函数与图像知识点归纳

合集下载

函数知识点总结(掌握函数的定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)(一)正比例函数和一次函数1、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx(k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经它可以看⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 注:y =kx+b 中的k ,b 的作用:1、k 决定着直线的变化趋势①k>0直线从左向右是向上的②k<0直线从左向右是向下的2、b决定着直线与y轴的交点位置①b>0直线与y轴的正半轴相交②b<0直线与y轴的负半轴相交(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位..轴交点坐标为与(方法:联立方程组求x、y例题:已知两直线y=x+6与y=2x-4交于点P,求P点的坐标?7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作.特别地,轴记作直线8、正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.. (22b c x +的图(1(2)x 的反比例取值范围: ①k≠0;②在一般的情况下,自变量x 的取值范围可以是不等于0的任意实数;③函数y 的取值范围也是任意非零实数。

函数图像画法知识点总结

函数图像画法知识点总结

函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。

在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。

在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。

一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。

直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。

当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。

绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。

首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。

2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。

平方函数的一般形式为y=x^2。

平方函数的图像对称于y轴,开口向上。

绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。

3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。

开方函数的一般形式为y=sqrt(x)。

开方函数的图像对称于x轴,开口向右。

绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。

4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。

绝对值函数的一般形式为y=|x|。

绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。

以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。

函数性质图像知识点总结

函数性质图像知识点总结

函数性质图像知识点总结一、函数的定义在数学上,函数可以定义为一种特殊的关系,它将输入(自变量)映射到输出(因变量)。

具体来说,如果对于每一个自变量值,函数都有唯一的对应因变量值,那么这个关系就是一个函数。

形式上,我们可以用f(x)来表示函数,其中x是自变量,f(x)是对应的因变量。

例如,y = 2x + 3就是一个函数,其中y是因变量,x是自变量。

二、函数的性质1.定义域和值域函数的定义域是指所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。

在图像上,定义域通常表示为x轴上的取值范围,而值域则表示为y轴上的取值范围。

例如,对于函数f(x) = x²,其定义域为所有实数,而值域为非负实数集合。

2.奇函数与偶函数奇函数与偶函数是函数的对称性质。

如果对于任意的x,有f(-x) = -f(x),那么函数f(x)就是奇函数;如果对于任意的x,有f(-x) = f(x),那么函数f(x)就是偶函数。

奇函数在原点对称,而偶函数在y轴对称。

3.单调性函数的单调性是指在定义域上,函数值的增减关系。

如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≤f(x₂),那么函数f(x)就是递增的;如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≥f(x₂),那么函数f(x)就是递减的。

4.周期性如果存在一个正数T,使得对于所有的x,有f(x+T) = f(x),那么函数f(x)就是周期函数。

其中最小的T称为函数的周期,通常用P来表示。

常见的周期函数有sin(x)和cos(x)。

5.有界性函数的有界性是指函数值的范围限制。

如果存在两个实数M和N,使得对于任意的x,有|f(x)| ≤ M,那么函数f(x)就是有界的。

如果函数在定义域上有上界和下界,则称为有界函数。

6.反函数若对于一个函数f(x),存在一个函数g(x),使得f(g(x)) = x且g(f(x)) = x,那么函数g(x)就是函数f(x)的反函数。

函数及其图像知识点

函数及其图像知识点

《函数及其图像》知识点一、函数的概念、变量〔自变量、因变量〕、常量的概念。

①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。

②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。

③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。

此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。

练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。

二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围:平面直角坐标系。

水平的数轴叫做横轴〔x 轴〕,取向右为正方向;铅直的数轴叫做纵轴〔y 轴〕,取向上为正方向;两条数轴的交点O 叫做坐标原点。

x 轴和y 轴将坐标平面分成四个象限〔如图〕:五、平面内点的坐标:〔横坐标,纵坐标〕如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为〔2 , 3〕 六、平面内特殊位置的点的坐标情况:〔连线〕第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 〔- ,-〕 〔- ,+〕 〔+ ,+〕 〔+ ,-〕 〔0 ,a 〕 (b , 0) 七、点的表示〔横坐标,纵坐标〕注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A 〔2,1〕 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。

概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。

八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。

y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。

⑶关于原点对称的点:横坐标 ,纵坐标 。

数学函数图像知识点总结

数学函数图像知识点总结

数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。

函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。

在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。

本文将围绕这些知识点展开详细的介绍。

一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。

通俗的讲,函数就是一种映射关系,将自变量映射到因变量。

函数的定义可以用一个公式、图形或者文字描述。

函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。

函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。

1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。

在图像中,这些性质通常能够直观地表现出来。

- 定义域:函数的自变量的取值范围称为函数的定义域。

在函数图像上,定义域通常可以通过图形的横坐标范围来表示。

- 值域:函数的因变量的取值范围称为函数的值域。

在函数图像上,值域通常可以通过图形的纵坐标范围来表示。

- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。

周期函数的图像通常具有明显的重复性特征。

1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。

- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。

- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。

- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。

- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

正弦函数、余弦函数的图像(基础知识+基本题型)(含解析)

正弦函数、余弦函数的图像(基础知识+基本题型)(含解析)

5.4.1 正弦函数、余弦函数的图像(基础知识+基本题型)知识点一 正弦函数的图象 1.正弦曲线的几何作法正弦函数sin ,y x x R 的图象如图,我们把正弦函数的图象叫做正弦曲线.如图,在直角坐标系的x 轴上取一点1O ,以1O 为圆心,单位长为半径作圆,从圆1O 与x 轴的交点A 起,把圆1O 分成12等份(份数越多,画出的图象越精确).过圆1O 上各分点作x 轴的垂线,得到对应于0,,,,,2632等角的正弦线,相应地,再把x 轴上从0到2这一段分成12等份,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,再把这些正弦线的终点用光滑曲线连接起来,即得sin ,[0,2]y x x 的图象.2.用“五点法”作sin ,[0,2]y x x 的简图在函数sin ,[0,2]y x x 的图象上,起关键作用的点有五个:(0,0),(,1)2,(,0),3(,1)2,(2,0). 一般地,在精确度要求不高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,就得到正弦函数在[0,2]上的简图.这种方法叫“五点法”.【提示】(1)“五点法”作三角函数图象的实质是分别找到函数图象的最高点、最低点及三个平衡点,这五个点大致确定了函数图象的位置与形状.(2)用“五点法”作sin ,[0,2]y x x 的图象后,将其向左右平移(每次2个单位长度),可得出sin ,y x x R 的图象.知识点二 余弦函数的图象 1.利用图象变换作余弦函数的图象 由诱导公式六,有cos sin()2y x x .因此,将正弦函数sin ,y x x R 的图象向右平移2个单位长度,就得到函数sin()cos ,2y x x x R 的图象. 我们把余弦函数cos ,y x x R 的图象叫做余弦曲线,如图所示.2.用“五点法”作cos ,[0,2]y x x 的简图在函数cos ,[0,2]y x x 的图象上,起关键作用的点是它与x 轴的交点、函数图象的最高点和最低点,它们的坐标依次为:(0,1),(,0)2,(,1),3(,0)2,(2,1).用光滑的曲线将它们连接起来,就得到余弦函数在[0,2]上的简图.【提示】(1)作余弦函数图象时,可通过正弦函数的图象平移得到,但要注意平移的单位长度. (2)作x R 的余弦函数图象,可由cos ,[0,2]y x x 的图象左右平移得到,也可由 sin ,y x x R 的图象向左平移2个单位长度得到.考点一 通过图象变换作函数的图象 【例1】作函数32sin y x π⎛⎫=+⎪⎝⎭的图象. 解:3sin |cos |2y x x π⎛⎫=+= ⎪⎝⎭cos 22,Z 22,3cos 22,Z .22x k x k k x k x k k ππππππππ⎧⎛⎫-+≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<<+∈ ⎪⎪⎝⎭⎩故|cos |y x =的图象实际就是cos y x =的图象在x 轴下方的部分翻折到x 轴上方后得到的图象,如图由于余弦函数的图象是利用诱导公式依据图象变换画出的,故掌握利用诱导公式化简三角函数式也是画三角函数图象的切入点。

函数图像及知识点总结

函数图像及知识点总结

函数图像及知识点总结本文将首先介绍函数的概念,接着讨论函数图像的基本特征和性质,然后给出一些常见的函数图像和它们的性质分析,最后总结本文的内容。

一、函数的概念在代数学中,函数是一种对应关系,它将一个集合的元素映射到另一个集合的元素上。

具体地说,一个函数 f 是一个规则,它将集合 A 中的每个元素 x 映射到集合 B 中的一个元素f(x) 上。

其中,集合 A 被称为函数的定义域,集合 B 被称为函数的值域。

如果对于定义域A 中的每个元素 x,都有一个唯一的值 f(x) 与之对应,那么函数 f 是一一对应的,否则称为多对一的。

函数可以用多种方式来表示,比如用代数式、图表、表格或者用文字描述。

在本文中,我们将主要讨论函数图像的性质和特点。

二、函数图像的基本特征和性质在直角坐标系中,函数 f 的图像是它的定义域的点在坐标系中的表示,即点 (x, f(x))。

函数图像的基本特征和性质可以通过其图像的形状和位置来描述。

1. 函数的增减性和极值对于函数 f,如果在定义域的某个区间上,当 x1 < x2 时有 f(x1) < f(x2),那么称函数 f 在该区间上是增加的;如果在该区间上,当 x1 < x2 时有 f(x1) > f(x2),那么称函数 f 在该区间上是减少的。

极值是函数图像中的最高点或最低点,它们可以通过导数或者图像来求得。

2. 函数的奇偶性如果对于函数 f 的所有 x 都有 f(-x) = f(x),那么称函数 f 是偶函数;如果对于函数 f 的所有x 都有 f(-x) = -f(x),那么称函数 f 是奇函数。

3. 函数的周期性如果存在一个正数 T,使得对于函数 f 的所有 x 都有 f(x+T) = f(x),那么称函数 f 是周期函数,其中 T 被称为函数 f 的周期。

4. 函数的对称性如果函数图像关于某个点对称,那么称函数具有对称性。

常见的对称性有关于 x 轴、y 轴和原点的对称性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。

2.自变量的取值围:(1)能够使函数有意义的自变量的取值全体。

(2)确定函数自变量的取值围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。

(3)不同函数关系式自变量取值围的确定:①函数关系式为整式时自变量的取值围是全体实数。

②函数关系式为分式时自变量的取值围是使分母不为零的全体实数。

③函数关系式为二次根式时自变量的取值围是使被开方数大于或等于零的全体实数。

3 .函数值:当自变量取某一数值时对应的函数值。

这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。

(2)当已知函数值求自变量的值就是解方程。

(3)当给定函数值的一个取值围,欲求自变量的取值围时实质上就是解不等式或不等式组。

二.平面直角坐标系:1.各象限点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p (x,y )在x 轴上→x 为任意实数,y=0(2)点p (x,y )在y 轴上→x=0,y 为任意实数3 .关于x 轴,y 轴,原点对称的点的坐标的特征:(1)点p (x,y )关于x 轴对称的点的坐标为(x,-y ).(2)点p (x,y )关于y 轴对称的点的坐标为(-x,y ).(3)点p (x,y )关于原点对称的点的坐标为(-x,-y )4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p (x,y )在第一、三象限夹角平分在线→x=y.(2)点p (x,y )在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x 轴的直线上的所有点的纵坐标相同。

(2)位于平行于y 轴的直线上的所有点的横坐标相同。

6.点到坐标轴及原点的距离:(1)点p (x,y )到轴的距离为 |y ︱.(2)点p (x,y )到y 轴的距离为∣x ∣.(3)点p (x,y )到原点的距离为22y x(4)同在x 轴上的两点A (x 1,0)与B (x 2,0)之间的距离为AB=|x 1-x 2|(5)同在y 轴上的两点C (0,y 1)与D (0,y 2)之间的距离为CD=|y 1-y 2|三.函数的图像函数图像上的点与其解析式的关系1.函数图像上任意一点p ﹙x,y ﹚中的x 、y 满足函数关系式,满足函数关系式的一对对应值﹙x,y ﹚都在函数的图像上。

2.判断点p ﹙x,y ﹚是否在函数图像上的方法,将这个点的坐标 ﹙x,y ﹚代入函数关系式,如果满足函数关系式,那么这个点就在函数的图像上,如果不满足函数关系式,那么,这个点就不在函数的图像上。

四.一次函数(一)一次函数的定义1.定义:含有自变量的式子为一次整式,即形如式子y=kx+b(其中k和b为常数,k≠0)叫做一次函数。

正比例函数:在一次函数y=kx+b中如果b=0即变为y=kx(其中k≠0),这样的函数叫做正比例函数。

2.注意:(1)由一次函数和正比例函数的定义可知;①函数是一次函数→解析式为y=kx+b的形式。

②函数是正比例函数→解析式为y=kx的形式。

(2)一次函数解析式y=kx+b的结构特征:①k≠0 ②x的次数是1 ③常数b为任意实数(3)正比例函数解析式y=kx的结构特征①k≠0 ②x的次数是1 ③常数b=03.说明:在y=kx+b中若k=0则y=b﹙b为常数﹚这样的函数叫做常数函数,它不是一次函数。

4.正比例函数与一次函数的关系:正比例函数是一次函数的特例,一次函数包含正比例函数。

一次函数y=kx+b,当b=0时为正比例函数一次函数y=kx+b,当b≠0时一般的一次函数(二)一次函数的图像1.一次函数图像的形状:一次函数y=kx+b的图像是一条直线,通常称为直线y=kx+b正比例函数y=kx的图像也是一条直线,称为直线y=kx2.一次函数图像的主要特点:一次函数y=kx+b 的图像经过点﹙0,b ﹚的直线,正比例函数y=kx+b 的图像是经过原点﹙0,0﹚的直线注意:点﹙0,b ﹚是直线y=kx+b 与y 轴的交点。

① 当b >0时,此时交点在y 轴的正半轴上,② 当b <0时,此时交点在y 轴的负半轴上,③ 当b=0时,此时交点在原点,这时的一次函数就是正比例函数。

3.一次函数图像的画法:根据两点能画一条直线并且只能画一条直线,即两点确定一条直线,所以画一次函数的图像时,只要先描出两点,在连成直线即可。

那么,先描出哪两点比较好呢?选两点应以计算和描点简单为原则,一般来说,当b ≠0时,一般的一次函数y=kx+b 的图像,应选取它与两个坐标轴的交点﹙0,b ﹚与﹙-kb ,0﹚;当b=0时,画正比例函数y=kx 的图像,通常取﹙0,0﹚与﹙1,k ﹚两点,个别情况下可以做些变通,例如画函数y=32x 的图像,可以取﹙0,0﹚与﹙1,32﹚两点,也可以取﹙0,0﹚与﹙3,2﹚两点。

4.直线y=kx+b 与坐标轴的交点(1) 令x=0,则y=b 所以直线y=kx+b 与y 轴的交点坐标为﹙0,b ﹚(2) 令y=0,则kx+b=0所以x=-kb 所以直线y=kx+b 与x 轴的交点坐标为﹙-k b ,0﹚注意:此时直线y=kx+b 与x 轴,y 轴围成的三角形面积S=21×∣-kb ∣×∣b ∣ 5.两直线在直角坐标系的位置关系:(1)两直线的解析式中当k 相同时,其位置关系是平行,其中一条直线可以看作是另一条平移得到的,平移规律是“左减右加,上加下减”(2)两直线的解析式中当b 相同时,其位置关系是相交,交点坐标为﹙0,b ﹚.(三)一次函数的性质1.正比例函数的性质(1)当k>0时,图像经过第一、三象限,y随x的增大而增大,直线y=kx从左到右上升。

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小,直线y=kx从左到右下降。

2.一次函数y=kx+b的性质(1)当k>0时,直线y=kx+b从左到右上升,此时y随x的增大而增大。

(2)当k<0时,直线y=kx+b从左到右下降,此时y随x的增大而减小。

(3)当b>0时,直线y=kx+b与y轴正半轴相交。

(4)当b<0时,直线y=kx+b与y轴负半轴相交。

3.直线y=kx+b的位置与k、b的符号之间的关系直线y=kx+b的位置是由k与b的符号决定的,其中k决定直线从左到右呈上升趋势还是下降趋势,b决定直线与y轴交点的位置是在y轴的正半轴,还是负半轴,还是原点。

k和b综合起来决定直线y=kx+b 在直角坐标系中的位置共有六种情况:①当k>0,b>0时,直线经过第一、二、三象限,不经过第四象限;②当k>0,b<0时,直线经过第一、三、四象限,不经过第二象限;③当k<0,b>0时,直线经过第一、二、四象限,不经过第三象限;④当k<0,b<0时,直线经过第二、三、四象限,不经过第一象限;⑤当k>0,b=0时,直线经过第一、三象限;⑥当k<0,b=0时,直线经过第二、四象限。

(四)正比例函数与一次函数解析式的确定1.确定一个正比例函数就是要确定正比例函数解析式y=kx﹙k≠0﹚中的常数k;确定一个一次函数需要确定一次函数解析式一般形式y=kx+b﹙k≠0﹚中的常数k和b,解这类问题的一般方法是待定系数法。

2.待定系数法:先设出待求函数关系式﹙其中含有未知的系数﹚,再根据已知条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。

其中的未知系数也称待定系数,如正比例函数y=kx 中的k ,一次函数y=kx+b 中的k 和b 都是待确定的系数。

3.用待定系数法求函数解析式的一般步骤:(1)设出含有待定系数的解析式;(2)把已知条件﹙自变量与函数的对应值﹚代入解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数;(4)将求得的待定系数的值代回所设的解析式。

注意:通常正比例函数解析式设y=kx ,只有一个待定系数k ,一般只需一对x 与y 的对应值即可;一次函数解析式设y=kx+b ,其中有两个待定系数k 和b ,因而需要两对x 与y 的对应值,才能求出k 和b 的值。

五.反比例函数(一)反比例函数定义1.一般的,函数y=xk ﹙k 是常数,k ≠0﹚叫做反比例函数,反比例函数的解析式也可以写成y=kx -1的形式,其中k 叫做比例系数。

2.反比例函数解析式的主要特征:(1)等号左边是函数y,右边是一个分式,分子是不为零的常数k,分母中含有自变量x,且x 的指数是1,若写成y=kx -1的形式,则x 的指数是-1。

(2)比例系数“k ≠0”是反比例函数定义的重要组成部分。

(3)自变量x 的取值围是x ≠0的一切实数。

(二)反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点成中心对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以它的图像与x 轴和y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

(三)反比例函数的性质1.当k >0时,图像在第一、三象限,在每个象限,曲线从左到右下降,也就是在每个象限y 随x 的增大而减小。

2.当k <0时,图像在第二、四象限,在每个象限,曲线从左到右上升,也就是在每个象限y 随x 的增大而增大。

(四)反比例函数解析式的确定确定解析式的方法仍是待定系数法,由于反比例函数y=xk 中只有一个待定系数,因此只需要一对x 与y 的对应值或图像上一个点的坐标,即可求出k 的值,从而确定其解析式。

(五)“反比例关系”与“反比例函数”的区别与联系反比例关系是小学学过的概念:如果xy=k ﹙k 是常数k ≠0﹚,那么x 与y 这两个量成反比例关系,这里x 与y 既可以代表单独的一个字母也可以代表多项式或单项式,例如y+3与x 成反比例则有y+3=x k ,y 与x ²成反比例,则y=2x k ,成反比例关系不一定是反比例函数,但是反比例函数y=x k 中的两个变量必定成反比例关系。

(六)反比例函数y=xk ﹙k ≠0﹚中的比例系数k 的几何意义 1.如图,过双曲线上一点作x 轴、y 轴的垂线PM 、PN,所得矩形PMON 面积为|k|。

2.连结PO,则S △POM=21S 矩形=21|k|。

六. 函数的应用1.利用图像比较两个函数值的大小在同一直角坐标系中的两个函数图像,如果其中一个函数的图像在另一个函数图像的上方,则该函数值就比另一个函数值大,若在下方,则该函数值就比另一个函数值小,而其交点的横坐标就是分界点。

相关文档
最新文档