大直径长距离盾构隧道施工技术
天津西站至天津站地下直径线工程盾构隧道主要施工技术

盾构隧道下穿海河段水深9.3 m,洞顶最小覆土 厚度约为8.4 m(其中淤泥层厚约5.0 m),穿越宽 度165 m。 3.4.2 加固方案确定
(6)精确的方向控制性能。天津地下直径线最小平 面曲线半径600 m,且需在曲线段进行盾构接收,配备的 PPS导向系统可以通过数字和图像2种形式显示盾构机的 位置,利用标准的几何元素计算隧道设计轴线和纠偏曲 线,具有良好的方向控制能力和很高的控制精度。 3.2 盾构始发端头加固 3.2.1 加固方案
自2011年1月5—26日,历时22天,盾构顺利完 成下穿海河段隧道掘进任务。 3.5 盾构下穿桥梁 3.5.1 盾构隧道与桥梁位置关系
隧道结构边缘距离狮子林桥桥台挡土墙钻孔灌 注桩最小水平距离0.640 m、垂直距离8.327 m;与 金钢桥6#墩边桩最小水平距离0.969 m、垂直距离 7.961 m,与7#墩边桩最小水平距离3.66 m;与慈海 桥(摩天轮)5#主墩桩基最小水平距离4.5 m。 3.5.2 防护处理方案
28 2012年第3期
技 盾构 术
3.4.3 具体加固方法 (1)注浆加固:采用水泥水玻璃双液浆进行
袖阀管注浆加固,将隧道上方一定范围内的土层及 淤泥层进行加固改良。φ 40 mm PE袖阀管,孔间距 200 mm,加固厚度为淤泥顶面以下1.5 m至淤泥底面 以下1 m,加固宽度为隧道顶部及两侧各15 m范围。
(4)施工监测:在桥梁墩台四角布设沉降点, 在慈海桥(摩天轮)人字形钢箱梁柱脚和金钢桥主桥 拱肋布设监测点(见图5),采用徕卡TS30机器人进
上软下硬地层超大直径泥水盾构掘进关键技术

上软下硬地层超大直径泥水盾构掘进关键技术摘要:改革后,在我国社会高速发展的影响下,带动了我国各行业领域的进步。
近年来,在人们生活水平的提升下,对建筑行业的要求不断提高。
目前,超大直径泥水盾构机在上软下硬岩地层长距离掘进时,容易出现开挖面失稳、掘进参数突变、姿态不易控制、刀具异常损坏、泥水环流易滞排等现象。
以汕头海湾隧道项目为依托,通过研究超大直径泥水盾构机穿越上软下硬地层的施工技术,从盾构机选型、施工方案选择、掘进管理与控制、掘进参数控制、掘进姿态控制等方面提出了具体的控制措施和注意事项。
关键词:超大直径泥水盾构;上软下硬;掘进参数引言近年来盾构施工技术发展迅速,盾构隧道施工已经成为一种成熟的施工方法,上软下硬地层施工的工程也日益增加,然而在这种地层下的施工会面对各种难点。
因此,针对该类施工工程的施工技术和策略研究十分重要。
研究泥岩和砂卵石相交地层分析的掘进参数,依据地质条件确定了合理的掘进参数范围。
研究上软下硬地层中盾构施工主要掘进参数的分布情况,总结出各个掘进参数的分布模型。
分析了在上软下硬地层中新建隧道对已有隧道的影响,总结了已有隧道沉降和变形特点。
刀具磨损、掘进参数及舱内状况等方面研究了盾构施工管理。
从刀具管理、掘进参数及冲刷系统等方面进行分析,提供盾构施工过程中的掘进管理建议。
研究了上软下硬富水砂层掘进过程中的注浆控制,采用了洞内超前注浆加固施工技术,保证施工安全。
目前,在上软下硬地层施工技术方面已经有很多专家学者进行研究,但缺少对上软下硬地层掘进参数的分析研究。
本文基于和燕路过江通道某区间盾构隧道工程,分析盾构施工技术的主要难点,探究掘进过程中掘进参数的变化情况,总结出解决主要施工难点的控制策略。
1上软下硬地层特点及施工难点根据地层组合的形式,上软下硬地层大体上可以划分为三种类型。
一是第四系土层的上软下硬。
这种组合的特点是上部地层的标贯级数很低,含水量高,颗粒粒径小,下部地层反之。
二是岩石地层的上软下硬。
大直径盾构隧道超前地质预报施工工法(2)

大直径盾构隧道超前地质预报施工工法一、前言大直径盾构隧道超前地质预报施工工法是在盾构隧道施工中,通过连续地进行地质预报,并根据预报结果采取相应的技术措施,以提前预防和解决潜在的地质问题。
这种工法在大直径盾构隧道施工中得到了广泛应用,有效提高了施工效率和工程质量。
二、工法特点大直径盾构隧道超前地质预报施工工法的主要特点有:1. 精细地质调查和分析:通过对隧道所在地区的地质特征进行深入了解,确定施工过程中可能遇到的地质问题,并进行预测和评估。
2. 连续地质监测:在隧道推进过程中,对地质变化进行连续监测,及时发现问题并进行处理,避免潜在风险带来的影响。
3. 预警机制:建立一套完善的地质预警机制,通过各种信息传递和响应机制,及时将地质变化传达给施工人员,并采取相应的措施进行应对和调整。
三、适应范围大直径盾构隧道超前地质预报施工工法适用于以下情况:1. 隧道过程中遇到复杂的地质条件,如软弱地层、岩溶洞穴等。
2. 隧道施工地区地质情况较为复杂,需要严密监测和预警。
3. 隧道项目的安全性要求较高,需要通过预测和监测来减少潜在风险。
四、工艺原理大直径盾构隧道超前地质预报施工工法的工艺原理是通过对地质特征的研究和预测,确定解决地质问题所需的技术措施。
在实际施工中,根据地质预报结果,采取相应的支护措施、处理技术,并调整施工方案和施工进度,以保证隧道的安全施工和工程质量。
五、施工工艺大直径盾构隧道超前地质预报施工工艺包括以下阶段:1. 地质调查阶段:进行详细的地质勘察和调查,了解隧道所在地的地质特征。
2. 地质预测阶段:根据地质调查数据,对隧道施工过程中可能遇到的地质问题进行预测和评估。
3. 连续地质监测阶段:在隧道推进过程中,通过地质监测设备对地质变化进行连续监测和记录。
4. 预警和应对阶段:建立地质预警机制,及时将地质变化传达给施工人员,并根据预警结果采取相应的技术措施进行应对和调整。
六、劳动组织大直径盾构隧道超前地质预报施工工法的劳动组织主要包括地质调查和预测团队、地质监测团队、预警和应对团队以及与这些团队协作的施工人员和管理人员。
上海外滩观光隧道盾构施工技术

上海外滩观光隧道盾构施工技术提要:上海外滩观光隧道是第一条较长距离的水底观光游览隧道,使用国内直径最大的φ7.76m铰接式土压平衡盾构掘进机施工,穿越黄浦江时与两条上海地铁2号线隧道相交,施工工况极其复杂与严峻。
本文重点介绍隧道股份运用首创“盾构施工专家系统”,实施了盾构穿越叠交点施工的技术创新与实时监控,填补了我国在大直径铰接式土压盾构叠交施工领域的空白。
关键词:铰接式盾构隧道施工专家系统叠交技术实时监控1 概述1.1 工程概况上海外难观光隧道工程东起陆家嘴地区东方明珠电视塔西侧的浦东出入口竖井,西至南京路外滩(陈毅塑像北侧)绿化带内的浦东出入竖井,全长646.70mm(详见图1)。
隧道外径φ7.76m,内径φ6.76m,每环由6块钢筋混凝土管片构成,管片环宽为1.2m,每环管片中设标准块4块、拱底管片1块及封顶块1块,管片拼装形式使用纵向半插入式,管处接缝防水使用EPDM多孔型橡胶止水带与水膨性弹性密封垫。
隧道轴线为空间复合曲线:平面为U型曲线,隧道起始为186.872m的直线,经46.478m的缓与线后,进入24.00m,R =400m的平曲线,然后经113.727m的缓与曲线回到59.623m的直线;纵剖面是U型竖曲线,上下坡度均为48%,坡段长度分别为113.350m及233.350m,黄浦江中设长240m、半径R=2500m的竖曲线连接。
盾构掘进施工先后穿越浦东防讯墙、亲水平台、黄浦江江底、地铁2号线上下线隧道上部、浦西防汛墙及地下管线等。
其中江底浅覆土仅为5.67m,在浦西防汛墙19m×39m箱体内与地铁2号线上下行线区间隧道成51021,斜交,并从其上部穿越,与上、下行线图2 外滩观光隧道穿越地铁2号线示意分别为1.57m及2.18m(详见图2),形成了盾构施工史上少有的“三龙过江”工况。
盾构穿越地铁2号线的上、下行线,其施工难度极高:a.使用φ7650mm铰接式土压平衡盾构施工,国内尚无铰接式盾构施工先例;b.隧道轴线为空间曲线,其坡度达到4.8%(地铁隧道最大坡度为3.2%)。
大直径盾构隧道发展现状、技术挑战与科研思考

大直径盾构隧道发展现状、技术挑战与科研思考一、介绍大直径盾构隧道及其发展现状大直径盾构隧道是一种地下隧道结构,直径通常超过10米,用于城市地下交通建设和水利工程等领域。
自1960年代初开展以来,大直径盾构隧道的应用范围不断拓展,从最初的污水处理工厂、水库导流隧道等,到现在的地铁、公路、铁路等交通基础设施工程,应用场景越来越广泛。
全球大直径盾构隧道行业发展迅速,隧道建设规模、数量不断攀升。
根据市场研究报告,全球大直径盾构机市场规模预计在2025年将达到130.53亿美元。
其中,亚太地区是最大的市场,并且仍有望持续增长。
二、大直径盾构隧道技术挑战大直径盾构隧道建设抛开了人类历史上长期面临的一系列古老建筑方法和施工工具束缚,而采用了各种先进技术,其中盾构技术是最广泛使用的一种。
但在实践中,大直径隧道建设中遇到了许多技术困难。
1. 土层不同:大直径盾构隧道的地质层较厚,且位于深层地下。
不同地区有不同类型的地质条件,土质在颗粒级别、水分含量等方面差异很大,从而使得隧道在设计和建造中受到各种挑战。
2. 施工限制:大直径盾构隧道施工位置往往位于繁华的城市中心区域,施工期限短,限制条件和技术要求很高。
这增加了隧道建设的复杂性和成本。
3. 施工事故:构建一个大直径盾构隧道时需要很多人员和设备参与,因此,施工事故是不可避免的风险之一。
一旦发生事故,将会造成重大损失。
三、大直径盾构隧道的科研思考为解决大直径盾构隧道建设中遇到的技术难题,需要加强科学研究。
在隧道建造之前,应进行详细的现场调查和仿真分析。
针对不同地质层的变化,要精确预测土层变化的趋势及其反应后果。
科学家应该不断开展相关研究,寻找具有更高强度和可靠性的机械结构和设备,以应对不断变化的施工限制。
最后,应通过科学研究,不断提高大直径盾构隧道建设的质量和安全性,以加速隧道建设并推动更多的应用领域。
超大直径泥水盾构掘进施工泥水控制技术要点分析

超大直径泥水盾构掘进施工泥水控制技术要点分析发布时间:2023-02-02T01:13:38.882Z 来源:《中国科技信息》2022年9月第18期作者:邓俊,南东伟,王高翔[导读] 在经济的牵引下,公路隧道项目增多,公路隧道工程中邓俊,南东伟,王高翔中交天和机械设备制造有限公司南京分公司,江苏南京 211800摘要:在经济的牵引下,公路隧道项目增多,公路隧道工程中,起支撑作用的技术便是盾构掘进施工技术。
结合现有经验可知,该技术具备诸多优点,例如安全保障好、成型质量高以及施工周期短等。
正是因为如此,盾构法应用价值高,广泛运用在隧道工程。
本文将以珠海兴业快线为例,探究超大直径泥水盾构法泥水技术关键点,在此基础上围绕泥水控制技术展开研究。
关键词:技术要点;盾构掘进;隧道施工;超大直径泥水平衡盾构机0引言:在城市交通体系中,运用盾构施工技术,可减少资源浪费,提高隧道施工效率,确保项目稳定运行状态,掘进技术的全面推广,十分有利于推动城市基础建设。
1盾构施工技术介绍实际上,公路项目中实施的盾构掘进施工技术,属于全机械化施工模式的主要内容,是盾构法施工的核心技术。
施工操作中,需要盾构技术人员精准把控施工进度,实现盾构机科学有效掘进,并依托盾构机外壳和拼装成型的整环管片,形成完整的隧道支撑体系,来确保隧道上方原封地层的稳定状态,不会出现坍塌等地质问题。
另外在开挖时,盾构机刀盘选型和刀具的配置也不容忽视,它将发挥最重要的作用,在盾构司机的操控下,对土体进行开挖,精准控制泥水环流系统,将掘进时切屑下来的渣土通过泥水盾构机泥水环流系统泵送至洞外。
与此同时,控制盾构机推进油缸在后部加压顶进。
2工程案例兴业快线(南段)二标主线盾构隧道从银桦路工作始发井至板樟山工作接收井。
区间长度约 1740m,顶覆土厚度 9.8~41.3m。
最小竖曲线半径为1500.00m,最大竖曲线半径为2500.00m。
主线为双向四车道,设计速度60km/h。
隧道大直径泥水盾构施工技术

始发井 盾构隧道线路
二、工程概况
盾构隧道经过的原天津碱厂为百年老厂(已拆迁),历经多次改造,建筑资料缺失,地下桩基等 障碍物埋置情况不明,由于地层的特殊性,现有技术手段均无法准确探测,对盾构施工的影响存在不 确定性。探明及清除这些未知障碍物难度大。盾构隧道穿越天津碱厂的段落约占掘进总长的1/3。
盾构隧道最小曲线半径450m,占掘进线路总长近1/3,在这种曲线半径下,盾构施工的灵活性和 有效性明显降低,技术难度明显增大。大直径泥水盾构施工这么小半径的曲线,在我国尚无先例。
经评定,隧道沿线风险点共有26处 ,其中,极高风险点8处,高度风险点5 处,中度风险点11处。需采取措施进行 保护的建筑物共计19处,其中需采取地 面措施的有9处,有18条管线需进行加 固处理。受环境条件的制约,传统的保 护方法因对周边环境影响大而无法实施 。根据风险点的特点和环境条件对建筑 物及重要管线合理实施保护,是工程的 难点。
二、工程概况
二、工程概况
新建铁路京津城际延伸线工程是铁道部和天津市合资建设的重点工程项目,从天津站引出,至滨 海新区于家堡商务核心区,线路全长45公里,按照时速350公里的标准建设。我集团承建解放路隧道 。
天津站
塘沽站
解放路隧道工程 位于京津城际延伸线 的东端,是京津城际 延伸线的控制性工程 、难点工程。
地方城际铁路如:广东珠三角城际铁路、长株潭城际铁路 部分隧道也大量采用盾构施工。
多年的铁路盾构隧道施工技术的研究、实践,我们认识到 铁路隧道应用盾构技术的必要性,但也有其特点和难点,需要 不断总结和提高,促进我国铁路隧道盾构技术的发展。
铁路隧道盾构技术应用的几点思考
1、铁路盾构隧道尺寸的设计标准有待进一步研究。 2、新建铁路进出城市的通道采用地下车站、地下隧道方式 ,有利于环境保护,更好的开发地下空间。 3、大直径盾构隧道施工如何更好保护周边建构筑物。 4、泥水分离与处理量较大,占地多,要求严格。 5、大直径盾构始发到达技术。
大直径盾构隧道发展现状、技术挑战与科研思考

大直径盾构隧道发展现状、技术挑战与科研思考
大直径盾构隧道是一种高效、安全、环保的地下交通工程建设方式,近年来其发展迅速。
然而,随着隧道直径的增大和建设环境的复杂化,大直径盾构隧道的建设面临着越来越多的技术挑战。
本文通过分析大直径盾构隧道的发展现状,总结了其存在的技术难题,并提出了一些科研思考和对策。
首先,大直径盾构隧道的建设难度主要集中在以下几个方面:
1. 设备技术:大直径盾构机制造成本高、运输困难,同时还需要具备高强度、高耐腐蚀等性能,这对设备的研发和制造提出了很高的要求。
2. 施工技术:大直径盾构隧道面临着土层深厚、地质情况复杂、地下水位高等多重难题,如何保证施工工艺的安全有效是当前的关键问题。
3. 质量控制:大直径盾构隧道施工过程中需要保证隧道的直径、位置、弯曲程度等指标达到设计要求,如何有效控制质量是施工的重要难点。
其次,为了应对这些技术挑战,需要从以下几个方面加强科研思考:
1. 设备技术:需要加强盾构机的研发,提高其自动化程度、精度和稳定性,同时探索新型材料的应用和优化设计方案,以降低制造成本和提高设备性能。
2. 施工技术:需要进行深入的地质勘察和建模,制定相应的施
工工艺,提高施工的精度和安全性。
同时,需要加强对隧道变形和地下水流的预测和控制,保证施工安全。
3. 质量控制:需要采用先进的测量技术和数据处理手段,实现对隧道直径、位置、弯曲程度等指标的实时监测和控制,确保施工质量符合设计要求。
综上所述,大直径盾构隧道是地下交通工程建设的重要方式,但其建设面临着诸多技术挑战。
通过加强科研思考和技术创新,可以有效提高大直径盾构隧道的建设质量和效率,推动其更为广泛的应用。