间的联系知识点111:二元函数全微分求积知识点112:格林公式及其应用知识点113:曲线积分与路径无关的条件知识点114:第一类曲面积分的概念与计算知识点115:第二类曲面积分的概念与计算知识点116:两类曲面积分之间的联系知识点117:高斯公式及其应用知识点118:通量与散度知识点119:斯托克斯公式及其应用知识点120:环流量与旋度知识点121:涉及重积分与曲线曲面积分的证明题总结第十一章无穷级数知识点122:级数的概念及性质(数一、三)知识点123:级数收敛的概念与判别法(数一、三)知识点124:正项级数的审敛法(数一、三)知识点125:交错级数、莱布尼兹判别法(数一、三)知识点126:函数项级数与幂级数的概念(数一、三)知识点127:函数的幂级数展开(数一、三)知识点128:阿贝尔判别法(数一、三)知识点129:幂级数的收敛域(数一、三)知识点130:幂级数的和函数(数一、三)知识点131:绝对收敛与条件收敛(数一、三)知识点132:傅里叶级数的展开式的求法(数一)知识点133:傅里叶级数的周期延拓(数一)知识点134:傅里叶级数的奇偶延拓(数一)第十二章微分方程知识点135:微分方程的基本概念知识点136:可分离变量的微分方程知识点137:齐次微分方程知识点138:一阶线性微分方程知识点139:全微分方程知识点140:伯努利方程知识点141:用变量替换解微分方程举例知识点142:含变限积分的方程知识点143:可降阶的高阶微分方程知识点144:线性微分方程解的性质和结构知识点145:二阶常系数齐次线性方程知识点146:n阶常系数齐次线性方程知识点147:二阶常系数非齐次线性方程知识点148:欧拉方程(数学一)知识点149:差分方程(数学三)知识点150:微分方程应用题的典型实例。
高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。
函数的定义域和值域是函数的两个重要属性。
2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。
极限的运算法则包括加减乘除和复合函数的极限运算法则。
3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。
无穷小和无穷大是研究函数的重要工具。
二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。
导数的运算法则包括求导法则和复合函数的导数法则。
2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。
微分的运算法则包括微分的基本公式和微分的链式法则。
3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。
三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。
定积分和不定积分的计算方法包括基本公式法和凑微分法等等。
2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。
级数的分类包括几何级数、调和级数、幂级数等等。
3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时,sin ()()u x u x :; tan ()()u x u x :; 211cos ()()2u x u x -:; ()1()u x eu x -:; ln(1())()u x u x +:; (1())1()u x u x αα+-:;arcsin ()()u x u x :; arctan ()()u x u x : 2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=V V V3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰L ,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑L ,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x →: (1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔L ()()!!n n na a f x x x x n n α=+: (2)()xxn f t dt kt dt ⎰⎰:2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++:(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-V V V ; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=V V V V (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++L 注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++L L ()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒Z ; '()0()f x f x ≤⇒];(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=V V九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x +∞⎰; (2)101p dx x ⎰五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰; (2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y +=L 的方程 4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==L8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+V V V V(2)lim ,lim ,lim y x x y f ff f f x y∆∆∆==∆∆(3),x y f x f y df +V V @ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程.三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =U ; *(,)f x y 分片定义; *(,)f x y 奇偶 2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++L ; (3)lim n n S →∞(如1(1)!n nn ∞=+∑) 注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S Z ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln kn n ∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):n p ka n:(估计), 如10()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n pn+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0n n a a →]; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!xe x x x R =++++Ω=L 24111()1,22!4!x x e e x x R -+=+++Ω=L35111(),23!5!x x e e x x x R --=+++Ω=L3511sin ,3!5!x x x x R =-+-Ω=L 2411cos 1,2!4!x x x R =-++Ω=L ;211,(1,1)1x x x x =+++∈--L ; 211,(1,1)1x x x x=-+-∈-+L2311ln(1),(1,1]23x x x x x +=-+-∈-L2311ln(1),[1,1)23x x x x x -=----∈-L3511arctan ,[1,1]35x x x x x =-+-∈-L(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++)(3)考察导函数: ()'()g x f x @0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰@()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =L ,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰L4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈-L (分段表示) (2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +r r ; (平行b a λ⇔=v v )2. a r ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=u u v v @v )3. a b ⋅r r ; (投影:()aa b b a⋅=v v vv v ; 垂直:0a b a b ⊥⇔⋅=v v v v ; 夹角:(,)a b a b a b⋅=v v v v S v v ) 4. a b ⨯r r ; (法向:,n a b a b =⨯⊥v v v v v ; 面积:S a b =⨯Y v v )二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=v(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕=v(2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =)(2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒v (或(,1)x y n z z =--v)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t =r (或12s n n =⨯v u v u u v)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=,z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=v , 注: (,)(,1)x y z f x y n f f =⇒=-v(2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒=v(2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯v uv u u v六. 方向导与梯度(重点)1. 方向导(l v方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒v(2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==u r cos sin x y zf f lθθ∂⇒=+∂r(3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G u r:(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==u v; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒==u v(2)结论()a u l∂∂0G l =⋅u r ur ; ()b 取l G =ur v 为最大变化率方向;()c 0()G M u r为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰u v v u v v4. 应用范围(1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心)(3)分片2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰u v v u v u v四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰ 常见(1)水平线与垂直线; (2)221x y +=2. Green 公式:(1)()L D QPPdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰Ñ;(2)()L A B →⎰: *PQ y y ∂∂=⇒∂∂换路径; *P Q y y ∂∂≠⇒∂∂围路径(3)L ⎰Ñ(x y Q P =但D 内有奇点)*L L =⎰⎰蜒(变形) 3. 推广(路径无关性):P Qy y ∂∂=∂∂(1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰u v v (Γ有向τv ,(,,)F P Q R =u v ,(,,)d r ds dx dy dz τ==v v )五. 第二类曲面积分:1. 定义:Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧) 2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--v[()()]x yPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰ (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=v(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂u v (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰u v Ò (3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰Ò(含奇点) 4. 通量与积分:A d S ∑Φ=⋅⎰⎰u v u v (∑有向n v ,(),,A P Q R =u v ,(,,)d S ndS dydz dzdx dxdy ==u v v )六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入) 注(1)当0rot A =u v v 时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰u v v2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂u v u v (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =v 或{,,}x y z G G G ; (3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰u v v u v v Ñ(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。