高考正弦定理和余弦定理练习题及答案

合集下载

正弦定理和余弦定理及答案

正弦定理和余弦定理及答案


Байду номын сангаас

, 即

2 ) 3
············· 12 分
12 3 sin sin( ) 3

2 6 3 cos(2 ) 3 3 (0 ) (下同) 3 3
15. (1)因为 (2a c)cos B b cos C ,所以 (2sin A sin C ) cos B sin B cos C , 即 2sin A cos B sin C cos B sin B cos C sin(C B) sin A 而 (2)因为
17. (1)在 ABC中 ,由b 2 c 2 a 2 3bc, 得b 2 c 2 a 2 3bc , 所以 cos A
b2 c2 a2 3 . 2bc 2
在ABC 中,因为0 A , 所以 A
又因为 sin A sin B cos 即 sin B 1 cos C.
16. ABC 的三边 a, b, c 满足关系: c 4 2 a 2 b 2 c 2 a 4 a 2b 2 b 4 0 ,角 C 为锐角. ⑴ 求 C 的度数; ⑵ 求函数式 sin A sin B及 sin A cos B 的取值范围.


17. 在△ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 b 2 c 2 a 2 (1)求角 A,B,C 的大小; (2)若 BC 边上的中线 AM 的长为 7 ,求△ABC 的面积.
0 A 2 5 1 , A , sin A 1, 3 6 6 6 2 6

3 sin A sin B 3 . 2

高考正弦定理和余弦定理练习题及答案

高考正弦定理和余弦定理练习题及答案

高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

最新高考数学正弦定理和余弦定理经典试题解析

最新高考数学正弦定理和余弦定理经典试题解析

最新高考数学正弦定理和余弦定理经典试题解析1.(2020·全国卷Ⅲ)在△ABC中,cos C=23,AC=4,BC=3,则cos B=()A.19B.13C.12D.232. (2020·全国卷Ⅰ)如图,在三棱锥P-ABC的平面展开图中,AC=1,AB =AD=3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=________.3.(2020·全国卷Ⅱ)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.4.(2020·天津高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小;(2)求sin A 的值;(3)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.5.(2020·北京高考)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择(1)a 的值;(2)sin C 和△ABC 的面积.条件①:c =7,cos A =-17;条件②:cos A =18,cos B =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.参考答案1.答案 A解析 ∵在△ABC 中,cos C =23,AC =4,BC =3,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =42+32-2×4×3×23=9,∴AB =3,∴cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.2.答案 -14解析 ∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE=30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1.在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC =1+4-62×1×2=-14. 3.解 (1)∵sin 2A -sin 2B -sin 2C =sin B sin C ,由正弦定理可得BC 2-AC 2-AB 2=AC ·AB ,∴AC 2+AB 2-BC 2=-AC ·AB ,∴cos A =AC 2+AB 2-BC 22AC ·AB =-12.∵A ∈(0,π),∴A =2π3.(2)解法一:由(1)可得BC 2=AC 2+AB 2+AC ·AB =9,即(AC +AB )2-AC ·AB =9.∵AC ·AB ≤⎝⎛⎭⎪⎫AC +AB 22(当且仅当AC =AB 时取等号), ∴9=(AC +AB )2-AC ·AB≥(AC +AB )2-⎝⎛⎭⎪⎫AC +AB 22=34(AC +AB )2, ∴AC +AB ≤23(当且仅当AC =AB =3时取等号),∴△ABC 的周长L =AC +AB +BC ≤3+23,∴△ABC 周长的最大值为3+2 3.解法二:由正弦定理得AB sin C =AC sin B =BC sin A =3sin 2π3=23,∴AB =23sin C ,AC =23sin B .∵A =2π3,∴C =π3-B .∴AB +AC =23sin ⎝ ⎛⎭⎪⎫π3-B +23sin B =23⎝ ⎛⎭⎪⎫32cos B -12sin B +23sin B =3cos B +3sin B =23sin ⎝ ⎛⎭⎪⎫B +π3. 当B =π6时,AB +AC 取得最大值23,∴△ABC 周长的最大值为3+2 3.4.解 (1)在△ABC 中,由a =22,b =5,c =13及余弦定理得cos C =a 2+b 2-c 22ab =8+25-132×22×5=22, 又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由C =π4,a =22,c =13及正弦定理,可得sin A =a sin C c =22×2213=21313. (3)由a <c 知角A 为锐角,由sin A =21313,可得cos A =1-sin 2A =31313,所以sin2A =2sin A cos A =1213,cos2A =2cos 2A -1=513,所以sin ⎝ ⎛⎭⎪⎫2A +π4=sin2A cos π4+cos2A sin π4=1213×22+513×22=17226.5.解 选择条件①:(1)∵c =7,cos A =-17,a +b =11,由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(11-a )2+72-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,∴a =8.(2)∵cos A =-17,A ∈(0,π),∴sin A =1-cos 2A =437.由正弦定理得a sin A =c sin C, ∴8437=7sin C ,∴sin C =32. ∴△ABC 的面积S =12ab sin C =12×8×(11-8)×32=6 3. 选择条件②:(1)∵cos A =18,cos B =916,A ,B ∈(0,π),∴sin A =1-cos 2A =378,sin B =1-cos 2B =5716.由正弦定理得a sin A =b sin B ,即a 378=11-a 5716,∴a =6. (2)sin C =sin(A +B )=sin A cos B +sin B cos A =378×916+5716×18=74,△ABC 的面积S =12ab sin C =12×6×(11-6)×74=1574.。

正余弦定理知识点+经典题(有答案)

正余弦定理知识点+经典题(有答案)

正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。

即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

2025届高考数学复习:历年高考真题专项(正弦定理、余弦定理及解三角形)阶梯练习(附答案)

2025届高考数学复习:历年高考真题专项(正弦定理、余弦定理及解三角形)阶梯练习(附答案)

2025届高考数学复习:历年高考真题专项(正弦定理、余弦定理及解三角形)阶梯练习[基础强化]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6 B .π4 C .π3 D .π24.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .25.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23 ,则b =( )A.14 B .6 C .14 D .66.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.钝角三角形ABC 的面积是12 ,AB =1,BC =2 ,则AC =( ) A .5 B .5 C .2 D .18.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522 m9.[2024ꞏ全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94 ac ,则sin A +sin C =( )A .32 B .2 C .7 D .3 二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ꞏcos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形14.[2023ꞏ全国甲卷(理)]已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .6215.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且6S =(a+b)2-c2,则tan C=________.参考答案 [基础强化]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π 答案:C答案解析:由正弦定理得asin A =b sin B ,∴sin A =a sin B b =2×33 =22 ,又a <b ,∴A 为锐角,∴A =π4 .2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C答案解析:由正弦定理bsin B =c sin C ,∴sin B =b sin C c =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6 B .π4 C .π3 D .π2 答案:C答案解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3=12 ,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2 答案:C答案解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32 =3 .5.在△ABC中,a,b,c分别是内角A,B,C的对边.若b sin A=3c sin B,a=3,cosB=23,则b=()A.14 B.6 C.14D.6答案:D答案解析:∵b sin A=3c sin B,由正弦定理得ab=3bc,∴a=3c,又a=3,∴c=1,由余弦定理得b2=a2+c2-2acꞏcos B=9+1-2×3×23=6,∴b=6.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案:B答案解析:∵b cos C+c cos B=a sin A,∴sin B cos C+sin C cos B=sin2A,∴sin A=1,又A为△ABC的内角,∴A=90°,∴△ABC为直角三角形.7.钝角三角形ABC的面积是12,AB=1,BC=2,则AC=()A.5 B.5C.2 D.1 答案:B答案解析:∵S△ABC=12 AB×BC×sin B=22sin B=12,∴sin B=22,若B=45°,由余弦定理得AC2=AB2+BC2-2ABꞏBCꞏcos 45°=1+2-2×2×22=1,则AC=1,则AB2+AC2=BC2,△ABC为直角三角形,不合题意;当B=135°时,由余弦定理得AC2=AB2+BC2-2ABꞏBC cos 135°=1+2+2×2×2=5,∴AC=5.8.如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为() A.502m B.503mC.252m D.2522m答案:A答案解析:由正弦定理得AC sin B =ABsin C ,∴AB =AC ꞏsin Csin B =50×2sin (180°-45°-105°)=502 .9.[2024ꞏ全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94 ac ,则sin A +sin C =( )A .32 B .2 C .72 D .32 答案:C答案解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94 sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13 .由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134 ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C +2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72 (舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23 π答案解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac=-12 ,又B 为△ABC 的内角,∴B =23 π. 11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.答案:①90° ②-13答案解析:①∵c =a ꞏcos B ,∴c =a ꞏa 2+c 2-b 22ac ,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC于D,则AD=________.答案:2答案解析:方法一 由余弦定理得cos 60°=AC2+4-62×2AC,整理得AC2-2AC-2=0,得AC=1+3.又S△ABC=S△ABD+S△ACD,所以12×2AC sin 60°=12×2AD sin 30°+12 AC×ADsin 30°,所以AD=23ACAC+2=23×(1+3)3+3=2.方法二 由角平分线定理得BDAB=CDAC,又BD+CD=6,所以BD=26AC+2,CD=6AC AC+2.由角平分线长公式得AD2=AB×AC-BD×CD=2AC-12AC(AC+2)2,又由方法一知AC=1+3,所以AD2=2+23-12×(1+3)(3+3)2=2+23-(23-2)=4,所以AD=2.[能力提升]13.(多选)在△ABC中,角A,B,C的对边分别为a,b,c,a=8,b<4,c=7,且满足(2a-b)cos C=cꞏcos B,则下列结论正确的是()A.C=60°B.△ABC的面积为63C.b=2D.△ABC为锐角三角形答案:AB答案解析:∵(2a-b)cos C=c cos B,∴(2sin A-sin B)cos C=sin C cos B,∴2sin A cos C =sin B cos C+cos B sin C,即2sin A cos C=sin (B+C),∴2sin A cos C=sin A.∵在△ABC中,sin A≠0,∴cos C=12,∴C=60°,A正确.由余弦定理,得c2=a2+b2-2ab cos C,得49=64+b2-2×8b cos 60°,即b2-8b+15=0,解得b=3或b=5,又b<4,∴b=3,C错误.∴△ABC的面积S=12 ab sin C=12×8×3×32=63,B正确.又cos A=b2+c2-a22bc=9+49-642×3×7<0,∴A为钝角,△ABC为钝角三角形,D错误.14.[2023ꞏ全国甲卷(理)]已知四棱锥P-ABCD的底面是边长为4的正方形,PC=PD=3,∠PCA=45°,则△PBC面积为() A.22B.32C.42D.62答案:C答案解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ꞏAC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ꞏBC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ꞏBC sin ∠PCB =42 ,故选C.15.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.答案:3 -1答案解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC =(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125答案解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125 .。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考正弦定理和余弦定理练习题及答案
一、选择题
1. 已知△ABC中,a=c=2,A=30°,则b=( )
A. 3 B. 2错误!
C.3 3 ﻩﻩ
D. 错误!+1
答案:B
解析:∵a=c=2,∴A=C=30°,∴B=120°.
由余弦定理可得b=2\r(3).
2. △ABC中,a=\r(5),b=3,sin B=错误!,则符合条件的三角形有( )
A.1个ﻩﻩﻩﻩ B. 2个
C. 3个ﻩﻩﻩD.0个
答案:B
解析:∵a sinB=
102

∴a sinB<b=\r(3)<a=5,
∴符合条件的三角形有2个.
3.(2010·天津卷)在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=23sin B,则A=( )
A.30°ﻩﻩﻩﻩﻩB.60°
C.120°ﻩﻩ D.150°
答案:A
解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.
又∵a2-b2=错误!bc,
∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.
在△ABC中,cos A=错误!
=错误!=错误!,
∴A=30°.
4.(2010·湖南卷)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则( )
A.a>bﻩﻩB.a<b
C.a=b ﻩﻩ D.a与b的大小关系不能确定
答案:A
解析:由正弦定理,得\f(c,sin120°)=\f(a,sin A),
∴sin A=错误!=错误!>错误!.
∴A>30°.∴B=180°-120°-A<30°.∴a>b.
5.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()
A.

18
ﻩﻩﻩﻩﻩB.错误!
C. 错误!ﻩﻩ
D.错误!
答案:D
解析:方法一:设三角形的底边长为a,则周长为5a,
∴腰长为2a,由余弦定理知cosα=\f((2a)2+(2a)2-a2,2×2a×2a)=78.
方法二:如图,过点A作AD⊥BC于点D,
则AC=2a,CD=a

,∴sin\f(α,2)=\f(1,4),
∴cosα=1-2sin2错误!
=1-2×错误!=错误!.
6. (2010·泉州模拟)△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于( )
A.\f(3)
2ﻩﻩﻩB. 错误!
C. 错误!或错误!ﻩﻩﻩﻩﻩD.错误!或错误!
答案:D
解析:∵错误!=错误!,
∴sin C=\r(3)·sin30°=错误!.
∴C=60°或C=120°.
当C=60°时,A=90°,S△ABC=\f(1,2)×1×错误!=错误!,
当C=120°时,A=30°,S△ABC=\f(1,2)×1×\r(3)sin30°=错误!. 即△ABC的面积为错误!或错误!.
二、填空题
7.在△ABC中,若b=1,c=3,∠C=错误!,则a=________.
答案:1
解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.
又b <c ,∴B=错误!,∴A=错误!.∴a =1.
8.(2010·山东卷)在△A BC 中,角A ,B ,C 所对的边分别为a,b ,c .若a =\r(2),b =2,sin B +co sB =错误!,则角A 的大小为________.
答案:错误!
解析:∵sin B+co sB =2, ∴si n(B +\f (π,4))=1.
又0<B <π,∴B =错误!.
由正弦定理,知错误!=错误!,∴s in A =错误!.
又a <b ,∴A <B ,∴A =π6
. 9. (2010·课标全国卷)在△ABC中,D 为边BC 上一点,BD =12
D C,∠AD B=120°,AD =2.若△ADC 的面积为3-\r(3),则∠BA C=________.
答案:60°
解析:S △A DC=错误!×2×D C×错误!=3-错误!,
解得D C=2(3-1),
∴BD =3-1,BC =3(3-1).
在△ABD 中,AB 2=4+(\r (3)-1)2
-2×2×(\r(3)-1)×cos 120°=6,
∴AB = 6.
在△A CD 中,AC 2=4+[2(3-1)]2-2×2×2(错误!-1)×c os60°=24-12错误!, ∴A C=6(3-1),
则cos ∠BAC =\f(AB 2+AC 2-BC 2
,2AB ·AC )
=错误!=错误!,
∴∠BAC =60°.
三、解答题
10. 如图,△OAB 是等边三角形,∠AO C=45°,OC =错误!,A、B 、C 三点共线.
(1)求s in ∠BO C的值;
(2)求线段BC 的长.
解:(1)∵△AO B是等边三角形,∠A OC =45°,
∴∠BOC =45°+60°,
∴sin ∠BOC =sin(45°+60°)
=si n45°c os60°+c os45°si n60°
=错误!.
(2)在△OB C中,\f (OC,sin ∠OBC )=B Csin ∠BOC
, ∴BC=sin ∠BOC ×错误!
=错误!×错误!=1+错误!.
11. (2010·全国Ⅱ卷)△ABC 中,D 为边BC 上的一点,BD =33,si nB =513,cos ∠ADC =35,求AD .
解:由co s∠A DC =35>0知B<π2
, 由已知得cos B=\f (12,13),s in ∠ADC =\f (4,5),
从而sin ∠BA D=si n(∠ADC -B)
=s in ∠ADC cos B -cos ∠ADC sinB
=\f(4,5)×错误!-错误!×错误!=错误!.
由正弦定理得错误!=错误!,
AD =BD ·si nB sin ∠BA D
=错误!=25. 12. (2010·安徽卷)设△ABC 是锐角三角形,a,b ,c分别是内角A ,B ,C 所对边长,并且sin 2A =s in 错误!sin 错误!+sin 2B.
(1)求角A 的值;
(2)若错误!·错误!=12,a =2错误!,求b ,c (其中b <c ).
解:(1)因为s in2A =错误!
错误!+sin 2B =错误!cos 2B -错误!sin 2B +sin 2B=错误!,
所以sin A =±错误!.
又A为锐角,所以A=π3
. (2)由错误!·错误!=12,可得c bcos A=12.①
由(1)知A =错误!,所以cb =24.②
由余弦定理知a 2=c2+b 2-2cb cos A,将a=27及①代入,得c 2+b2=52,③ ③+②×2,得(c +b )2=100,
所以c+b =10.
因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。

相关文档
最新文档