2020年初三数学期中考试试题及答案

合集下载

武汉市武昌区七校联考2020届九年级上期中数学试卷含答案解析(样卷全套)

武汉市武昌区七校联考2020届九年级上期中数学试卷含答案解析(样卷全套)

2020-2021学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2020x2+11x﹣2020 D.x2+x+2=06.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm8.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.3210.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2020的值.2020图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t ≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.24.定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(1)已知抛物线的焦点F(0,),准线l:,求抛物线的解析式;(2)已知抛物线的解析式为:y=x2﹣n2,点A(0,)(n≠0),B(1,2﹣n2),P为抛物线上一点,求PA+PB 的最小值及此时P点坐标;(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作⊙M,⊙M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由.2020-2021学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.【点评】本题考查了二次函数的性质,二次函数的顶点坐标是(﹣,).3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA 交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质,补角的性质以及三角形内角和定理.证明出∠OAM=∠OA1M是解题的关键.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程-配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2020x2+11x﹣2020 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2020x2+11x﹣2020,△=112﹣4×2020×(﹣20200,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.【点评】本题主要考查了根的判别式的知识,利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm【考点】垂径定理;勾股定理.【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【解答】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,∴AM=BM,在Rt△AOM中,AM==4,∴AB=2AM=2×4=8.故选B.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.8.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变【考点】二次函数图象与几何变换.【分析】根据平移的性质判断即可.【解答】解:∵平移的基本性质:平移不改变图形的形状和大小;∴抛物线C的解析式为y=ax2+bx+c,a确定抛物线的形状与开口方向;若将抛物线C沿y轴平移,顶点发生了变化,对称轴没有变化,a的值不变,则﹣不变,所以b的值不变;若将抛物线C沿直线l:y=x+2平移,则a的值不变,故选D.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.32【考点】二次函数的最值.【分析】直接利用对角线互相垂直的四边形面积求法得出S=AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=16﹣x,则:S=AC•BD=x(16﹣x)=﹣(x﹣8)2+32,=32;当x=8时,S最大所以AC=BD=8时,四边形ABCD的面积最大,故选D.【点评】本题考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.10.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】根据题意把a的符号分成两种情况,再由a2+ab+ac<0判断出a+b+c的符号,即可得出当x=1时,y的符号,从而得出b+c的符号,再得出方程ax2+bx+c=0有一个根大于1,一个根小于1,即可得出(x1﹣1)(x2﹣1)<0;b2﹣4ac>0;抛物线和坐标轴有三个交点.【解答】解:当a>0时,∵a2+ab+ac<0,∴a+b+c<0,∴b+c<0,如图1,∴b2﹣4ac>0,故①错误;a(b+c)<0,故②正确;∴方程ax2+bx+c=0有两个不同根x1、x2,且x1<1,x2>1,∴(x1﹣1)(x2﹣1)<0,即(x1﹣1)(1﹣x2)>0,故③正确;∴二次函数的图象与坐标轴有三个不同交点,故④正确;故选C.【点评】本题考查了二次函数的图象与系数的关系,掌握分类讨论思想是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.【考点】二次函数的性质.【分析】根据抛物线对称轴公式进行计算即可得解.【解答】解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣.【点评】本题考查了二次函数的性质,主要利用了对称轴公式,比较简单.12.已知x=(b2﹣4c>0),则x2+bx+c的值为0.【考点】解一元二次方程-公式法.【分析】把x的值代入代数式,再进行计算即可.【解答】解:∵x=(b2﹣4c>0),∴x2+bx+c=()2+b+c=++c===0.故答案为:0.【点评】本题考查了一元二次方程,实数的运算法则,求代数式的值的应用,能根据实数的运算法则进行计算是解此题的关键.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12,CF=CD=5,接着根据勾股定理,在Rt△OAE中计算出OE=5,在Rt△OCF 中计算出OF=12,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE==5,在Rt△OCF中,∵OC=13,CF=5,∴OF==12,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OF﹣OE=12﹣5=7;即AB和CD之间的距离为7cn或17cm.故答案为7cn或17cm.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为﹣2.【考点】黄金分割.【分析】设AC=x,则BC=AB﹣AC=2﹣x,根据AC2=BC•AB求出AC,同理可得出AD和AE,从而得出答案.【解答】解:设AC=x,则BC=AB﹣AC=1﹣x,∵AC2=BC•AB,∴x2=1﹣x,解得:x1=,x2=(不合题意,舍去),∴AC=,∵AD2=CD•AC,∴AD=×=,∵AE2=DE•AD,∴AE=×=﹣2;故答案为:﹣2.【点评】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1.【考点】二次函数与不等式(组).【分析】由函数图象可知抛物线的对称轴为x=1,从而可得到抛物线与x轴的另一个交点坐标为(3,0),y <0,找出抛物线位于x轴下方部分x的取值范围即可.【解答】解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.【点评】本题主要考查的是二次函数与不等式的关系,根据函数图象确定出抛物线与x轴两个交点的坐标是解题的关键.16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是(2﹣3)a≤DE≤a..【考点】相似三角形的判定与性质;等边三角形的性质.【分析】当B、D重合或C、E重合时DE长度最大,解直角三角形即可求得DE的最大值;当∠BAD=∠CAE=15°时,DE长度最小,作AF⊥BC,且AF=AB,连接DF、CF,证明△ABD≌△ADF,则∠B=∠AFD,BD=DF,然后证明△ABH∽△DFH,根据相似三角形的性质求得DH==a,即可求得DE的最小值.【解答】解:当B、D重合或C、E重合时DE长度最大,如图1,∵∠BAE=30°,∠AEB=90°,∴DE=AB=a,当∠BAD=∠CAE=15°时,DE长度最小,如图2,作AF⊥BC,且AF=AB,连接DF、CF,∵AF⊥BC,∴∠BAF=∠CAF=30°,∵∠BAD=∠CAE=15°,∴∠DAH=∠EAH=15°,∴∠BAD=∠DAH,在△ADB和△ADF中,,∴△ABD≌△ADF,∴∠B=∠AFD,BD=DF,∵∠AHB=∠DHF=90°,∴△ABH∽△DFH,AB:AH=DF:DH,∴=,∴=,∴DH=,其中BD+DH=a、AH=a,∴DH== a∴DE=(2﹣3)a,故DE长度的取值范围是(2﹣3)a≤DE≤a.【点评】本题考查了等边三角形的性质,全等三角形的判定和性质以及相似三角形的和性质,分类讨论思想的运用是解题的关键.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:分解因式得:(x﹣1)(x+2)=0,可得x﹣1=0或x+2=0,解得:x1=1,x2=﹣2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的解法是解本题的关键.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】根据二次函数顶点坐标设出顶点形式,把(0,﹣4)代入求出a的值,即可确定出解析式.【解答】解:设抛物线解析式为y=a(x﹣3)2﹣1,把(0,﹣4)代入得:﹣4=9a﹣1,即a=﹣,则抛物线解析式为y=﹣(x﹣3)2﹣1.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2020的值.【考点】根与系数的关系.【分析】(1)利用一元二次方程根与系数的关系,求出方程的两根之和和两根之积即可;(2)利用一元二次方程根与系数的关系,求出方程的两根之和和两根之积,再将代数式加以整理代入数值即可.【解答】解:(1)∵∴x1、x2是方程x2﹣3x﹣5=0的两实数根,∴x1+x2=3,x1x2=﹣5,;(2)∵x1、x2是方程x2﹣3x﹣5=0的两实数根,∴x12﹣3x1﹣5=0,∴x12=3x1+5,∴2x12+6x2﹣2020=2(3x1+5)+6x2﹣2020=6(x1+x2)﹣2020=﹣1987.【点评】本题考查了一元二次方程根与系数的关系和一元二次方程解的意义,遇到此类求代数式求值问题,应对代数式进行适当的变形,使其含有两根和、两根积的形式,再求得其值.2020图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为.【考点】作图-旋转变换;三角形的外接圆与外心.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,于是可得到△A′B′C′;(2)利用网格特点和中心对称的性质画出点A、B、C的对应点A″、B″、C″,于是可得到△A″B″C″;(3)△ABC的外接圆是能盖住△ABC得最小圆,画AB和AC的垂中平分线,两垂直平分线的交点为M,则点M为△ABC的外接圆的圆心,然后利用勾股定理计算出MA即可.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所求;(3)如图,点M为△ABC的外接圆的圆心,此时⊙M是能盖住△ABC的最小的圆,⊙M的半径为=.故答案为.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了三角形的外心.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)连接OC,根据垂径定理和三角形的外角的性质证明∠DAB=∠AOB,求出∠AOB的度数;(2)根据直角三角形的性质得到BE=OB,设⊙O的半径为r,根据勾股定理求出r,根据等边三角形的性质得到答案.【解答】解:(1)连接OC,∵OA⊥BC,OC=OB,∴∠AOC=∠AOB,∠ACO=∠ABO,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB,∠ACO=∠OAB,∴∠DAB=∠AOC,∴∠DAB=∠AOB,又∠DAB+∠AOB=60°,∴∠AOB=30°;(2)∵∠AOB=30°,∴BE=OB,设⊙O的半径为r,则BE=r,OE=r﹣1,由勾股定理得,r2=(r)2+(r﹣1)2,解得r=4,∵OB=OC,∠BOC=2∠AOB=60°,∴BC=r=4.【点评】本题考查的是勾股定理、圆周角定理和垂径定理的应用,正确作出辅助线、理解垂直于弦的直径平分这条弦、等边对等角是解题的关键.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?【考点】二次函数的应用.【分析】(1)直接由函数解析式得出答案即可;(2)由于飞机着陆,不会倒着跑,所以当S取得最大值时,t也取得最大值,求得t的取值范围即可;(3)利用配方法求得函数的最值,也就是飞机着陆后滑行的最远距离.【解答】解:(1)飞机着陆时的速度V=60;(2)当S取得最大值时,飞机停下来,则S=60t﹣1.5t2=﹣1.5(x﹣2020+600,此时t=2020此t的取值范围是0≤t≤2020(3)如图,S=60t﹣1.5t2=﹣1.5(x﹣2020+600.飞机着陆后滑行600米才能停下来.【点评】此题考查二次函数的实际运用,运用二次函数求最值问题常用公式法或配方法是解题关键.23.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t ≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【考点】全等三角形的判定与性质;等边三角形的性质;勾股定理;特殊角的三角函数值.【专题】压轴题.【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=12020②延长FD到G,使得FG=FA,连接GA、GB,过点B 作BH⊥FG于H,如图2,易证△FAG是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=12020从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用三角函数可得BH=y,GH=y,从而有FH=x﹣y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC 的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【解答】解:(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=12020②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,∵∠AFG=180°﹣1202060°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=12020∴∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.【点评】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.24.定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(1)已知抛物线的焦点F(0,),准线l:,求抛物线的解析式;(2)已知抛物线的解析式为:y=x2﹣n2,点A(0,)(n≠0),B(1,2﹣n2),P为抛物线上一点,求PA+PB 的最小值及此时P点坐标;(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作⊙M,⊙M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)直接根据新定义即可求出抛物线的解析式;(2)首先求出抛物线的焦点坐标以及准线方程,根据PA+PH最短时,P、B、A共线,据此求出PA+PB的最小值及此时P点坐标;(3)设OQ=m(m>0),则CQ=QE=n2﹣m,在Rt△OQE中,由勾股定理得|n|2+m2=(n2﹣m)2,进而求出ON 是定值,据此作出判断.【解答】解:(1)设抛物线上有一点(x,y),由定义知:x2+(y﹣)2=|y+|2,解得y=ax2;(2)如图1,由(1)得抛物线y=x2的焦点为(0,),准线为y=﹣,∴y=x2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n2),准线为y=﹣﹣n2,由定义知P为抛物线上的点,则PA=PH,∴PA+PH最短为P、B、A共线,此时P在P′处,∵x=1,∴y=1﹣n2<2﹣n2,∴点B在抛物线内,∴BI=y B﹣y I=2﹣n2﹣(﹣﹣n2)=,∴PA+PB的最小值为,此时P点坐标为(1,1﹣n2);(3)由(2)知E(|n|,0),C(0,n2),设OQ=m(m>0),则CQ=QE=n2﹣m,在Rt△OQE中,由勾股定理得|n|2+m2=(n2﹣m)2,解得m=﹣,则QC=+=QN,∴ON=QN﹣m=1,即点N(0,1),故AM过定点N(0,1).【点评】本题主要考查了二次函数综合题的知识,此题涉及到求抛物线解析式、平移的知识、点的共线、勾股定理等知识,解答本题的关键是新定义,抛物线焦点、抛物线的准线等知识,此题难度不大.。

2020年九年级数学上期中试卷(带答案)

2020年九年级数学上期中试卷(带答案)
6.C
解析:C 【解析】 【分析】 根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案. 【详解】
解:∵点 Pm 1,5 与点 Q3, 2 n 关于原点对称,
∴ m 1 3, 2 n 5, 解得: m 2 , n 7 , 则 m n 2 7 5
故选 C. 【点睛】
A.1
B.3
C.5
D.7
7.如图,将三角尺 ABC(其中∠ABC=60°,∠C=90°)绕点 B 按逆时针方向转动一个角度到
△A1BC1 的位置,使得点 A1、B、C 在同一条直线上,那么旋转角等于( )
A.30°
B.60°
C.90°
D.120°
8.将函数 y=kx2 与 y=kx+k 的图象画在同一个直角坐标系中,可能的是( )
2.方程 x2+x-12=0 的两个根为( )
A.x1=-2,x2=6
B.x1=-6,x2=2
C.x1=-3,x2=4
D.x1=-4,x2=3
3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二
个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. 1 6
B. 2 9
y1、y2 的大小关系(直接写出结果).
24.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市 场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销 售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价 的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元. 25.关于 x 的一元二次方程 mx2﹣(2m﹣3)x+(m﹣1)=0 有两个实数根. (1)求 m 的取值范围;

北京市昌平区2020届九年级上学期期中考试数学试题及答案

北京市昌平区2020届九年级上学期期中考试数学试题及答案

北京市昌平区2020届九年级上学期期中考试数学试题一、选择题(共8 道小题,每小题2 分,共16 分)下列各题均有四个选项,其中只有一个是符合题意的...1.如右图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则s inB的值等于4 3343545A.B.C.D.CBA第1题第4题的最小值是B.7 第5题D.5x 5272.二次函数yA .7C .53.已知⊙O的半径是4,OP的长为3,则点P与⊙O的位置关系是A.点P在圆内B.点P在圆上C.点P在圆外4.三角形在正方形网格纸中的位置如图所示,则cos 的值是D.不能确定3 4433545A.B.C.D.5.如图所示,C 是⊙O 上一点,若C 40,则AO B的度数为A. 20°B.40°C. 80°D. 140°6.如图,河堤横断面迎水坡的坡度是的长度是C. ,堤高A. ,则坡面B. D.x 2x m的图象与轴没有交点,则m的取值范围是x7.若函数y2A.m>1 B.m<1 C.m≤1D.m=1 8.如图,△ABC内接于⊙O,BD是⊙O 的直径.若D B C 33,二、填空题(共 8 道小题,每小题 2 分,共 16 分) D3 9.如果cos A,那么锐角A 的度数为______.2A O10.如右图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点, 若∠BAD =105°,则∠DCE 的度数是11.一个扇形的半径为 6 ㎝,圆心角为 900,则这个扇形的弧长为_______,这个面积为BCE..12.将抛物线y 5x 2先向右平移 3 个单位,再向下平移 4 个单位,可以得到新的抛物线是_______________________ 13.比较大小:cos 45∘ cos 55∘(用“>”或“<”填空).所对的圆心角为 80°,则弦所对的圆周角的度数是14 .若 ⊙ 的弦_________y x bx c 的部分图象如图所示,由图象可知,15.二次函数2 y不等式x 2b xc 0 的解集为___________________.16.⊙O 的直径为 10cm ,弦 AB∥CD ,且AB = 8cm ,CD = 6cm , x则弦 AB 与 CD 之间的距离为.三、解答题(共 6 道小题,每小题 5 分,共 30 分)17.计算:2sin 453 t an 30 2 t an 60c o s 3018.如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4, 求CD 的长.BCE ODA19.如图所示,在 求的值.中, ,垂足是 .若 , , .20.《九章算术》中记载了这样一道题:“今有圆材,埋在壁中,不知大小,以锯锯之,深 AB 一寸,锯道长一尺,问径几何?”用现代的语言表述为:“如果 为⊙ 的直径,弦OE AE 1C D AB 于 ,AB寸,C D 10 寸,那么直径 的长为多少寸?”请你补全示意AB 图,并求出 的长.21.如果二次函数 y=ax 2+bx+c 的图象经过点(1,0),(2,-1),(0,3), (1)求二次函数解析式,(2)写出二次函数的对称轴和顶点坐标.22.如图,AB 是⊙O 的直径,⊙O 过 BC 的中点 D ,DE⊥AC 于 E ,求证:△BDA∽△CED.CDE AOB四、解答题(共 4 道小题,每小题 6 分,共 24 分) m23.如图,一次函数y kx b 与反比例函数 的图象交于 A (2,1),B (-1, )两点. y n x(1)反比例函数和一次函数的解析式;m (2)结合图象直接写出不等式 的解集.kx b 0ym xxyy k x b A 11O2xBn24.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46 米到达B 后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)DA B C25.某工厂设计了一款产品,成本为每件20 元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足(20≤x≤40),设销y2x80售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少元?1 26.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα= ,3求sin2α的值.小娟是这样给小芸讲解的:如图1,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°.设∠BAC=α,则sinα=B C AB1= .易得∠BOC=2α.设BC=x,则AB=3x,则AC= x.作CD⊥AB于D,求出223C DCD= (用含x的式子表示),可求得sin2α= = .O C3【问题解决】已知,如图2,点M,N,P为⊙O上的三点,且∠P=β,sinβ= ,求sin2β5的值.P P M MCA BO D N N图1图图2五、解答题(共 2 道小题,各 7 分,共 14 分)27.已知抛物线y = x 2 + (a − 2)x − 2a (a 为常数,且 a>0). (1)求证:抛物线与 x 轴有两个公共点;(2)设抛物线与 x 轴的两个公共点分别为 A ,B (A 在 B 左侧),与 y 轴的交点为 C. 当 AC=2√5时,求抛物线的表达式.28.在平面直角坐标系 中,⊙O 的半径为 1,P 是坐标系内任意一点,点 P 到⊙O 的距 xOy 离 的定义如下:若点 P 与圆心 O 重合,则S 为⊙O 的半径长;若点 P 与圆心 O 不重合,S PP作射线 OP 交⊙O 于点 A ,则 为线段 的长度.S AP P图 1 为点 P 在⊙O 外的情形示意图.yy 1P 1 A 1xO 1xO图 1 备用图 21 1,0C 1,1 , 0, S S (1)若点 B , D ,则 ___; S ___; ___; 3C BD x b M 2,求 的取值范围;b(2)若直线 y 上存在点 ,使得S MP R(3)已知点 , 在 x 轴上, 为线段 P Q 上任意一点.若线段 P Q 上存在一点 ,T Q..S 满足 T 在⊙O 内且 S,直接写出满足条件的线段 长度的最大值.P Q . TRy1 xO1北京市昌平区2020 届初三上学期期中考试数学试题(答案)一、选择题题号 1D 2B3A4D5C6D7A8B答案二、填空题:9.30°.13. >10. 105°11. 3π,9π15. X<-1, x>512. y=5(x-3) -42 14. 40°,140°16. 1,717. √2+√3−318. CD=16/319. 12/1320. 2621. (1)y=x -4x+3 (2)对称轴x=2,顶点(2,-1)222.略23.(1) y=2/x, y=x-1; (2)-1<x<0,x>224. 23√3+2325.(1)w=-2x +120x-1600; (2)30 元,最大利润200 元226. 2√2x; 4√2; 24/259327(1)略(2)y=x -4228.(1) 0, , 2/3;(2)−3√2≤b≤3√2;(3)4五、解答题(共 2 道小题,各 7 分,共 14 分)27.已知抛物线y = x 2 + (a − 2)x − 2a (a 为常数,且 a>0). (1)求证:抛物线与 x 轴有两个公共点;(2)设抛物线与 x 轴的两个公共点分别为 A ,B (A 在 B 左侧),与 y 轴的交点为 C. 当 AC=2√5时,求抛物线的表达式.28.在平面直角坐标系 中,⊙O 的半径为 1,P 是坐标系内任意一点,点 P 到⊙O 的距 xOy 离 的定义如下:若点 P 与圆心 O 重合,则S 为⊙O 的半径长;若点 P 与圆心 O 不重合,S PP作射线 OP 交⊙O 于点 A ,则 为线段 的长度.S AP P图 1 为点 P 在⊙O 外的情形示意图.yy 1P 1 A 1xO 1xO图 1 备用图 21 1,0C 1,1 , 0, S S (1)若点 B , D ,则 ___; S ___; ___; 3C BD x b M 2,求 的取值范围;b(2)若直线 y 上存在点 ,使得S MP R(3)已知点 , 在 x 轴上, 为线段 P Q 上任意一点.若线段 P Q 上存在一点 ,T Q..S 满足 T 在⊙O 内且 S,直接写出满足条件的线段 长度的最大值.P Q . TRy1 xO1北京市昌平区2020 届初三上学期期中考试数学试题(答案)一、选择题题号 1D 2B3A4D5C6D7A8B答案二、填空题:9.30°.13. >10. 105°11. 3π,9π15. X<-1, x>512. y=5(x-3) -42 14. 40°,140°16. 1,717. √2+√3−318. CD=16/319. 12/1320. 2621. (1)y=x -4x+3 (2)对称轴x=2,顶点(2,-1)222.略23.(1) y=2/x, y=x-1; (2)-1<x<0,x>224. 23√3+2325.(1)w=-2x +120x-1600; (2)30 元,最大利润200 元226. 2√2x; 4√2; 24/259327(1)略(2)y=x -4228.(1) 0, , 2/3;(2)−3√2≤b≤3√2;(3)4。

2020年初三数学上期中试卷(含答案)

2020年初三数学上期中试卷(含答案)
B.是轴对称图形,也是中心对称图形; C.是轴对称图形,不是中心对称图形; D.是轴对称图形,不是中心对称图形. 故选 B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对 称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图 形是要寻找对称中心,图形旋转 180°后与原图重合.
()
A.DE=3
B.AE=4
C.∠ACB 是旋转角 D.∠CAE 是旋转角
11.如图,已知二次函数 y ax2 bx c ( a 0 )的图象与 x 轴交于点 A(﹣1,0),
对称轴为直线 x=1,与 y 轴的交点 B 在(0,2)和(0,3)之间(包括这两点),下列结
论:
①当 x>3 时,y<0;
各路口遇到信号灯是相互独立的.
(1)如果有 2 个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用
“画树状图”或“列表”等方法写出分析过程)
(2)如果有 n 个路口,则小明在每个路口都没有遇到红灯的概率是

【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 根据一元二次方程根的判别式可得:当△=0 时,方程有两个相等的实数根;当△>0 时,方 程有两个不相等的实数根;当△<0 时,方程没有实数根. 【详解】 解:根据题意可得:
△= (4)2 -4×4c=0,解得:c=1
故选:B. 【点睛】 本题考查一元二次方程根的判别式.
2.D
解析:D 【解析】 【分析】 连接 CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余 求解即可, 【详解】 解:连接 CD,如图,

2020-2021学年苏科版九年级数学(上)期中试题含答案

2020-2021学年苏科版九年级数学(上)期中试题含答案

2020-2021学年九年级(上)期中试卷数 学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上) 1.平面内,若⊙O 的半径为3,OP =2,则点P 在A .⊙O 内B .⊙O 上C .⊙O 外D .以上都有可能2.某商品单价经过两次降价从100元降至81元,设平均每次降价百分率为x ,则可列方程A .100(1+x )2=81B .100(1-x )2=81C .81(1+x )2=100D .81(1-x )2=1003.一元二次方程x 2+2x +4=0的根的情况是A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根 4.解一元二次方程x 2+4x -1=0,配方正确的是A .(x +2)2=3B .(x -2)2=3C .(x +2)2=5D .(x -2)2=55.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是A .70°B .120°C .140°D .160°6.如图①,若BC 是Rt △ABC 和Rt △DBC 的公共斜边,则A 、B 、C 、D 在以BC 为直径的圆上,称它们“四点共圆”.如图②,△ABC 的三条高AD 、BE 、CF 相交于点H ,则图②中“四点共圆”的组数为 A .2 B .3 C .4 D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.写出一个两根分别为0和2的一元二次方程: ▲ .(第5题)C8.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为 ▲ . 9.若圆锥的底面半径长为1,母线长为2,则圆锥的侧面积为 ▲ .10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AE =1,CD =4,则OC 长为 ▲ .11.若x =m 是方程x 2+2x -2019=0的一个根,则m (m +2)的值为 ▲ .12.如图,⊙O 与四边形ABCD 各边都相切.若AB =5,BC =6,CD =4,则AD 长为 ▲ . 13.如图,⊙O 半径为2,弦AB ∥弦CD ,AB =2,CD =22,则AB 和CD 之间的距离为 ▲ . 14.若关于x 的方程x 2-(k +3)x +3k =0的两根之差为8,则k 的值为 ▲ .15.如图,AB 是⊙O 的内接正方形的一边,点C 在AB ︵上,且AC 是⊙O 的内接正六边形的一边.若将BC 看作是⊙O 的内接正n 边形的一边,则n 的值是 ▲ . 16.若方程x 2+mx +1=0和x 2+x +m =0有公共根,则常数m 的值是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解下列一元二次方程.(1)x (x +3)=5(x +3); (2)2x 2+4x +1=0.B(第10题)(第12题)(第13题)(第15题)18.(7分)如图,AB 是⊙O 的直径,AC =BC ,AC 、BC 分别交⊙O 于点D 、E ,连DE .求证DE ∥AB . 19.(8分)一个直角三角形三边的长为一组连续自然数,求该直角三角形的三边长.20.(8分)已知关于x 的一元二次方程 kx 2+(2k +1)x +k +2=0. (1)若该方程有两个不相等的实数根,求k 的取值范围;(2)若该方程的两根x 1、x 2满足1 x 1+1x 2=-3,求k 的值.21.(8分)如图,AB 是⊙O 的直径,点C 、F 在⊙O 上.CD ⊥AB ,垂足为D ,CD 的延长线交BF 于点E .求证∠BCE =∠BFC .22.(8分)如图,∠ABM =90°,⊙O 分别切AB 、BM 于点D 、E .AC 切⊙O 于点F ,交BM于点C (C 与B 不重合).(1)用直尺和圆规作出AC (保留作图痕迹,不写作法);(2)若⊙O 半径为1,AD =4,求AC 的长.ME(第22题)AB(第21题) (第18题)23.(8分)如图,学校打算用50 m 的篱笆围成一个矩形生物园ABCD ,生物园的一面靠墙MN (墙MN 可利用的长度为25 m ),面积是300 m 2.求这个生物园的边AB 的长.24.(8分)如图,AB 是⊙O 的直径,点C 、D 在圆上,⌒BC =⌒CD ,过点C 作CE ⊥AD 交AD的延长线于点E .(1)求证:CE 是⊙O 的切线;(2)已知BC =3,AC =4,求CE 的长.25.(8分)如图,⊙O 的半径为2, O 到定点A 的距离为5,点B 在⊙O 上,点P 是线段AB 的中点.若B 在⊙O 上运动一周: (1)证明点P 运动的路径是一个圆.(2)△ABC 始终是一个等边三角形,直接写出PC 长的取值范围.ABCDMN25 m(第23题)A(第25题)B(第24题)(1)思路引导要证点P 运动的路径是一个圆,只要证点P 到定点M 的距离等于定长r ,由图中的定点、定长可以发现M 、r .26.(9分)已知⊙O半径为1,若点P在⊙O外部..且⊙O上存在..点A、B使得∠APB=60°,则称点P是⊙O的领域点.(1)对以下情况,用三角板或量角器尝试画图,并判断点P是否是⊙O的领域点(在横线上填“是”或“不是”);(2)若点P是⊙O的领域点,则OP的取值范围是▲;(3)如图,以圆心O为坐标原点建立平面直角坐标系xOy,设直线y=-x+b(b>0)与x 轴、y轴分别相交于点M、N.①若线段MN上有且只有一个点是⊙O的领域点,求b的值;②若线段MN上存在⊙O的领域点,直接写出b的取值范围.27.(8分)解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法. 例题呈现关于x 的方程a (x +m )2+b =0的解是x 1=1,x 2=-2(a 、m 、b 均为常数,a ≠0), 则方程a (x +m +2)2+b =0的解是 . 解法探讨(1)小明的思路如图所示,请你按照他的思路解决这个问题;(2)小红仔细观察两个方程,她把第2个方程a (x +m +2)2+b =0中的“x +2”看作第1个方程中的“x ”,则“x +2”的值为 ▲ ,从而更简单地解决了问题. 策略运用(3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.小明的思路第1步 把1、-2代入到第1个方程中求出m 的值; 第2步 把m 的值代入到第1个方程中求出-b a 的值;第3步 解第2个方程.九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 答案不唯一,如:x 2=2x 12. 3 8. π 139. 2π 14. -5或11 10. 5215. 12 11. 201916. -2三、解答题(本大题共11小题,共88分) 17.(本题8分)(1)解:x (x +3)-5(x +3)=0,(x -5) (x +3)=0, .......................................................................................................... 2分 ∴ (x -5)=0或(x +3)=0, .......................................................................................... 3分 ∴ x 1=5,x 2=-3. ..................................................................................................... 4分 (2)解:∵ a =2,b =4,c =1,∴ b 2-4ac =8>0, ....................................................................................................... 6分 ∴ x =-4±84, ......................................................................................................... 7分 ∴ x 1=-2+22,x 2=-2-22. ................................................................................ 8分18.(本题7分) 证法一:∵ AC =BC ,∴ ∠A =∠B . ............................................................................................................... 1分 ∵ 四边形ABED 是⊙O 的内接四边形, ∴ ∠EDA +∠B =180°,又 ∠EDA +∠CDE =180°, ........................................................................................ 4分 ∴ ∠CDE =∠B , ......................................................................................................... 5分∴ ∠CDE =∠A . ......................................................................................................... 6分∴ DE ∥AB . ................................................................................................................. 7分 证法二:连OD 、OE 、DB . ∵ AC =BC ,∴ ∠A =∠ABC . .1分 ∴ ∠DOB =∠AOE .∴ ⌒AE =⌒BD .4分∴ ⌒AE -⌒DE =⌒BD -⌒DE .∴ ⌒AD =⌒BE .5分∴ ∠DBA =∠BDE .6分∴ DE ∥AB . ................................................................................................................. 7分 19.(本题8分)解:设最短边为x ,则另两边为(x +1)、(x +2). ................................................................ 2分根据题意列方程,得:x 2+(x +1) 2=(x +2) 2, .................................................................................................... 4分 解得:x 1=3,x 2=-1. ................................................................................................. 6分 ∵ x 2=-1<0,∴ 舍去. ........................................................................................................................ 7分 当x 1=3时,x +1=4,x +2=5.答:三角形三边长为3、4、5. ..................................................................................... 8分 20.(本题8分)(1)解:∵ 该方程是一元二次方程, ∴ k ≠0.∵ 方程有两个不相等的实数根,∴ b 2-4ac =(2k +1)2-4k (k +2)>0. ......................................................................... 2分 解得k <14. ......................................................................................................................... 3分 ∴ k <14且k ≠0. ............................................................................................................. 4分 (2)解:∵ x 1+x 2=-2k +1k ,x 1·x 2=k +2k,∴1 x 1+1x 2=x 1+x 2 x 1·x 2=-2k +1k +2. ................................................................................... 6分 ∴ -2k +1k +2=-3. ........................................................................................................ 7分∴ k =-5. .................................................................................................................... 8分21.(本题8分)证法一:延长CD 交⊙O 于点G . ∵ ⊙O 中,直径AB ⊥CG ,∴ ⌒CB =⌒BG .6分∴ ∠BCE =∠BFC . .8分 证明二:连AC, ∵ AB 是⊙O 的直径, ∴ ∠ACB =90°.∴∠A +∠CBD =90°. .2分∵ CD ⊥AB , ∴ ∠CDB =90°.∴ ∠BCE +∠CBD =90°. .5分 ∴ ∠A =∠BCE . .6分又 ∠A =∠BFC ,∴ ∠BCE =∠BFC . .8分22.(本题8分)(1)如图,AC 即为所求; .................................................................................................... 2分 (2)解:连OD 、OE . ∵ ⊙O 分别切AB 、BM 于点D 、E , ∴ OD ⊥AB ,OE ⊥B C . ∴ ∠ODB =90°,∠OEB =90°. 又 ∠ABM =90°, ∴ 四边形ODBE 是矩形. ∵ OD =OE ,∴ 矩形ODBE 是正方形.∴ BD =BE =OD =1. .................................................................................................. 4分 ∵ ⊙O 分别切AB 、AC 于点D 、F , ∴ AF =AD =4.同理 CF =CE . ............................................................................................................. 6分 ∵ Rt △ABC 中,∠B =90°, ∴ AC 2=AB 2+BC 2. 即 (CE +4)2=(CE +1)2+52. 解得 CE =53.∴ AC =AF +CF =173. ............................................................................................... 8分(第22题)23.(本题8分)解:设这个生物园的边AB 的长为x m .根据题意,得 x (50-2x )=300. ..................................................................................................................... 4分 解这个方程,得 x 1=15,x 2=10. ............................................................................ 6分 当x =15时,BC =50-2×15=20<25,满足题意; 当x =10时,BC =50-2×10=30>25,不合题意,舍去.答:这个生物园的边AB 的长为15 m . ................................................................................ 8分24.(本题8分) (1)证明:连接OC .∵ ⌒BC =⌒CD , ∴ ∠EAC =∠CAB . ∵ OA =OC , ∴ ∠CAB =∠OCA . ∴ ∠EAC =∠OCA .∴ OC ∥AE . .................................................................................................................. 1分 ∴ ∠E +∠OCE =180°. 又 CE ⊥AD , ∴ ∠E =90°, ∴ ∠OCE =90°.即 OC ⊥EC . .3分 ∵ 点C 在圆上,∴ CE 是⊙O 的切线. .4分 (2)解:如图,作CF ⊥AB ,垂足为F ∵ AB 是⊙O 的直径, ∴ ∠ACB =90°. ∴ AB =32+42=5. ∵ AB ·CF =AC ·CB ,∴ CF =3×45=125. ....................................................................................................... 6分由(1)知:AC 平分∠EAB , ∵ CF ⊥AB ,CE ⊥AD ,∴ CE =CF =125. ......................................................................................................... 8分25.(本题8分)(1)证明:连OB 、OA ,取OA 的中点M ,连∵ O 、A 为定点, ∴ M 为定点.∵ P 是AB 的中点,M 是OA 的中点,∴ PM =12OB =1,PM 即为定长r . ........................................................................... 2分∵ 在运动过程中,点P 到定点M 的距离始终为定长1,∴ 点P 运动的路径是一个圆. ................................................................................... 4分 (2)332≤PC ≤732. ........................................................................................................... 8分说明:两端各2分,写成“<”或“>”则各扣1分.26.(本题9分)(1)是、是、不是; .............................................................................................................. 3分 (2)1<OP ≤2. .................................................................................................................... 5分 说明:写成“1<OP <2”得1分,写成“OP ≤2”或“OP >1”不得分. (3)①解:以O 为圆心、2为半径画圆.由题意得, 此时MN 是圆的切线(设切点为P ),∴ OP ⊥MN . ................................................................................................................... 6分 对直线y =-x +b (b >0),∵ 当x =0时,y =b ,当y =0时,x =b ∴ OM =ON =b .7分∵ OP ⊥MN ,∠MON =90°, ∴ MN =2OP =4.∴ 2b 2=42,即 b =22. ..................................................................................................................... 8分 ② 1<b ≤22. ............................................................................................................... 9分27.(本题8分)(1)解:将x 1=1,x 2=-2代入到方程a (x +m )2+b =0中, 得⎩⎨⎧a (m +1)2+b =0,a (m -2)2+b =0.∴ m +1=±(m -2),解得 m =12. ................................................................................................................... 1分∴ a (12+1)2+b =0.∴ -b a =94. .................................................................................................................... 2分第2个方程可变形为(x +12+2)2=-ba ,即(x +52)2=94,解得:x 1=-1,x 2=-4............................................................................................... 3分(2)1或-2; ......................................................................................................................... 5分 (3)解:∵ (a 2-2b 2)+(2b 2-2c 2)+(2c 2-a 2)=0,∴ 方程必有一根是x =1. ........................................................................................... 6分 ∴ 方程的两根为x 1=x 2=1.∴ x 1·x 2=1=2c 2-a 2a 2-2b 2. ............................................................................................... 7分∴ a 2=b 2+c 2.∴ △ABC 是一个直角三角形. ................................................................................... 8分。

2020广东省实九上数学期中考答案

2020广东省实九上数学期中考答案

广东实验中学2019—2020学年(上)中段质量检测初三级数学试卷答案分,共18分)、117、=24∆=-b ac2=--⨯⨯(2)413=-412=-<80∴方程无实数根18、(9分)解:(1)54c ===(2)当20x =时,25c == (答案不限,其他符合条件的答案都可以) 19、(10分) (1)证明:Q 半径OB CD ⊥∴弧BC =弧BDC ∴为弧BM 的中点。

∴弧BC =弧CMCDM BCD ∴∠=∠//CB MD ∴(2)解:连结COAB Q 是圆O 的直径,则CO 为半径, ∵6AB =,∴3CO =又∵AB 是直径,AB CD ⊥,4BC =,设BN x =,则22223(3)4x x --=-解之得:83x =∴83BN = 20、(10分) 解:(1)坐标系如图所示,C 33-(,); (2)111222A B C A B C ∆∆,如图所示,12C 33C 33-(,),(,).21、(12分)解:Q 关于x 的一元二次方程有两个不相等的实数根且1,2,a b c m ===24b ac ∴∆=-2240m =->1m ∴<20,10m m ∴->-<∴原式22(1)m m =---2[(1)]m m =----1m m =-++1=22(12分)解:(1)AB Q 是圆O 的直径,AP 是切线, 90BAP ︒∴∠=.在Rt PAB ∆中,230AB P ︒=∠=,,2224BP AB ∴==⨯=.由勾股定理,得22224223AP BP AB --=== 在Rt PAC ∆中,2330AP P ︒=∠=,,1123322AC AP ∴==⨯=. 由勾股定理,得2222(23)(3)CP AP AC --===3 (5分)(2)如图,连接OC AC 、.AB Q 是圆O 的直径,90BCA ︒∴∠=,又18090ACP BCA ︒︒∠=-∠=Q .在Rt APC ∆中,D 为AP 的中点,12CD AP AD ∴==43∴∠=∠又OC OA =Q ,12∴∠=∠.2490PAB ︒∠+∠=∠=Q ,132490︒∴∠+∠=∠+∠=.即OC CD ⊥.∴直线CD 是圆O 的切线.(8分)23、(12分)解:设她购买了x 件。

2020年秋学期初三数学期中试卷及答案

2020年秋学期初三数学期中试卷及答案

2020年秋学期期中考试九年级数学试卷分值:150分 时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1、-2的倒数是( )A .1-2 B .12C .-2D .2 2、2017年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。

477万用科学记数法表示正确的是( )A . 4.77×105B . 47.7×105C .4.77×106D .0.477×105 3、抛物线y=x 2+2x+3的对称轴是( )A .直线x=1B .直线x=﹣1C .直线x=﹣2D .直线x=2 4、△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:165、将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A. 23(2)3y x =++ B.23(2)3y x =-+ C.23(2)3y x =+- D.23(2)3y x =-- 6、如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( )7、如图,在△AB C 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切, 则⊙O 的半径为( )A. 2.3B. 2.4C. 2.5D. 2.6 8、如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12 (x −2)2−2 B .y =12 (x −2)2+7 C .y =12 (x −2)2−5 D .y =12(x −2)2+4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9、若式子x +1在实数范围内有意义,则x 的取值范围是 . 10、抛物线y=﹣2x 2﹣1的顶点坐标是 .11、若函数y=x 2+2x+m 的图象与x 轴有且只有一个交点,则m 的值为 ..12、已知圆锥的底面半径是3,母线长是5,则圆锥的侧面积是 .13.如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (﹣2,4),B (1,1),则方程ax 2=bx+c 的解是 . 14、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA = 1:25,则S △BDE 与S △CDE 的比是_____________15,如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加 m .16.如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,则BD 的长为_______.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17、(本题满分6分)计算:121420152-⎛⎫--+-⎪⎝⎭18.(本题满分6分)解不等式组:⎩⎨⎧->->+.521,042x x 并把解集在数轴上表示出来.19、(本题满分8分)已知抛物线y =x 2+bx +6经过x 轴上两点A ,B ,点B 的坐标为(3,0),与y 轴相交于点C.(1)求抛物线的表达式;(2)求△ABC 的面积.20、(本题满分8分)如图:等腰直角△ABC 放置在直角坐标系中, ∠BAC=90°,AB=AC ,点A 在x 轴上,点B 的坐标是(0,3),点 C 在第一象限内,作CD ⊥x 轴.(1)求证:△AOB ≌△CDA ; (2)若点C 恰好在双曲线x10y =上,求点C 的坐标.21、 (本题满分10分) 随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A 景点所对应的圆心角的度数是 ,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E 景点旅游?(3)甲、乙两个旅行团在A 、B 、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.22、(本题满分8分)已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连结AP 、OP 、OA .(1)求证:△OCP ∽△PDA ;(2)若21AB O B ,求边AB 的长.23、(本题满分10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示:(1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?24、(本题满分10分)锐角△ABC 中,BC=6,BC 边上的高AD=4,两动点M ,N 分别在边AB ,AC 上滑动(M 不与A 、B 重合),且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0).(1)当x 为何值时,PQ 恰好落在边BC 上 (如图1);(2)当PQ 在△ABC 外部时(如图2),求y 关于x 的函数关系式(注明x 的取值范围)并求出x 为何值时y 最大,最大值是多少?25、(本题满分10分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC=∠A ;(2)若CE=4,DE=2,求AD 的长.26、(本题满分12分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:的值为 :(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=2,则BC= .27、(本题满分14分)如图,已知抛物线y=﹣41x 2+bx+c 交x 轴于点A (2,0)、B (﹣8,0),交y 轴于点C ,过点A 、B 、C 三点的⊙M 与y 轴的另一个交点为D .(1)求此抛物线的表达式; (2)求⊙M 的圆心M 的坐标;(3)设P 为弧BC 上任意一点(不与点B ,C 重合),连接AP 交y 轴于点N ,请问:AP•AN 是否为定值,若是,请求出这个值;若不是,请说明理由;(4)延长线段BD 交抛物线于点E ,设点F 是线段BE 上的任意一点(不含端点),连接AF .动点Q 从点A 出发,沿线段AF 以每秒1个单位的速度运动到点F ,再沿线段FB 以每秒5个单位的速度运动到点B 后停止,问当点F 的坐标是多少时,点Q 在整个运动过裎中所用时间最少?答案13. x1=﹣2,x2=1.15. 42﹣4.16.19. 解:(1)y=x2-5x+6(2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320.(1)证明:∵∠BAC=90°,∴∠1+∠2=90°,∵CD⊥x轴,∴∠2+∠4=90°,∴∠1=∠4,∠2=∠3,∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA);(2)解:∵△AOB≌△ACD,∴OA=CD,AD=OB=3,设OA=m,∴C(m+3,m),∵点C在反比例函数y=的图象上,∴m(m+3)=10,解得m1=2,m2=﹣5(舍去),∴点C的坐标为(5,2).21.解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.22.(1)证明:∵四边形ABCD为矩形,∴∠B=∠C=∠D=90°.由折叠,可知:∠APO=∠B=90°,∴∠APD+∠CPO=90°.∵∠APD+∠DAP=90°,∴∠DAP=∠CPO,∴△OCP∽△PDA;(2)解:由折叠,可知:∠APO=∠B=90°,AP=AB,PO=BO,==.∵△OCP∽△PDA,∴===.∵AD=8,∴CP=4.设BO=x,则CO=8﹣x,PD=2(8﹣x),∴AB=2x=CD=PD+CP=2(8﹣x)+4,解得:x=5,∴AB=10.23.解:(1)设y与x之间的函数关系式为y=kx+b,,得,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.24.(1)当PQ恰好落在边BC上时,∵MN∥BC,∴△AMN∽△ABC.∴,即,x=;(2)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形.设ME=NF=h,AD交MN于G(如图2)GD=NF=h,AG=4﹣h.∵MN∥BC,∴△AMN∽△ABC.∴,即,∴h=﹣x+4.∴y=MN•NF=x(﹣x+4)=﹣x2+4x(2.4<x<6),配方得:y=﹣(x﹣3)2+6.∴当x=3时,y有最大值,最大值是6.25.(1)略(2)626.解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.27.解:(1)将点A(1,0),B(7,0)代入抛物线的解析式得:74970474a ba b⎧++=⎪⎪⎨⎪++=⎪⎩,解得:a=14,b=﹣2,∴抛物线的解析式为217244y x x =-+.(2)存在点M ,使得S △ABM =9S △ABC . 理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形,∴AB =BC =AC =6,∠ACB =60°.∵CK ⊥AB ,∴KA =BK =3,∠ACK =30°,∴CK =∴S △ABC =12AB •CK =12×6×3=∴S △ABM×12.设M (a ,217244a a -+),∴12AB •|y |=12,即12×6×(217244a a -+)=12,解得:a 1=9,a 2=﹣1,∴点M 的坐标为(9,4)或(﹣1,4). (3)①结论:AF =BE ,∠APB =120°.∵△ABC 为等边三角形,∴BC =AB ,∠C =∠ABF .在△BEC 和△AFB 中,∵BC =AB ,∠C =∠ABF ,CE =BF ,∴△BEC ≌△AFB ,∴AF =BE ,∠CBE =∠BAF ,∴∠F AB +∠ABP =∠ABP +∠CBE =∠ABC =60°,∴∠APB =180°﹣60°=120°.②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .∵∠APB =120°,∴∠N =60°,∴∠AMB =120°.又∵ME⊥AB,垂足为E,∴AE=BE=3,∠AME=60°,∴AM=∴点P运动的路径=120180π⨯=3.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=P运动的路径为综上所述,点P运动的路径为.11。

2020-2020学年湖北省武汉市东西湖区九年级上期中数学及答案

2020-2020学年湖北省武汉市东西湖区九年级上期中数学及答案

东西湖区2020~2020学年度上学期九年级数学期中测试卷一、 选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.一元二次方程4x (x +2)=25化成一般形后二次项的系数、一次项的系数和常数项分别是( )A .4、2、25B .4、8、25C .4、2、-25D .4、8、-25 3.用配方法解方程x 2-2x -5=0时,原方程应变形为( ) A .(x +1)2=6 B .(x +2)2=9 C .(x -1)2=6 D .(x -2)2=93.如果-2是方程x 2-m =0的一个根,则m 的值为( ) A .4 B .-4 C .2 D .-2 4.将二次函数y =(x -1)2的图象先向右平移1个单位,再向上平移1个单位后顶点为( ) A .(0,1) B .(2,1) C .(1,-1) D .(-2,1) 5.下列四个图中是中心对称图形的是( )6.已知x 1、x 2是一元二次方程x 2-3x -1=0的两个根,则x 1+x 2的值为( ) A .3 B .-3 C .1 D .-17.如图,在同一平面内,将△ABC 绕A 点逆时针旋转到△ADE 的位置.若AC ⊥DE ,⊥ABD =62°,则⊥ACB 的度数为( ) A .56° B .44° C .40° D .34° 8.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠09.某市2020年应届初中毕业生人数约6.8万,比去年减少约0.2万,其中报名参加中考的学生人数约6.5万,比去年增加0.3万,下列结论: ⊥ 与2020年相比,2020年该市应届初中毕业生人数下降了%1008.62.0⨯ ⊥ 与2020年相比,2020年该市应届初中毕业生报名参加中考人数增加了%1005.63.0⨯ ⊥ 与2020年相比,2020年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了%100)72.68.65.6(⨯-.其中正确的结论个数是( ) A .0 B .1 C .2 D .310.下列命题:⊥ 若b =a +c 时,一元二次方程ax 2+bx +c =0一定有实数根;⊥ 若方程ax 2+bx +c =0有两个不相等的实数根,则方程cx 2+bx +a =0也一定有两个不相等实数根;⊥ 若二次函数y =ax 2+c ,当取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时函数值为0;⊥ 若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图像与坐标轴的公共点的个数是2或3,其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个 二、填一填, 看看谁仔细(本大题共6小题,每小题3分,共18分) 11.一元二次方程x 2-x =0的解是____________ 12.函数y =4(x -3)2+7的顶点坐标是__________13.已知点A (3,4),将OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是__________ 14.若二次函数y =kx 2+x +1的函数值恒为正数,则k 的取值范围是__________15.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次(无滑动)进行下去…….若点A (35,0)、B (0,4),则点B 2020的坐标为_____________16.如图,在△ABC 中,⊥ACB =90°,D 为边AB 的中点,E 、F 分别为边AC 、BC 上的点,且AE =AD ,BF =BD .若DE =2,DF =2,则AB 的长为__________ 三、 解一解,试试谁更棒(本大题共8小题,共72分) 17.(本题8分)请按指定的方法解方程,否则不得分 (1) x 2-4x -21=0(配方法) (2) x 2-x -5=0(公式法)18.(本题8分)已知关于x 的方程x 2+2x +1-p 2=0(1) 若p =2,x 1、x 2是方程x 2+2x +1-p 2=0的两根,求(1+x 1)(1+x 2)的值 (2) 求证:无论p 为何值,方程总有两个实数根19.(本题8分)一个二次函数,当自变量x =0时,函数值y =-1;当x =-2与21时,y =0(1) 求这个二次函数的解析式(2) 当y >0时,x 的取值范围是__________(直接写出结果)20.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4)(1) 将△ABC向左平移5个单位得到△A1B1C1,写出△A1B1C1三顶点的坐标(2) 将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请你写出三顶点的坐标(3) △A1B1C1与△A2B2C2重合部分的面积为__________(直接写出)21.(本题8分)世博会中国国家馆的平面示意图如图,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅.已知核心筒的边长比展厅的边长的一半多一米,外框的面积刚好是四个核心筒面积和的9倍,求核心筒的边长22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:(1) 若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在Rt △ABC 中,AB =AC ,OB =OC ,⊥A =90°,⊥MON =α,分别交直线AB 、AC 于点M 、N(1) 如图1,当α=90°时,求证:AM =CN(2) 如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明之(3) 如图3,当α=45°时,旋转⊥MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明之24.(本题12分)如图,已知一次函数y 1=x +b 的图象l 与二次函数y 2=-x 2+mx +b 的图象C ′都经过点B (0,1)和点C ,且图象C ′过点A (52-,0) (1) 求y 1和y 2的解析式(2) 设使y 2>y 1成立的x 取值的所有整数和为n ,若n 是关于x 的方02211=-+⎪⎭⎫ ⎝⎛-+x x a a 的根,求a 的值(3) 若点F 、G 在图象C ′上,长度为22的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴.当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD +PE 最值小,求出点P的坐标2020~2020学年度上学期九年级数学期中测试题参考答案及评分标准一、选一选, 比比谁细心1. D2. C3. A4. B5.C6.A7. D8. D9.B 10.B二、填一填, 看看谁仔细11.0或1 12. (3,7) 13. (-3, 4) 14.14k >15. (10090,4) 16. 三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.解:⑴移项,得2421x x -=…………………………………1分配方,得2(2)25x -=…………………………………2分∴25x -=±…………………………………3分 ∴127,3x x ==-…………………………………4分⑵250x x --=1,1, 5.a b c ==-=-…………………………………1分224(1)41(5)21b ac -=--⨯⨯-=…………………………………2分∵(1)122x --±== …………………………………3分∴121122x x ==…………………………………4分18.解:⑴-4;⑵略.每问4分. 19.解:⑴2312y x x =+-; ⑵122x x <->或.20.解:⑴111(4,1),(0,1),(1,4)A B C --.⑵222(1,1),(1,5),(4,4)A B C ---正确写出每一个点1分.⑶94. …………………………2分.21.解:设核心筒的边长为x 米,则展厅的边长为21x -()米 …………………………2分 根据题意,得22[2(1)32]94x x x -⨯+=⨯ …………………………5分解之得1233,7x x ==…………………………6分 ∵317<,不符合题意,舍去,∴3x = …………………………7分 答:核心筒的边长为3米. …………………………8分22.解:⑴13y x a =- (0100)x <≤…………………………………………1分220.11030y x x =-+- (040)x <≤…………………………………………2分⑵甲产品 :∵3>0,∴y x 随的增大而增大∴当100x =时,1300y a =-最大值 (80≤a ≤100)…………………………………………3分乙产品 :220.150220y x =--+() (040)x <≤……………………………………4分当040x <≤时,y x 随的增大而增大∴当40x=时,2210y =最大值 (万元)…………………………………………5分∴甲产品的最大利润为300a -()万元,乙产品的最大利润为210万元.……………………………6分⑶①当12y y >最大值最大值时,即300210a ->,90a <,∴8090a ≤<时,甲种产品利润高.…………………………………………7分 ②当12y y =最大值最大值时,即300210a -=,90a =,两种产品利润相同.……………………8分 ③当12y y <最大值最大值时,即300210a -<,90a >,∴90100a <≤时,乙种产品利润高.…………………………………………9分 综上所述:当8090a ≤<时,选甲种产品. 当90a=,选择谁都一样.当90100a <≤时,选乙种产品.…………………………………………10分23.证⑴连结OA ,∵AB=AC,OB=OC ,∴OA ⊥BC,∴∠AOC=90°………………………………………1分 ∵∠MON=90°,∴∠AOM=∠CON,∵∠A=90°, ∴∠B=∠C=45°,∴OA=OC∴△AOM ≌△CON ………………………………………2分 ∴AM=CN ………………………………………3分⑵在BA 上截取BG=AN,连OA 、OG,由OA=OB,∠B=∠A=45°,可证△OBG ≌△OAN,…………4分 得OG=ON,∠BOG=∠AON,………………………………………5分∵∠AOB=90°,∴∠GON=90°,∵∠MON=45°,∴∠GOM=∠MON=45°……………………6分 ∴△GOM ≌△NOM,得MN=GM,∴BM= MN+AN. ………………………………………7分证二:作OK ⊥OM,先证△DOM ≌△EOK,得OM=OK,再证△BOM ≌△AOK,得BM=AK,证△OMN ≌△OKN,得MN=NK.⑶作OG ⊥OM 交AB 的延长线于点G ,∵∠AOB=90°,∴∠BOG=∠AON,可证∠OAN=∠OBG=135°,OA=OB,∴△OAN ≌△OBG, ………………………………………8分 ∴ON=OG,AN=BG,∵∠MON=45°,∴∠GOM=∠MON=45°,OM=OM ∴△GOM ≌△NOM, ………………………………………9分 ∴MN=GM,∴BM=MN-AN.………………………………………10分 证二:截取AK=BM.其它方法参照给分24.解:(1)∵二次函数y 2=﹣x 2+mx +b 经过点B (0,1)与A (25-,0),∴21(25)(25)0b m b =⎧⎪⎨--+-+=⎪⎩………………………………1分解之得41m b =⎧⎨=⎩∵l :y 1=x +1;………………………………2分 C ′:y 2=﹣x 2+4x +1.………………………………3分(2)联立y 1与y 2得: x +1=﹣x 2+4x +1,解得10x =或32=x ……………………4分 当3=x 时,y 1=×+1=4,∵C (3,4).………………………………5分 使y 2>y 1成立的x 的取值范围为0<x <3, ∵n=1+2=3.………………………………6分 代入方程得0232311=-+⨯⎪⎭⎫ ⎝⎛-+a a 解之得a =52;………………………………7分 (3)∵点D 、E 在直线l :y 1=x +1上,∵设D (p , p +1),E (q , q +1),其中q >p >0.如答图1,过点E 作EH ∵DG 于点H ,则EH =q ﹣p ,DH =(q ﹣p ).在Rt ∵DEH 中,由勾股定理得:H E 2+DH 2=DE 2,即(q ﹣p )2+[(q ﹣p )]2=(2, 解之得q ﹣p =2,即q =p +2.………………………………8分 ∵EH =2,E (p +2, p +3). 当x =p 时,y 2=﹣p 2+4p +1, ∵G (p ,﹣p 2+4p +1),∵DG =(﹣p 2+4p +1)﹣(p +1)=﹣p 2+3p ; 当x =p +2时,y 2=﹣(p +2)2+4(p +2)+1=﹣p 2+5, ∵F (p +2,﹣p 2+5)∵EF=(﹣p2+5)﹣(p+3)=﹣p2﹣p+2.S四边形DEFG=1122DEG EFGS S GD HE EF HE+=+V V g g=12(DG+EF)•EH=12[(﹣p2+3p)+(﹣p2﹣p+2)]×2=﹣2p2+2p+2………………………………9分∵当p=12时,四边形DEFG的面积取得最大值,∵D(12,32)、E(52,72).如答图2所示,过点D关于x轴的对称点D′,则D′(12,32-);……………………10分连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有57221322k bk b⎧+=⎪⎪⎨⎪+=-⎪⎩………………………………11分解之得52114 kb⎧=⎪⎪⎨⎪=-⎪⎩∵直线D′E的解析式为:51124 y x=-令y=0,得1110 x=,∵P(1110,0)………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档