二次函数图象和性质知识点总结

合集下载

二次函数知识点全总结初中

二次函数知识点全总结初中

二次函数知识点全总结初中二次函数是代数学中的重要内容,也是中学数学中的重要内容之一。

在学习二次函数时,不仅要掌握它的基本概念和性质,还要掌握它的图像、方程和应用等方面的知识。

下面对二次函数的知识点进行全面总结。

一、二次函数的基本概念和性质1. 二次函数的定义二次函数是形如f(x) = ax² + bx + c (a≠0)的函数,其中a、b、c为常数。

二次函数的自变量x的最高次数是2,因此称为二次函数。

2. 二次函数的图像二次函数的图像通常是一个开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的开口方向由二次项的系数a决定。

3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。

顶点的横坐标为-x轴上的对称轴,纵坐标为抛物线的最低值或最高值。

4. 二次函数的对称轴对称轴是过顶点并垂直于x轴的直线,对称轴的方程为x = -b/2a。

5. 二次函数的零点二次函数与x轴相交的点称为零点,其坐标为(x, 0)。

二次函数的零点可以由解二次方程ax² + bx + c = 0得到。

6. 二次函数的凹凸性凹凸性是指二次函数的图像的形状,当a>0时,抛物线开口向上,图像是凹的;当a<0时,抛物线开口向下,图像是凸的。

二、二次函数的图像与性质1. 二次函数图像的平移二次函数y = ax² + bx + c的图像平移,一般可以通过改变常数c来实现。

当c>0时,图像上移;当c<0时,图像下移。

常数b则可以控制图像的水平平移。

2. 二次函数图像的伸缩二次函数图像的伸缩可以通过改变系数a来实现。

当|a|>1时,图像纵向伸缩;当0<|a|<1时,图像纵向压缩。

系数b则可以控制图像的水平伸缩。

3. 二次函数的最值对于二次函数y = ax² + bx + c,当a>0时,最小值为f(-b/2a),最大值为正无穷;当a<0时,最大值为f(-b/2a),最小值为负无穷。

二次函数图象和性质总结表格

二次函数图象和性质总结表格

二次函数图象和性质总结表格二次函数知识点总结一、二次函数的图像和性质二次函数的图像开口方向、对称轴、顶点坐标、增减性和最值与函数的参数有关。

当参数a大于0时,图像开口向上,对称轴是y轴,顶点坐标为(0,0),在对称轴左侧y随x增大而减小,在对称轴右侧y随x增大而增大。

参数a越大,开口越小。

当参数a小于0时,图像开口向下,对称轴是y轴,顶点坐标为(0,0),在对称轴左侧y随x增大而增大,在对称轴右侧y随x增大而减小。

参数a越小,开口越小。

当二次函数带有平移时,对称轴的位置会发生变化,顶点坐标变为(h,k)。

当参数a大于0时,图像开口向上,对称轴是直线x=h,顶点坐标为(h,k),在对称轴左侧y随x增大而减小,在对称轴右侧y随x增大而增大。

当参数a小于0时,图像开口向下,对称轴是直线x=h,顶点坐标为(h,k),在对称轴左侧y随x增大而增大,在对称轴右侧y随x增大而减小。

二、二次函数的解析式二次函数的解析式为y=ax²+bx+c,其中a、b、c均为实数且a≠0.当二次函数带有平移时,解析式为y=a(x-h)²+k,其中a、h、k均为实数且a≠0.三、二次函数的应用二次函数在数学和现实生活中都有广泛的应用。

例如,二次函数可以用来描述物体的运动轨迹、建筑物的结构、金融市场的波动等等。

在应用中,我们需要根据实际情况确定二次函数的参数,并利用二次函数的性质进行分析和计算。

总之,二次函数是数学中非常重要的一个概念,掌握二次函数的图像、解析式和应用是我们研究数学的基础。

当x>h时,随着x的增大,y会减小。

函数a的符号决定了开口的方向,当a>0时,开口向上,当a<0时,开口向下。

对称轴为直线x=-b/2a,顶点坐标为(-b/2a。

c-b^2/4a)。

当a的绝对值越大时,开口越小;b的符号决定了对称轴在y轴的位置,当b>0时,对称轴在y轴左侧,当b<0时,对称轴在y轴右侧;c的符号决定了抛物线与y轴的交点在哪个象限,当c>0时,抛物线与y轴正半轴相交,当c<0时,抛物线与y轴负半轴相交。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

二次函数复习知识点总结

二次函数复习知识点总结

二次函数复习知识点总结二次函数是高中数学中常见且重要的一个内容。

它的一般形式可以表示为y=ax^2+bx+c,其中a、b、c为实数且a≠0。

在二次函数中,x的次数最高为2,因此该函数的图像是一个抛物线。

以下是二次函数的复习知识点总结。

一、基本概念:1. 定义:二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为实数,且a≠0。

2.首项系数:a是二次函数中x^2的系数,决定了抛物线的开口方向。

-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。

3.y-截距:c是二次函数的常数项,表示抛物线与y轴的交点的纵坐标。

4. 零点:二次函数的零点是使得函数值为0的x值。

可以通过求解二次方程ax^2+bx+c=0来找到零点。

二、性质和图像的特征:1.对称轴:二次函数的对称轴是抛物线的对称轴,可以通过求解x=-b/2a来找到对称轴的方程。

2.最值:当抛物线开口向上时,抛物线的最小值为对称轴的纵坐标;当抛物线开口向下时,抛物线的最大值为对称轴的纵坐标。

3. 判别式:判别式Δ=b^2-4ac可以用来判断二次方程ax^2+bx+c=0的根的情况。

-当Δ>0时,方程有两个不相等实数根;-当Δ=0时,方程有两个相等实数根;-当Δ<0时,方程没有实数根。

4.开口方向:抛物线开口的方向由首项系数a决定。

5.图像:二次函数的图像是一个抛物线,可以通过首项系数a的正负和抛物线的其他特征来确定图像的形状、方向和位置。

三、函数的变换:对于二次函数y=ax^2+bx+c,可以进行水平平移、垂直平移、水平缩放等操作来得到其他的二次函数。

1. 水平平移:将函数y=ax^2+bx+c的图像沿x轴平移h个单位得到函数y=a(x-h)^2+b(x-h)+c。

平移后的抛物线的顶点坐标为(h, k),其中k是原抛物线的纵坐标。

2. 垂直平移:将函数y=ax^2+bx+c的图像沿y轴平移k个单位得到函数y=a(x^2+bx+c)+k。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是指形如f(x)=ax²+bx+c的一种函数形式,其中a、b、c为常数,且a≠0。

二次函数是一种具有平方项的函数,其特点是拥有一个二次项的系数不为零,因此其图像为抛物线。

二次函数的图像特点:1. 对称性:二次函数的图像关于直线x=-b/2a对称。

2. 开口方向:当a>0时,抛物线开口向上,图像上有一个最小值点;当a<0时,抛物线开口向下,图像上有一个最大值点。

3. 零点:二次函数的零点为其图像与x轴的交点,即满足f(x)=0的x值。

4. 最值点:当a>0时,最小值点为抛物线的顶点;当a<0时,最大值点为抛物线的顶点。

二次函数的基本性质:1. 零点判别式:对于二次函数f(x)=ax²+bx+c,其零点判别式Δ=b²-4ac表示判定二次函数的零点情况。

当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根。

2. 最值点的求解:对于二次函数f(x)=ax²+bx+c,其最值点的横坐标为x=-b/2a,纵坐标为f(-b/2a)。

3. 平移变换:二次函数可以通过平移变换进行图像的平移。

对于二次函数f(x)=ax²+bx+c,若将x平移h个单位,y平移k个单位,则新的二次函数为f'(x)=a(x-h)²+k。

4. 点与抛物线的关系:对于二次函数f(x)=ax²+bx+c,给定x的值,可以求出对应点的y值。

给定y的值,方程ax²+bx+c=y可以求解出对应的x值。

二次函数的应用:1. 物理学中的抛物线:二次函数的图像在物理学中有广泛应用,特别是抛物线的运动轨迹。

2. 优化问题的建模:二次函数的最值问题可以用于优化问题的建模,如求解最小成本、最大收益等问题。

3. 经济学中的供求模型:二次函数可以用于经济学中的供求模型,通过调整参数来描述市场供求关系的变化。

二次函数知识点 二次函数图像与性质

二次函数知识点 二次函数图像与性质

二次函数图像与性质〖知识要点〗 1.二次函数定义一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

定义域是全体实数,图像是抛物线。

2y ax bx c =++是二次函数的“一般式”。

特点:① 自变量x 最高次数是2,② a ≠0 ③ 整式2. 二次函数的基本形式:2y ax =(0a ≠)的图像性质:a 越大抛物线的开口越小考点一:二次函数定义例1.(1)圆的半径是xcm ,圆的面积为ycm²,写出y 与x 之间的函数关系式;(2)用总长为60m 的篱笆围成矩形场地,写出场地面积y(m ²)与矩形一边长x(m)之间的关系式例2. (1)下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =222(2)2x x --;⑧y=-5x.(2)若y=(m +1)x562--m m 是二次函数,则m=( )A .7B .—1C .-1或7D .以上都不对(3)函数)1(432-=x y 的自变量x 的取值范围是 ; (4)已知二次函数3)12()1(2+++-=x m x m y ,当x=1时,y=3,则其表达式为 ;(5)已知二次函数8-10-2x xy +=,当x=________________时,函数值y 为1.考点二:2y ax =(0a ≠)的图像性质例3.作二次函数2x 2y =的图像观察图象,你发现了:例4.(1) 函数y=-x 2的图像是一条______线,开口向_______,对称轴是______, 顶点是________, 顶点是图像最_____点,表示函数在这点取得最_____值。

函数y=x 2 的图像的开口方向________,对称轴________,顶点_______.(2).关于213y x =,2y x =,y=-3x 2的图像,开口最大的是 .例5已知抛物线y=ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,- 4)是否在此抛物线 ;(3)求出此抛物线上纵坐标为-6的点的坐标.例6已知二次函数mm m +=2xy (1)当m 取何值时它的图象开口向上。

二次函数的像与性质知识点总结

二次函数的像与性质知识点总结一、二次函数的定义及性质二次函数是指一般形式为f(x) = ax² + bx + c的函数,其中a ≠ 0。

它是二次方程的图象。

1. 定义二次函数的定义域是一组实数,范围可根据上下文中的题目来确定。

它是实数集到实数集的映射关系。

2. 对称性二次函数的图象关于直线x = -b/2a对称。

3. 零点二次函数的零点就是使得f(x) = 0的x值。

零点可以通过求解二次方程ax² + bx + c = 0来得到。

二、二次函数的图象与特点1. 图象的开口方向二次函数开口向上(a > 0)或开口向下(a < 0)。

开口方向直接取决于二次函数的系数a。

2. 图象的顶点顶点是二次函数的极值点,其横坐标为x = -b/2a,纵坐标为f(-b/2a)。

顶点是二次函数图象的最高点(开口向下)或最低点(开口向上)。

3. 最值当二次函数开口向上时,它在定义域上无下界,但有一个最小值;当二次函数开口向下时,它在定义域上无上界,但有一个最大值。

4. 对称轴对称轴是指二次函数图象的对称轴,其方程为x = -b/2a。

图象关于对称轴对称。

5. 零点零点是指二次函数的图象与x轴交点的横坐标。

零点的个数和种类取决于二次函数的判别式Δ = b² - 4ac。

- 当Δ > 0时,二次函数有两个不同的实根,图象与x轴有两个交点。

- 当Δ = 0时,二次函数有一个实根,图象与x轴有一个交点。

- 当Δ < 0时,二次函数无实根,图象与x轴无交点。

6. 区间根据二次函数开口的方向,可以将定义域分成两个区间。

在每个区间内,二次函数具有相同的增减性。

7. 渐近线二次函数没有水平渐近线,但有一条垂直渐近线x = -b/2a,这条线是对称轴。

如果a ≠ 0,则二次函数有斜渐近线。

三、二次函数的变形与应用1. 平移变换将二次函数沿x轴平移h个单位,或沿y轴平移k个单位,可通过将x或y的值替换为x ± h或y ± k来实现。

初三数学:《二次函数的图象和性质》知识点归纳

二次函数图像的性质 :1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。

(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。

(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是( 0,k),它与的图像形状相同,只是位置不同。

函数的图像是由抛物线向上(或下)平移|k|个单位得到的。

当a&gt;0时,抛物线的开口向上,在对称轴的左边(x&lt;0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x&gt;0时),曲线自左向右上升,函数y随x的增大而增大。

顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k 。

当a&lt;0时,抛物线的开口向下,在对称轴的左边(x&lt;0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x&gt;0时),曲线自左向右下降,函数y随x的增大而减小。

顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k 。

3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x= h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。

画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。

当a&gt;0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y 随x的增大而增大。

顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中的重要章节,它在数学和实际生活中有着广泛的应用。

所以,对于二次函数的知识点的掌握对于学习数学和解决实际问题都是非常重要的。

下面将从定义、图像、性质、解析式和实际应用等方面详细归纳二次函数的知识点。

一、定义和基本形态二次函数是指一个一元二次方程确定的函数,它的一般形式可以表示为:f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。

它的定义域是全体实数集R。

二次函数的图像是一个抛物线,其开口方向和抛物线的开口相同。

当a > 0时,抛物线向上开口;当a < 0时,抛物线向下开口。

这个基本形态是理解二次函数的关键。

二、图像的性质1. 零点:二次函数的零点是使得f(x) = 0的x值。

二次函数的零点可以通过解一元二次方程来求得,也就是求解 ax² + bx + c = 0 的解。

当零点存在时,它的个数最多为2个。

2. 对称轴:二次函数的图像总是关于一个直线对称的。

这条直线称为二次函数的对称轴。

对称轴方程的求法是x = -b / 2a。

3. 顶点和最值:二次函数总是有一个最值点,也就是函数的最大值或最小值。

当a > 0时,函数的最小值出现在顶点上;当a < 0时,函数的最大值出现在顶点上。

顶点的坐标可以通过对称轴的x坐标带入函数中求得。

4. 开口:二次函数的开口决定了其函数值的增减。

当 a > 0时,函数是向上开口的,函数值随着x的增大而增大;当a < 0时,函数是向下开口的,函数值随着x的增大而减小。

三、解析式及其对称性根据二次函数的定义,我们可以得到它的一般解析式 f(x) = ax² + bx + c。

在解析式中,a是二次项的系数,b是一次项的系数,c是常数项。

二次函数的解析式可以通过给定的系数a、b、c进一步确定函数的性质。

1. 对称性:二次函数具有对称性,也就是函数图像在对称轴两侧关于对称轴对称。

二次函数知识点总结(详细)

2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。

(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。

2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0)②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。

2.二次函数的图象①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。

然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y axbx c 2y a xh k ()2ya xx xx ()()12x x 12,axbx c20yaxbxc 2yaxbxc 2ya xh k ()2y ax 2y axbxc 2y a x h k ()2yax 2yaxbxc 2ya x h k ()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。

3. 二次函数的性质函数二次函数a 、b 、c 为常数,a ≠0(a 、h 、k 为常数,a ≠0)a >0a <0a >0a <0图象(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸性(2)对称轴是x =,顶点是()(2)对称轴是x =,顶点是()(2)对称轴是x =h ,顶点是(h ,k )(2)对称轴是x=h ,顶点是(h ,k )质(3)当时,y 随x 的增大而减小;当时,y 随x 的增大而增大(3)当时,y 随x 的增大而增大;当时,y 随x 的增大而减小(3)当时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大。

(3)当x <h 时,y 随x 的增大而增大;当x >h时,y 随x 的增大而减小(4)抛物线有最低点,当时,y 有最小值,(4)抛物线有最高点,当时,y 有最大值,(4)抛物线有最低点,当x =h 时,y 有最小值(4)抛物线有最高点,当x=h 时,y 有最大值4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c 2y a x h k ()2b a 2b aac ba 2442,ba 2baac ba2442,x b a 2x b a 2x b a 2x b a 2x h x b a 2y ac ba最小值442x b a 2y ac ba最大值442y k最小值y k最大值yaxbxc 2ya x h k ()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。

②公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y 有最大值,当5. 抛物线与x 轴交点情况:对于抛物线①当时,抛物线与x 轴有两个交点,反之也成立。

②当时,抛物线与x 轴有一个交点,反之也成立,此交点即为顶点。

③当时,抛物线与x 轴无交点,反之也成立。

二、考点归纳考点一求二次函数的解析式例1.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最xh y k最小值y k最大值baac ba 2442,xb a 2ay xba y ac ba 02442,有最小值,当时,;最小值a 0xb ay ac ba2442时,最大值y axbx c a 20()≠b ac 240bac240bac240大值是8,试求f(x)。

解答:法一:利用二次函数的一般式方程设f(x)=ax2+bx+c(a≠0),由题意故得f(x)=-4x2+4x+7。

法二:利用二次函数的顶点式方程设f(x)=a(x-m)2+n由f(2)=f(-1)可知其对称轴方程为,故m=;又由f(x)的最大值是8可知,a<0且n=8;由f(2)=-1可解得a=-4。

故。

法三:利用二次函数的零点式方程由f(2)=-1,f(-1)=-1可知f(x)=-1的两根为2和-1,故可设F(x)=f(x)+1=a(x-2)(x+1)。

又由f(x)的最大值是8可知F(x)的最大值是9,从而解得a=-4或0(舍)。

所以f(x)=-4x2+4x+7。

说明:求函数解析式一般采用待定系数法,即先按照需要设出函数方程,然后再代入求待定系数。

考点二二次函数的图像变换例2.(2008年浙江卷)已知t为常数,函数在区间[0,3]上的最大值为2,则t=。

解答:作出的图像,I、若所有点都在x轴上方,则y max=f(3)=2可解得t=1;II、若图像有部分在x轴下方,把x轴下方的部分对称地翻折到x轴上方即可得到的图像,则y max=f(1)或y max=f(3),解得t=-3或t=1,经检验,t=1。

综上所述,t=1。

考点三二次函数的图像的应用例3.已知函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,则f(1)的范围是()A. f(1)≥25B. f(1)=25C. f(1)≤25D. f(1)>25解答:函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则区间[-2,+∞)必在对称轴的右侧,从而,故f(1)=9-m≥25。

选A。

说明:解决此类问题结合函数图像显得直观。

考点四二次函数的性质的应用例4.设的定义域是[n,n+1](n是自然数),试判断的值域中共有多少个整数?分析:可以先求出值域,再研究其中可能有多少个整数。

解答:的对称轴为,因为n是自然数,故,所以函数在[n,n+1]上是增函数。

故故知:值域中共有2n+2个整数。

说明:本题利用了函数的单调性,很快求出了函数的值域,这是求函数值域的一个重要方法。

考点五二次函数的最值例5.试求函数在区间[1,3]上的最值。

分析:本题需就对称轴与区间的相对位置关系进行分类讨论:<1,∈[1,2],∈(2,3],>3。

解答:函数的对称轴I、当<1即时:函数在[1,3]上是增函数,故;II、当∈[1,2]即时:;III、当∈(2,3]即时:;IV、当>3即时:函数在[1,3]上为减函数,故综上所述:当时,;当时,;当时,;当时,。

考点六方程的根或函数零点的分布问题例6.已知二次方程的一个根比1大,另一个根比1小,试求的取值范围。

解答:设,则;例7.当为何实数时,关于的方程(I)有两个正实根;(II)有一个正实根,一个负实根。

解答:(I)设,由方程有两个正实根,结合图像可知:(II)设,结合图像可知:说明:一元二次方程的根或二次函数零点的分布问题的处理主要思路是结合函数图像,考虑三个内容:根或零点所在区间端点的函数的正负、判别式及对称轴的位置。

考点七三个“二次”的关系例8.已知关于的一元二次不等式的解集为,试解关于的一元二次不等式。

解答:法一:由题意可知,,一元二次不等式对应的一元二次方程的两个根是1和2,故;又即关于的一元二次不等式的解集为。

法二:,即关于的一元二次不等式的解集为。

yxO(第4题)DCB (4,4)A(1,4)考点八二次函数的应用例9.(2003北京春招)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元。

未租出的车每辆每月需维护费50元。

(I )当每辆车的月租金定为3600元时,能租出多少辆车?(II )当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解答:(I )当每辆车的月租金定为3600元时,未租出的车辆数为,故租出了88辆;(II )设每辆车月租金定为元,则租赁公司的月收益为故当月租金定为4050元时,租赁公司的月收益最大为307050元。

三、综合练习1、小李从如图所示的二次函数的图象中,观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)ab >0;(4)a -b +c <0. 你认为其中错误..的有( )A. 2个B. 3个C. 4个D.1个第1题2.已知二次函数经过点M(-1,2)和点N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则……()①;②该二次函数图像与y 轴交与负半轴③存在这样一个a ,使得M 、A 、C 三点在同一条直线上④若以上说法正确的有:A .①②③④B .②③④C .①②④D .①②③3、在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A .y =2(x + 2)2-2B .y =2(x -2)2+ 2 C .y =2(x -2)2-2D .y =2(x + 2)2 + 2c bx axy 2)0(2a c bx axy 2b2,1OCOB OA a则4.如图,点A ,B 的坐标分别为(1,4)和(4, 4),抛物线的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为,则点D的横坐标最大值为( )A.-3B .1C .5D .85. 抛物线图像如图所示,则一次函数与反比例函数在同一坐标系内的图像大致为( )6. 把抛物线向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是.7.如图,菱形ABCD 的三个顶点在二次函数y=ax 2-2ax+32(a <0)的图象上,点A 、B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为.8. 老师给出一个y 关于x 的函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x<2时,y 随x 的增大而减小;丁:当x<2时y>0.已知这四位同学叙述都正确。

请写出满足上述所有性质的一个函数______________.9.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只有2个交点,则m =10. 如图,已知⊙P 的半径为2,圆心P 在抛物线上运动,当⊙P 与轴相切时,圆心P 的坐标为.11. .如图,在第一象限内作射线OC ,与x 轴的夹角为30o,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A的坐标是 _______________ .12. 我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此。

相关文档
最新文档