2014-2015学年初三上数学期中考试试题(1)
2014—2015学年第一学期九年级期中考试数学试题(新人教版)

2014—2015学年第一学期九年级期中考试数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算.★参考公式:抛物线c bx ax y ++=2的对称轴是a b x 2-=,顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22 一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.将图1按顺时针方向.....旋转90°后得到的是2.下列方程中是一元二次方程......的是A .012=+xB .12=+x yC .0532=++x xD .0122=++x x3.如图,已知点A 、B 、C 在⊙O 上,∠AO B =100°,则∠ACB 的度数是A .50°B .80°C .100°D .200° 4.下列美丽的图案,既是轴对称图形又是中心对称.............图形的是 A .B .C .D .5.一元二次方程0342=+-x x 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定6.已知⊙O 的半径为10cm ,如果圆心O 到一条直线的距离为10cm ,那么这条直线和这个圆的位置关系为A .相离B .相切C .相交D .无法确定第3题7.将抛物线241x y =向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为A. ()12412++=x y B. ()12412-+=x yC. ()12412+-=x yD. ()12412--=x y8.要组织一次篮球联赛,赛制为单循环形式.....(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是A. 5个B. 6个C. 7个D. 8个9.一个运动员打高尔夫球,若球的飞行高度(m)y 与水平距离(m)x 之间的函数表达式为()10309012+--=x y ,则高尔夫球在飞行过程中的最大..高度为 A .10m B .20m C .30m D .60m 10.方程013)2(=+++mx x m m 是关于x 的一元二次方程......,则m 的值为 A .2-=m B .2=m C .2±=m D .2±≠m二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置)11.点A (-2,3)与点1A 是关于原点O 的对称点,则1A 坐标是 . 12.二次函数2)5(32+-=x y 的顶点坐标是 .13.已知关于x 的一元二次方程062=-+mx x 的一个根是2,则m =_ __. 14.如图所示,四边ABCD 是圆的内接四边形.....,若∠ABC=50°则∠ADC= . 15.如图所示,在小正方形组成的网格中,图②是由图①经过旋转变换得到的,其旋转中心是点 (填“A”或“B”或“C”).16.如图所示,一个油管的横截面,其中油管的半径是5cm ,有油的部分油面宽AB为8cm ,则截面上有油部分油面高CD 为 ___cm .17. 如图,用等腰直角三角板画∠AOB=450,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为__________________.18.一列数1a ,2a , 3a ,…,其中211=a ,111--=n n a a (n 为大于1的整数),则=100a . 三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答) 19.(1)(7分)915)2(2--+⨯-π.(2)(7分) 先化简,再求值:)2)(2()2(2a a a -+++, 其中3=a . 20.(8分)解方程:0562=++x x .21.(8分)已知:如图,在⊙O 中,弦AB=CD ,那么∠AOC 和∠BOD 相等吗...? 请说明理由.......22. (10分)如图,在平面直角坐标系中,△ABC 的三个顶都在格点上,点A 的坐标为(2,4),请解答下列问题: (1)画出ABC ∆关于x 轴对称的111C B A ∆,并写出点1A 的坐标.(2)画出111C B A ∆绕原点O 旋转180°后得到的222C B A ∆,并写出点2A 的坐标.22 17题23.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,2014年该商城1月份销售自行车64辆,3月份销售了100辆.(1)求1月到3月自行车销量的月平均增长率;(2)若按照(1)中自行车销量的增长速度,问该商城4月份能卖出多少辆自行车?24. (10分)已知:如图已知点P是⊙O外一点,PO交圆O于点C,OC=CP=2,点B在⊙O上,∠OCB=600,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.(12分)已知四边形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,将∠MBN 绕点B 旋转.当∠MBN 旋转到如图的位置,此时∠MBN 的两边分别交AD、DC 于 E、F,且AE≠CF.延长 DC 至点 K,使 CK=AE,连接BK.求证:(1)△AB E≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.26.(14分)如图,在平面直角坐标系中, A(0,2),B(-1,0),Rt△A OC的面积为4.(1)求点C的坐标;(2)抛物线c+=2经过A、B、C三点,求抛物线的解析式和对称轴;axbxy+(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.2014—2015学年第一学期九年级期中考试数学试题参考答案及评分说明说明:(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.C ; 3.A ; 4.D ; 5.A ; 6.B ; 7.B ; 8.C ; 9. A ; 10.B . 二、填空题(本大题共8小题,每小题3分,共24分)11.)3,2(-; 12.)2,5(; 13.1; 14.130°;15.B ; 16.2 ; 17.22°;18.21三、解答题(本大题共8小题,共86分) 19.(1)解:原式=3154--+⨯π ················································································ 4分 =420-+π ························································································· 6分=π+16 ································································································ 7分 (2)解:原式22444a a a -+++ ············································································· 3分84+=a ································································································ 5分 当208343=+⨯==时,原式a ······················································ 7分20.解:∵5,6,1===c b a∴01642>=-ac b ···························································································· 4分 ∴2462166±-=±-=x ················································································· 6分 ∴5,121-=-=x x ······························································································· 8分21.答:∠AOC=∠BOD ……………………………………………………1分 理由:∵AB=CD ∴弧AB=弧CD …………………………………………………………………………3分 ∴∠AOB=∠COD ………………………………………………………………………5分 ∴∠AOB-∠BOC=∠CDO-∠BOC …………………………………………………… 7分 即∠AOC=∠BOD ……………………………………………………………………… 8分 22.解:(1)图略,)4,2(1-A ………………………………………………………………5分 (2)图略,)4,2(2-A ………………………………………………………………5分 23.解:(1)设1月到3月自行车销量的月平均增长率为x ,依题意得…………………1分 100)1(642=+x解得 不符合题意,舍去)(49%,254121-===x x …………………………6分 答:1月到3月自行车销量的月平均增长率为25%.………………………………7分 (2)125%251100=+⨯)(……………………………………………………9分 答:商城4月份能卖出125辆自行车.……………………………………………10分 24.(1)解:连接OB ……………………………………………………………………1分 ∵OB=OC,∠OCB=60°∴△OBC 是等边三角形………………………………………………………3分 ∴BC=OC=2……………………………………………………………………4分 (2)证明:∵BC=OC,OC=CP∴BC=CP …………………………………………………………………5分 ∴∠CBP=∠P ……………………………………………………………6分 又∵∠OCB=60°∴∠CBP=30°由(1)可知△OBC 是等边三角形…………………7分 ∴∠OBC=60°…………………………………………………………8分 ∴∠OBC+∠CBP=90°…………………………………………………9分 ∴OB ⊥BP∴BP 是圆O 的切线……………………………………………………10分 25.证明:(1)∵AB ⊥AD,BC ⊥CD∴∠BAE=∠BCK=90°……………………………………………………1分 又∵AB=BC,AE=CK∴△ABE ≌△CBK …………………………………………………………4分(2)由(1)可知△ABE ≌△CBK∴∠KBC=∠EBA …………………………………………………………5分 又∵∠ABC=120°,∠MBN=60°∴∠CBF+∠ABE=60°……………………………………………………7分∴∠KBC+∠CBF=60°……………………………………………………8分 (3)由(1)可知△ABE ≌△CBK∴BK=BE ………………………………………………………………………9分 又∵∠KBF=∠MBN=60°,BF=BF∴△BKF ≌△BEF ……………………………………………………………10分 ∴KF=EF ………………………………………………………………………11分 又∵KF=KC+CF,CK=AE∴CF+AE=EF …………………………………………………………………12分 26.(1)C (4,0)……………………………………………………………………………3分 (2)抛物线的解析式:223212++-=x x y ,对称轴 23=x .……………………9分(3)设直线AC 的解析式为:b kx y +=,代入点A (0,2),C (4,0),得: ∴直线AC :221+-=x y ;……………………………………………………………11分 过点P 作PQ ⊥x 轴于H ,交直线AC 于Q , 设P (m ,223212++-m m ),Q (m ,221+-m ) 则m m PQ 2212+-= ∴4)2(44)221(2121222+--=+-=⨯+-⨯=⨯⨯=m m m m m OC PQ S ∴当m=2,即 P (2,3)时,S 的值最大.……………………………………………14分。
2014-2015学年度 上学期期中考试九年级数学试卷

A .B .C .D . 2014-2015学年度上学期期中考试九年级数学试卷一、 选择题:(共12小题,每小题3分,共36分。
下列各题的四个选项中只有一个正确)1x 的取值范围是 A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且2. 已知x=2是一元二次方程x2+x +m=0的一个解,则m 的值是 A .―6 B .6 C .0 D .0或6 答案:A3.用配方法解方程3x2+6x ―5=0时,原方程应变形为 A .(3x +1)2=4 B .3(x +1)2=8 C .(3x ―1) 2=4 D .3(x ―1)2=5 答案:B4. 在下列图形中,既是轴对称图形又是中心对称图形的是5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .182)1(502=+xB .182)1(50)1(50502=++++x x C .50(1+2x)=182 D .182)21(50)1(5050=++++x x 答案:C6.如图,在Rt △ABC 中,∠ABC=90°,∠BAC=30°,AB=,将△ABC 绕顶点C 顺时针旋转至△A ′B ′C ′的位置,且A 、C 、B ′三点在同一条直线上,则点A 经过的路线的长度是 A .4 B. C .323π D .43π7.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠8.3最接近的整数是 A .0 B .1 C .2 D .3答案:B 解析:依题意,得()⎪⎩⎪⎨⎧>⨯-+≠,,014120222k k k 解得14k >-且0k ≠.故选B . 9.如图所示,将正方形图案绕中心旋转后,得到的图案是A B C D答案:D 解析:图中的两个阴影三角形关于,位置在右下角,所以选D. 10.已知两圆的半径分别为,且这两圆有公共点,则这两圆的圆心距为A .4B .10C .4或10D .104≤≤d 答案:D 解析:两圆相交或相切. 11.如图所示,已知扇形的半径为,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 A .B .C .D ..12.如图;用一把带有刻度的直角尺,①可以画出两条平行的直线a 与b ,如图(1);②可以画出∠AOB 的平分线OP ,如图(2);③可以检验工作的凹面是否成半圆,如图(3);•④可以量出一个圆的半径,如图(4).上述四个方法中,正确的个数是( ) A .1个 B .2个 C .3个 D .4个 数 学 第Ⅱ卷一、填空题(共5小题,每小题3分,共15分)13.如图所示,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为 .答案:214.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .第13题 第第16题 15.三角形的每条边的长都是方程的根,则三角形的周长是_______________.B4=1+3 9=3+616=6+10 第17题图 …答案:6或10或12 解析:解方程2680x x -+=,得14x =,22x =.∴ 三角形的每条边的长可以为2、2、2或2、4、4或4、4、4(2、2、4不能构成三角形,故舍去),∴ 三角形的周长是6或10或12. 16.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.17.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是___________(填序号) ①13 = 3+10 ②25 = 9+16 ③36 = 15+21 ④49 = 18+31二、解答题(共4小题,每小题6分,共24分)18.计算:(1)⎛÷ ⎝ (2)101|2|(2π)2-⎛⎫+-+ ⎪⎝⎭19.用适当的方法解下列方程.(1) 2350x x --= (2)23(5)(5)x x -=-三、20.(本题共7分)简,再求值:244(2)24x x x x -+⋅+-,其中x =先化班级 姓名 考号 考场号密 封 线 内 不 得 答 题D 第22题图四、21.(本小题8分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点A 关于原点O 对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形, 直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D(3)请标.的坐五、22.(本小题8分)已知:如图所示,AB 是⊙O 的弦,∠OAB=45°,点C 是优弧»AB 上的一点,OA BD //,交CA 延长线于点D ,连接BC (1)求证:BD 是O ⊙的切线(2)若AC=CAB=75°,求⊙O的半径六.23.(本小题10分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6,AC ﹦8,求⊙O的半径为及CE的长.七、24.(本小题12分)要对一块长60m 、宽40m 的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB ,BC ,AD 的距离与O2到CD ,BC ,AD 的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.答案:(1)设P 、Q 两块绿地周围的硬化路面的宽都为x m ,根据题意,得:(60―3x)(40―2x)=60×40×14. …………………………………3分解得x1=10,x2=30. …………………………………4分 经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10m . ……………………………………5分 (2)设想成立. …………………………………6分 设圆的半径为r m ,O1到AB 的距离为y m ,根据题意,得:240,2260.y y r =⎧⎨+=⎩解得y=20,r=10.符合实际.所以,设想成立,此时,圆的半径是10m . …………………………………8分第24题图① 第24题图②。
2014-2015年辽宁省沈阳市九年级上学期期中数学试卷及参考答案(一)

2014-2015学年辽宁省沈阳市九年级(上)期中数学试卷(一)一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知关于x的方程,(1)ax2+bx+c=0;(2)x2﹣4x=0;(3)1+(x﹣1)(x+1)=0;(4)3x2=0中,一元二次方程的个数为()个.A.1 B.2 C.3 D.42.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)有如下四个命题:(1)三角形三边垂直平分线的交点一定在三角形内部;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB 等于()A.44°B.68°C.46°D.22°5.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和46.(3分)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>47.(3分)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.二、填空题(共8小题,每小题4分,满分32分)9.(4分)一元二次方程x(x﹣3)=0的解是.10.(4分)在函数y=中,当x<﹣2时,y的取值范围;当y>﹣2时,x的取值范围.11.(4分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.12.(4分)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是.13.(4分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为.14.(4分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.15.(4分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ 并延长CQ交边AB于点P.则点P的坐标为.16.(4分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE,已知AE=5,=,则BE+CE=.三、解答题(共40分)17.(16分)解下列方程:(1)x2﹣2x﹣1=0;(2)2x2﹣5x﹣1=0;(3)x2﹣3x﹣18=0;(4)4x(x+1)=x2﹣1.18.(8分)据媒体报道,我国2010年公民出境旅游总人数约5 000万人次,2012年公民出境旅游总人数约7 200万人次.若2011年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?19.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20.(8分)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.2014-2015学年辽宁省沈阳市九年级(上)期中数学试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知关于x的方程,(1)ax2+bx+c=0;(2)x2﹣4x=0;(3)1+(x﹣1)(x+1)=0;(4)3x2=0中,一元二次方程的个数为()个.A.1 B.2 C.3 D.4【解答】解:(1)ax2+bx+c=0中a可能为0,故不是一元二次方程;(2)x2﹣4x=0符合一元二次方程的定义,故是一元二次方程;(3)1+(x﹣1)(x+1)=0,去括号合并后为x2=0,是一元二次方程;(4)3x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C.2.(3分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看是一个有直径的圆环,故选:D.3.(3分)有如下四个命题:(1)三角形三边垂直平分线的交点一定在三角形内部;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)三角形三边垂直平分线的交点一定在三角形内部,正确,为真命题;(2)四边形的内角和与外角和相等,正确,为真命题;(3)顺次连接四边形各边中点所得的四边形一定是菱形,错误,为假命题;(4)一组对边平行且一组对角相等的四边形是平行四边形,错误,为假命题,故选:B.4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB 等于()A.44°B.68°C.46°D.22°【解答】解:∵∠A=44°,AB=AC∴∠B=∠C=68°∵∠BDC=90°∴∠DCB=22°.故选:D.5.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选:B.6.(3分)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>4【解答】解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选:D.7.(3分)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.【解答】解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,故选:C.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【解答】解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.二、填空题(共8小题,每小题4分,满分32分)9.(4分)一元二次方程x(x﹣3)=0的解是x1=0,x2=3.【解答】解:x=0或x﹣3=0,所以x1=0,x2=3.故答案为x1=0,x2=3.10.(4分)在函数y=中,当x<﹣2时,y的取值范围﹣1<y<0;当y>﹣2时,x的取值范围﹣1<x<0.【解答】解:∵函数y=中k=2>0,∴在每个象限内y随着x的增大而减小,∵当x=﹣2时,y=﹣1,∴当x<﹣2时,﹣1<y<0,当y>﹣2时,x的取值范围,﹣1<x<0故答案为:﹣1<y<0,﹣1<x<0.11.(4分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为(22﹣x)(17﹣x)=300.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.12.(4分)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.【解答】解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,=S△POA=×2=1,∴S△POB∴k=1,∴k=2.故答案为2.13.(4分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为 1.6.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.14.(4分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.15.(4分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ 并延长CQ交边AB于点P.则点P的坐标为(2,4﹣2).【解答】解:∵四边形OABC是边长为2的正方形,∴OA=OC=2,OB=2,∵QO=OC,∴BQ=OB﹣OQ=2﹣2,∵正方形OABC的边AB∥OC,∴△BPQ∽△OCQ,∴=,即=,解得BP=2﹣2,∴AP=AB﹣BP=2﹣(2﹣2)=4﹣2,∴点P的坐标为(2,4﹣2).故答案为:(2,4﹣2).16.(4分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE,已知AE=5,=,则BE+CE=6或16.【解答】解:①若∠BAC为锐角,如答图1所示:∵AB的垂直平分线是DE,∴AE=BE,ED⊥AB,AD=AB,∵AE=5,=,∴sin∠AED=,∴AD=AE•sin∠AED=3,∴AB=6,∴BE+CE=AE+CE=AC=AB=6;②若∠BAC为钝角,如答图2所示:同理可求得:BE+CE=16.故答案为:6或16.三、解答题(共40分)17.(16分)解下列方程:(1)x2﹣2x﹣1=0;(2)2x2﹣5x﹣1=0;(3)x2﹣3x﹣18=0;(4)4x(x+1)=x2﹣1.【解答】解:(1)配方得,(x2﹣2x+1)﹣1﹣1=0,即(x﹣1)2=2,所以,x﹣1=±,x1=1+,x2=1﹣;(2)a=2,b=﹣5,c=﹣1,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=25+8=33,x==,x1=,x2=;(3)因式分解得,(x+3)(x﹣6)=0,由此得,x+3=0,x﹣6=0,所以,x1=﹣3,x2=6;(4)移项得,4x(x+1)﹣(x2﹣1)=0,因式分解得,4x(x+1)﹣(x+1)(x﹣1)=0,(x+1)(3x+1)=0,由此得x+1=0,3x+1=0,所以x1=﹣1,x2=﹣.18.(8分)据媒体报道,我国2010年公民出境旅游总人数约5 000万人次,2012年公民出境旅游总人数约7 200万人次.若2011年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2013年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2013年我国公民出境旅游总人数约8640万人次.19.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为26.8万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)【解答】解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27﹣0.1×(3﹣1)=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28﹣[27﹣0.1(x﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.20.(8分)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.【解答】证明:∵△AEB由△ADC旋转而得,∴△AEB≌△ADC,∴∠EAB=∠CAD,∠EBA=∠C,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∠ABC=∠C,∴∠EAB=∠DAB,∠EBA=∠DBA,∵∠EBM=∠DBN,∴∠MBA=∠NBA,在△AMB和△ANB中,,∴△AMB≌△ANB(ASA),∴AM=AN.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2014-2015年九年级上数学期中考试试题及答案

2014—2015学年度第一学期阶段检测..九年级数学试题..注意事项: ..1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。
2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。
考试时间为90分钟。
第Ⅰ卷(选择题 共45分).一、选择题(本大题共15小题,每小题3分,满分45分) 1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-1 2.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是 A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16..4.如果反比例函数xky 的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限 B .第一、二象限C .第二、四象限D .第三、四象限..B.5.若函数xmy =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <06.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:28.一元二次方程2x 2 + 3x +5=0的根的情况是 A .有两个不相等的实数 B .有两个相等的实数 C .没有实数根D .无法判断9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1)10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为A .8 cmB .12 cmC .11 cmD .10 cmA .B .C .D .AB12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似 13.在函数y=xk(k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 14.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025D.192514题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x =>的图象上,则点E 的坐标是A .1122⎛⎫⎪ ⎪⎝⎭; B .3322⎛+ ⎝⎭C .11,22⎛⎫ ⎪ ⎪⎝⎭;D .3322⎛ ⎝⎭15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。
2014-2015学年度第一学期九年级数学期中试卷1

第2题第4题2014-2015学年度第一学期九年级数学期中试卷一、选择题(本题共10小题,每小题4分,满分40分)1、已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,且经过点P(3,0),则抛物线与x 轴的另一个交点坐标为 【 】A .(-1,0) B.(0,0) C.(1,0) D.(3,0)2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<; ②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是【 】 A 、①② B 、①③④ C 、①②③⑤ D 、①②③④⑤3、如图,两个反比例函数14y x =和1y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC x ⊥轴于点C ,交C 2于点A ,PD y ⊥轴于点D ,交C 2于点B ,则四边形PAOB 的面积为【 】 A 、2 B 、 3 C 、4 D 、54、如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB =∙.其中单独能够判定ABC ACD △∽△的个数为 【 】 A 、1 B 、2 C 、3 D 、45、根据下表中的二次函数2(0)y ax bx c a =++≠的自变量x 与函数y 的对应值,可判断 二次函数的图象与x 轴【 】 A 、只有一个交点 B 、有两个交点,且它们分别在y 轴两侧 C 、有两个交点,且它们均在y 轴同侧 D 、无交点6、二次函数2y ax bx c =++的图象如下图所示,则一次函数24y bx b ac =+-与反比例函数a b cy++=在同一坐标系内的图象大致为【 】x xxxxB CDE 7、已知抛物线y =ax 2+bx +c (a <0)经过A (-2,0)、O (0,0)、B (-3,y 1)、C (3,y 2)四点,则y 1与y 2的大小关系是 【 】A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定8、一个三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的三角形框架,现有长为27cm 、45cm 的两根材料,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法共有 【 】 A .0种 B .1种 C .2种 D .3种9、如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =3,CE =2,则△ABC 的边长为 【 】 A .9 B .12 C .15 D .1810、将△ABC 纸片的一角沿DE 向下翻折,使点A 落在BC 边上,且DE ∥BC ,如图所示,则下列结论不成立的是 【 】A 、∠AED=∠CB 、AD:DB =AE:EC C 、12DE BC = D 、△ABC 是等腰三角形二、填空题(本题共5小题,每小题5分,满分25分)11、3与4的比例中项是______ .12、如图,在□ABCD 中,EF ∥AB, :2:3DE EA =, 4EF =, 则CD 的长为 . 13、如图,小明在A 时测得某树的影长为8m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为 m .14、如图,在正方形ABCD 中,E 为AB 边的中点,G 、F 分别为AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90º,则FG 的长为 . 15、二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是 .三、解答题(满分85分)16、(本题7分)已知2==dc b a ,求a b a +和d c dc +-的值。
2014—2015学年新人教版九年级上期中考试数学试题

光荣中学2014—2015学年上学期期中考试九年级数学试题一、选择题。
(每小题3分,共60分)1、如果线段a 、b 、c 、d 是成比例线段且a =3,b =6,c =5, 则d =( )。
A.8B. 12C. 10D. 16 2、下列二次根式中属于最简二次根式的是( )。
A .44+a B .48 C .2 D .ba3、方程022=-x x 的根是( )。
A 、2,021==x xB 、2,021-==x xC 、0=xD 、2=x 4、下列二次根式中,与3是同类二次根式的是( ) A 、18 B 、27C 、23D 、35、某农场的粮食产量在两年内从2800吨增加到3090吨,若设平均每年增产的百分率为x ,则所列的方程为( )。
A 、()309012800=+x ;B 、()29012++x =3090;C 、()3090128002=+x D 、()3090128002=+x6、下列各组图形中不一定相似的是( )。
A 、两个矩形。
B 、各有一个角是100°的两个等腰三角形;C 、各有一个角是50°的两个直角三角形;D 、两个等腰直角三角形;7、如右图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )。
A 、1对B 、2对C 、3对D 、4对8、三角形的周长为56cm ,则它的三条中位线组成的三角形的周长是( )。
A 、18 cmB 、28 cmC 、24 cmD 、36 cm9、如图矩形ABCD 中,E 、F 分别是CD 、BC 上的点,∠AEF=90°,则一定有( )。
A. ΔADE ∽ΔAEFB.ΔECF ∽ΔAEFC. ΔADE ∽ΔECFD.ΔAEF ∽ΔABF 10、二次根式2(32)-的值等于( ) A .32- B .23- C .±(32)- D .23+11、将方程0982=++x x 左边变成完全平方式后,方程是( ) .A. 7)4(2=+xB. 25)4(2=+xC. 9)4(2-=+xD. 7)4(2-=+x12、 方程022=--x x 的两根和是( ) . A. 1 B. -1 C. 2; D. -2 13、如果23=b a ,那么ba a+等于( ) A 3:2; B 2:3; C 3:5; D 5:314、若方程x 2–(m –2)x+(3m+1)=0的两根互为倒数,则m 等于( )A .0 B. 1 C. 2 D . 315、 已知m 是方程022=--x x 的一个根,则m m -2的值是( ) .A. 0B. 1C. 2D. -2 16、顺次连接等腰梯形各边中点,得到的四边形为( ) A .梯形 B .矩形 C .菱形 D .平行四边形17、在△ABC 中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短一边是( )A .27B .12C .18D .2018、关于x 的一元二次方程024)1(2=-+-x x k 有实数根,则k 的范围是( )A 、k≥-1B 、k >-1C 、k≥-1且k ≠1D 、k >-1且k ≠0 19、如果421x x ++有意义,那么x 的取值范围是( ) A .x ≥-4 B .x ≠—12C .x ≥-4且x ≠—12 D .x>-4且x ≠—1220、化简)22(28+-得( ) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 1112 13 14 15 16 17 18 19 20 答案二、填空题。
最新版版北师大版2014-2015学年第一学期九年级数学期中考试试卷—2014.11

2014—2015学 年 第 一 学 期 期 中 考 试 试 卷九 年 级 数 学(上)班级 姓名 成绩一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是( ) A .01232=++y y B .x x 31212-=C .032611012=+-a a D .223x x x =-+2.下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是( )A.①②③B.①②③④C.①②D.②③3.有四张扑克牌,分别是方块2、方块3、红桃2、红桃3,从中任取二张,和是5的概率是( )A. 12B. 13C. 14D. 234.△ABC 与△A′B′C′是位似图形,且对应边AB 与A′B′之比为1:3,则△ABC 的周长与△A′B′C′的周长之比为( )148元,则下面所列方程正确的是( )A .148%)1(2002=+aB . 148%)1(2002=-aC .148%)21(200=-aD .148%)1(200=-a 6.顺次连接矩形四边中点所得的四边形一定是( )A .正方形B .矩形C .菱形D .等腰梯形 7.在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D .58.一个家庭有两个孩子,两个都是女孩的概率是( )A .21 B .31C .41 D . 无法确定。
9.在△ABC 中,AB=6cm ,BC=4cm ,CA=9cm ,△ABC ∽△A ′B ′C ′,△A ′B ′C ′最短边是8cm ,则它的最长边的长度为( )A .16cmB . 18cmC .4.5cmD .13cm10.如图所示,在平行四边形ABCD 中,E 是BC 上一点,BE :BC=2:3,AE 交BD于F ,则BF :FD 等于( )A .2∶5B . 3∶5C .2∶3D .5∶7二、填空题(每题3分,共30分)11.把方程2(x -2)²=x(x -1)化为一元二次方程的一般形式为 12.某钢铁厂去年1月份钢产量为4万吨,三月份钢产量为4.84万吨,那么2、3月份平均每月的增长率是 .13.把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次均是红色的概率是: .14.在四边形ABCD 中,AB =DC ,AD =BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是__________(写出一种即可).15. 若五边形ABCDE ∽五边形MNOPQ ,且AB=12,MN=6,AE=7,则MQ=________ 16.已知a 、b 、c 、d 四条线段成比例,a =4,c =6,d =9,则线段b = 17.已知关于x 的方程x 2+mx -6=0的一个根为2,则m =________,另一根是 18.若△ABC 的三边之比为3:4:5,与其相似的△A ′B ′C ′的周长为36cm ,则△A ′B′C ′的面积为 _________ cm 2.19.已知线段AB =4,点C 是其黄金分割点,且AC >BC ,则AC -BC = 20.已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为 _________ 米.B三、作图题(5分)21.在如图所示的网格图中,画出一个与图中三角形相似的三角形.三、计算题(共65分) 22.(4分)解方程: (x -3)2+4x(x -3)=0.23.(6分)关于x 的方程0)22()12(222=++++m x m x ,有两个不相等的实根,求m的取值范围24.(6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B ,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E ,F 两点,求证:△ADF ≌△BAE.26.(6分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图(图7-2-5),根据图中信息回答下列问题: (1)求a 的值;(2)若全校有2000人,试估计每周上网在4小时以上的同学有多少人.27.(5分)已知:如图,在矩形ABCD 中,A E ⊥BD ,对角线AC 、BD 相交于点O ,∠AOB =600 ,AC =6。
2014-2015学年度九年级第一学期期中质量检测数学试题

(D)(C)(B)(A)xyoy xoyxxyo2014-2015学年度九年级第一学期期中质量检测数学试题一.选择题(每小题2分,共20分)1.一元二次方程x 2-2x=0的一次项系数是 ( )A . 2B .-2C .1D .02. 抛物线y=(x-2)2+3的顶点坐标是 ( )A. (2,3)B. (-2,3)C.(-2,-3)D.(2,-3)3.下列方程中,不是一元二次方程的是 ( )A .x 2-4=0B .x 2+x1+4=0 C .x 2+2x+1=0 D .3x 2+2x+1=04.方程x 2-9=0的根为 ( ). A .3 B .-3 C .±3 D .无实数根5. 把抛物线错误!未找到引用源。
向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.对于抛物线2(1)3y x =++有以下结论:①抛物线开口向下:②对称轴为直线x=1:③顶点坐标为(-1,3):④x >1时,y 随x 的增大而减小.其中真确结论的个数为 ( )A . 1B . 2C .3D .4 7.方程x 2-2(3x -2)+(x+1)=0的一般形式是. ( )A .2550x x +=-.B .2550x x ++=C .2550x x +=-D .250x +=8.以下是方程3x 2-2x=-1的解的情况,其中正确的是 ( ).A .∵b 2-4ac=-8,∴方程有解B .∵b 2-4ac=-8,∴方程无解 C .∵b 2-4ac=8,∴方程有解 D .∵b 2-4ac=8,∴方程无解9. 二次函数y =ax 2+bx +c 的图象如图所示,若点A (1,y 1),B (2,y 2)是 图象上的两点,则y 1与y 2的大小关系是 ( ).A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定10.已知函数y=ax 2+bx +c 的图象如图所示,那么能正确反映函数y=ax +b 图象的只可能是( )二.填空题(每小题3分,共30分)11.关于x 的方程()2442()30m x m x m ++++=-,当m _时,是一元二次方程.12.一元二次方程210x ax -+=有两个相等的实数根,则a 的值为 .13.二次函数22-23y x =()+的对称轴是 .14.函数223x x +-y=-与y 轴的交点坐标为 .[来源:学*科*xyo -4-3-2-11315.已知x=3是关于x 的方程260x x k -+=的一个根,则k =16. 若y= 222m m x -+()是二次函数,则m =17. 某药品经过两次降价,每瓶零售价由168元降到128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得18.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.19某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 20已知x 1,x 2是方程x 2-2x+1=0的两个根,则1x 1+1x 2=__________三、解答题21、用合适的方法解下列方程.(每小题3分,共12分)(1)2x 144= (2)20x x +=(3)25210x x ++= (4)2250x x --=22、(6分)已知抛物线2y ax c =+经过点(-1,2),(0,-4),求该抛物线的解析式.23.(6分)求证:关于x 的方程2(21)10x k x k +++-=,无论k 取任何值,都有两个不相等的实数根.24、(9分)如图,二次函数2y ax bx c =++的图象经过A 、B 、C三点. (1)观察图象,写出A 、B 、C 三点的坐标,并求出抛物线解析式;(5分)(2)求此抛物线的顶点坐标和对称轴;(4分)(3)观察图象,当x 取何值时,y <0?(3分)25、(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?26、(9分)如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?-14A B5O xyC27、(10分)如图(1),在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE ⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)用含y的代数式表示AE;(3分)(2)求y与x之间的函数关系式,并求出x的取值范围;(5分)(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.(4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中复习题
一、选择题
1. 如果代数式X2+4X+4的
值是16,则x的值一定是()
2. 若c (c丰0)为关于X的一元二次方程x2+bx+c=0的根,贝U c+b的值为(
A . 1
B . -1
C . 2
3. 方程X2+3X-6=0与X2-
6X+3=0所有根的乘积等于()
A . -18
B . 18
C . -3
长,设墙的对边长为xm,可列方程为()
A . x(13-x)=20
B . x・J=20 C. x(13-丄口=20 D. x・^^=20
2 ' 2 2
5.如图所示,△ ABC中,AC=5,中线AD=7, △ EDC是由△ ADB旋转180°所得,则AB边的取值范围是•(
)
7. 如图所示,在直角三角形ABC中,/ C= 90°, AC= 6, BC= 8,将厶ABC绕点B旋转90°,得到关于点A的对称点D,则AD的长是.()
9. 如图,C是线段BD上一点,分别以BC CD为边在BD同侧作等边△ ABC和等边△ CDE,AD交CE于F, BE交AC于G,则图中可通过旋转而相互得到的三角形对数有().
A.1 对
B.2 对
C.3 对
D.4 对
10. 如图,O是锐角三角形ABC内一点,/ AOB M BOC M COA=120 , P是厶ABC内不同于O的另一点;
△ A BO、△ A BP'分别由△ AOB A APB旋转而得,旋转角都为60°,则下列结论中正确的有()①厶O' B0
为等边三角形,且A'、0'、OC在一条直线上.② A 0'+ O' O= AO^ BO
③A' P'+ P' P= PA+ PB ④ PA+ PB+ PC>A(+ BC+ CO
A . 1个
B . 2个
C . 3个
D . 4个
4.利用墙的一边,再用13m的铁丝网,围成一个面积为 2
20 m的长方形场地,求这个长方形场地的两边
2... 3, —2.3 C . 2,-6 D .30, -34
)
.-2
.3
A.20
B.10
C.10 ..2
D.20 , 2
8. 如图,在正方形ABCD中, E为DC边上的
点, 连结EF,若/ BEC=60,则/ EFD的度数为(
连结BE,将厶BCE绕点C顺时针方向旋转
)
900得到△ DCF A.10 0 B.15 C.20 D.25
A.12 人
B.18 人
C.9 人
D.10 人
二、填空题
12.已知a 、b 是方程x 2 2x -5 =0的两个实数根,则
13.P 是等边三角形 ABC 内一点,将△ ABP 绕点B 顺时针方向旋转 60°,得到△ CBP ,若PB=3则PP'
18.若关于x 的方程a(x -1)2 =3x 2 -2是一元二次方程,则 a 的值是
19. 从12:00到12:35,钟表上的时针和分针转过的度数分别是 ____________ 、 .
20. 在三个连续的奇数中,最大数和最小数的和恰好是中间一个数的 10倍,则此三个数是 _______________
21. 三角形两边长分别是 8和6,第三边长是一元二次方程 X 2-16X +60=0 —个实数根,则该三角形的面积
是 ___________
22. 若关于x 的一元二次方程(m+3)x 2+5x+m+2m-3=0有一个根为0,贝U m= _________ , ?另一根为 ________ 23. 已知方程X 2-7X +12=0的两根恰好是 Rt △ ABC 的两条边的长,则 Rt △ ABC?的第三边长为 _________
三、解答题
24. 用适当的方法解下列方程。
2
(1) (x 8)(x 1) 一12 (2) x-4x+1=0
11.如图,设P 是等边三角形 ABC 内任意一点,△ ACP “ >”、“<”或“=”).
是由△ ABP 旋转得到的,则 PA
P 內PC(填
2
a a
b 2a 的值为
14.如图,以△ ABC 中AB AC 为边分别作正方形 ADEB 与 ACGF 连接DC BF 。
贝U CD 与BF 的数量关系
CD 与BF 的位置关系是
;利用旋转的观点判断,△ ADC 绕点
旋转
可以得到厶ABF 。
15. 直线y=x+3上有一点P(m-5,2m),贝U P 点关于原点的对称点
P'为
16. 如图,O 是等边△ ABC 内一点,将△ AOB 绕A 点逆时针旋转, 使得 B 、O 两点的对应点分别为 C 、D, 则旋转角为
,图中除厶ABC 外,还有等边三形是
17.将方程4x 2 =2x-1化成一般形式为
,其二次项系数是 ,一次项是
c
C
(3) (x 1)(x -1) = 2.3x (4) a 2 5a -1 =0
25. P 为正方形ABCD 内一点,且 AP=2,将厶APB 绕点A 按顺时针方向旋转 60?。
得到△ AP' B ', (1) 作出旋转后的图形;(2)试求△ APP 的周长和面积.
26. 已知X i , X 2是一元二次方程 2x 2-2x+m+1=0的两个实数根.
(1) 求实数m 的取值范围;
(2) 如果X 1, X 2满足不等式7+4X 1X 2>X 12+X 22,且m 为整数,求 m 的值.
27.
某超市经销一种成本为 40元/kg 的水产品,市场调查发现,按50元/kg 销售,一个月能售出500kg , 若每kg 每涨1元,月销
售量就减少 10kg ,针对这种水产品的销情况,超市在月成本不超过
10000元的
情况下,使得月销售利润达到 8000元,请你帮忙算算,销售单价定为多少?
28. 如图,点C 为线段AB 上一点,△ ACM △ CBN 是等边三角形,直线 AN MC 交于点E ,直线BM CN 交 于点F 。
(1) 求证:AN=MB
(2) 求证:△ CEF 为等边三角形;
(3) 将厶ACM 绕点C 按逆时针方向旋转 90°,其他条件不变,在( (1) (2)题中的两结论是否依然成立。
并说明理由。
2)中画出符合要求的图形,并判断
M
M
29. —元二次方程ax2 bx 0的一个根是1,且a、b、c满足b = a -22_a_3,请问x =2是
该一元二次方程的根吗?
30. 若关于x的方程kx2・2x-1 =0有两个不相等的实数根x2,且满足化• x2)2=1,求k的值。
31. 秋旅行社为吸引市民组团去天水湾风景区旅游,推出如下
收费标准
如抵人致越过25人
禅增加i人.人均蔽瞬
馆用降低2。
尢・怛
人均祓帶协用不
某位组织员工去天水湾风景区旅游,共支付了27000元给春秋放行社,请问该单位这次共有多少员工
去天水湾风景区旅游
32. 某水果经销商上月份销售一种新上市的水果平均售价为10元/千克,月销售量为1000千克.经过市场
调查,若将该种水果价格调低至x元/千克,则本月份销售量y (千克)与x(元/千克)之间满足一次函数
关系y = kx b,且当x=5 时,y =4000;x=7,y =2000.
(1)求y与x之间的函数关系式;
(2)已知该种水果上月份的成本价为5元/千克,当本月成本价为4元/千克,要使本月份销售该种
水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少(3) (x 1)(x -1) = 2.3x (4) a2 5a -1 =0
元?(利润=售价-成本)。