LM339芯片介绍

LM339芯片介绍
LM339芯片介绍

LM339芯片介绍

LM339电压比较器芯片内部装有四个独立的电压比较器,利用LM339可以方便组成各种电压比较器电路和振荡器电路。

LM339电压比较器的特点是:①失调电压小,典型值为2mV;②电源电压范围宽,单电源为2-36V,双电源电压为±1V-- ±18V;③对比较信号源的内阻限制较宽;④共模范围很大,为0--(Ucc-1.5V)V o;⑤差动输入电压范围较大,大到可以等于电源电压;⑥输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,外型及管脚排列如图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竞相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。

LM339的应用范围有:①LM339可构成单限比较器、迟滞比较器、双限比较器(窗口比较器)、振荡器等。②LM339还可以组成高压数字逻辑门电路,并可直接与TTL、CMOS电路接口。LM339引脚功能配置图如图1所示。

图1 LM339引脚功能配置图

LM339在电磁炉里面的运用各脚电压

LM339的中文资料以及在电磁炉里面的运用各脚电压 第1脚5.14V第2。0.26V第3。18.45V第4。5.12V第5。4.7V第6。3.86V第7。4. 02V第8。1.37V第9。4.76V第10。5.64V第11。1.88V第12。0V由于LM339应用广泛控制使用灵活等特点,所以被很多生产电磁炉的厂家选用,美的电磁炉也不例外。美的电磁炉主电路板也均有运算放大器LM339。在早期生产美的电磁炉电路中,就采用二片运算放大器LM339。从04年后随着电磁炉新产品电路设计不断更新提高,电磁炉主电路板运算放大器LM339也改为单片电路,减少了整机造价成本。(典型代表型号有:MC-PY18B、MC-EF197、MC-SY1913、MC-SY191B第二代、MC-EP2 01)等机型。电磁炉,主电路用LM339是来控制、同步电压、振荡电路、高压保护电路、浪涌保护电路。我们今天了解、掌握、LM339工作原理、及性能参数和特点。明天在售后维修电磁炉中就能得心应手维修好各种电磁炉故障,避免少走弯路。从中节省维修时间,从而提高维修速度、质量、效率、和维修水平。LM339内部有四组电压比较器,自身电压从(+2V-+36V)均可设计选定使用。比较器有“反相输入端”分别为:第4脚,第6脚,第8脚,第10脚:有“同相输入端”分别为:第5脚,第7脚,第9脚,第11脚:有“输出端”分别为:第1脚,第2脚,第13脚,第14脚:(第12脚为负极接地端,第3脚为正极电源接整机电源+18V端)。每个比较器“反相输入端”用“-”表示:“同相输入端”用:“+”表示:和一个输出端。当+端电位高于,“-端时”输出端截止(输出端开路)。当-端电位高于,“+端时”输出端翻转,使输出端变为低电位(输出端饱和)。下面以维修美的MC—SY1913电磁炉为例:一、“浪涌”保护电路故障维修:测比较器LM339第1脚输出端为高电平+4.5V为正常,若为低电平时,应测LM3 39第7脚同相输入端对地+2.1V电压为正常,当电压偏低、或0电压时,则电阻R22变值、或开路损坏。若测LM339第7脚同相输入端对地电压、电阻R22均正常时,测LM339第6脚反相输入端对地+1.9V电压为正常。当电压偏低、或0电压时,则电阻R 34、R33、R50变值或开路,电容器C22、C23漏电,二极管D14断极开路损坏。若LM339第6脚反相输入端对地电压为正常,则LM339损坏,更换以上元器件故障排除。 二、高压保护电路故障维修:当IGBT的集电极脉冲电压高于+1135V时,高压保护电路PWM脉宽调控电路就动作保护,令IGBT输出功率减小,从而避免IGBT 和主电路元器件不受损坏。维修时先拆下加热线盘,测比较器LM339第14脚输出端为高电平+1.2V为正常,若是低电平,则高压保护电路已动作。测LM339第9脚同相输入端对地+4.2V电压为正常,当电压偏低时。为电容器C20漏电、或电阻R36变值开路。如果LM339第9脚同相输入端对地电压正常,则比较器LM339损坏。更换LM 339后故障排除。另外;当浪涌保护电路、高压保护电路故障时,均造成电磁炉出现提锅具时“不报警不加热”故障。三、同步电路故障维修:维修时先接上加热线盘,测比较器LM339第2脚输出端对地+4.8V电压为正常。若电压偏低,测比较器LM33 9第4脚反相输入端对地+3.7V电压为正常。当偏低时,则滤波电容器C2、5uf/275V 失效、及电阻R23(330K/2W)变值受损。测比较器LM339第5脚同相输入端对地+ 3.8V电压为正常,当电压偏低时,则电阻R24(240K/2W)、R27(240K/2W)变值

LM339电压比较器原理应用

四电压比较器LM339的8个典型应用例子 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur时,输出为高电平UOH。图2b为其传输特性。

电源控制芯片2N7002资料

Features Free from secondary breakdown Low power drive requirement Ease of paralleling Low C ISS and fast switching speeds Excellent thermal stability Integral source-drain diode High input impedance and high gain Complementary N- and P-Channel devices Applications Motor controls Converters Ampli?ers Switches Power supply circuits Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.) ???????? ??????General Description The Supertex 2N7002 is an enhancement-mode (normally-off) transistor that utilizes a vertical DMOS structure and Supertex’s well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors, and the high input impedance and positive temperature coef?cient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown. Supertex’s vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired. Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.* Distance of 1.6mm from case for 10 seconds. Pin Con?guration N-Channel Enhancement-Mode Vertical DMOS FETs -G indicates package is RoHS compliant (‘Green’) Product Marking W = Code for week sealed = “Green” Packaging DRAIN SOURCE GATE TO-236AB (SOT-23) TO-236AB (SOT-23)

芯片TLC549介绍(中文的)

8位串行模数转换器TLC548、TLC549的应用1. 概述 TLC548,TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器、控制器通过CLK、CS、DATA OUT三条口线进行串行接口。具有4MHz片内系统时钟和软、硬件控制电路,转换时间最长17μs,TLC548允许的最高转换速率为45 500次/s,TLC549为40 000次/s。总失调误差最大为±0.5LSB,典型功耗值为6mW。采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,V REF-接地,V REF+-V REF-≥1V,可用于较小信号的采样。 2. 芯片简介 2.1 TLC548、TLC549的内部框图和管脚名称 TLC548、TLC549的内部框图和引脚名称如图1所示。 2.2 极限参数 TLC548/549的极限参数如下:

●电源电压:6.5V; ●输入电压范围:0.3V~V CC+0.3V; ●输出电压范围:0.3V~V CC+0.3V; ●峰值输入电流(任一输入端):±10mA; ●总峰值输入电流(所有输入端):±30mA; ●工作温度:TLC548C、TLC549C:0℃~70℃ TLC548I、TLC549I:-40℃~85℃ TLC548M、TLC549M:-55℃~125℃ 3. 工作原理 TLC548、TLC549均有片内系统时钟,该时钟与I/O CLOCK是独立工作的,无须特殊的速度或相位匹配。其工作时序如图2所示。 当CS为高时,数据输出(DATA OUT)端处于高阻状态,此时I/O CLOCK 不起作用。这种CS控制作用允许在同时使用多片TLC548、TLC549时,共用I/O CLOCK,以减少多路(片)A/D并用时的I/O控制端口。 一组通常的控制时序为:

LM339--迟滞比较器

LM339 ——迟滞比较器 一、功能描述 本电路是将LM339制作成一个反相迟滞比较器,通过在反相端输入信号,与 同相端的基准电压比较,当U +> U - 时,输出端相当于开路,输出高电平;当U + < U - 时,输出管饱和,相当于输出端接低电平。 二、数据说明 1、测试条件:TDS1012示波器、SG1020A数字合成信号发生器、TH-SS3022 型数显直流稳压电源 2、测试工具:万用表、TDS1012示波器、SG1020A数字合成信号发生器、 TH-SS3022型数显直流稳压电源 3、测试方法:测试前用万用表检测电路的通路与断路,测试时用示波器观 察输入和输出波形并记录。 4、测试数据: 表1 输入频率与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,峰峰值为2V,加1V偏置,Vref=1V)

图1 输入频率与输出的关系 表2 输入电压与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,频率为5K,Vref=1V) 5、结果分析: 迟滞比较器中加入正反馈可以克服输出端的抖动,所以在输入电压幅值增加时,输出端的幅值没有发生任何改变。输出电压的幅值不会随频率的改变而改变,但是保持高低电平的时间高度随着频率的增大而减小,并且波形随频率的增大开始产生失真,在我们的测量中,最大可以达到210KHZ。同时从上面的数据可以看出,上升时间总是大于下降时间。 三、芯片介绍 1、芯片特点:内部装有四个独立的电压比较器,工作电源电压范围宽,单

电源、双电源均可工作(单电源: 2~36V ,双电源:±1~±18V );消耗电流小,I CC =1.3mA;输入失调电压小,V IO =±2mV ; 共模输入电压范围宽, Vic=0~Vcc-1.5V;输出与TTL ,DTL ,MOS ,CMOS 等兼容; 输出可以用开路集电极连接“或”门. 2、芯片用途: 满足比较器的基本用途,可以用作单限比较器,迟滞比较器,窗口比较器等,用来比较电压,用得最多的是在电磁炉中,做过压过热保护。 3、引脚及封装: 采用双列直插14 脚塑料封装(DIP14)和微形的双列14 脚塑料封装(SOP14) 图2 引脚图及内部结构图 表3 主要参数

常用AD芯片介绍

目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的 经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI 公司代理权,经营全系列适用各 种领域/场合的AD/DA器件。 1. AD公司AD/DA器件 AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括 高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。 1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705 AD7705是AD公司出品的适用于低频测量仪器的AD转换器。它能将从传感器接收到的很弱的输入信号直接 转换成串行数字信号输出,而无需外部仪表放大器。采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可 编程放大器可设置输入信号增益。通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置 数字滤波器的第一个凹口。在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。AD7705是基于微控制器(MCU )、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。应用于 微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。 2)3V/5V CMOS信号调节AD转换器:AD7714 AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字 量。它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。输入信号加至位于模拟调制器前端的专用可 编程增益放大器。调制器的输出经片内数字滤波器进行处理。数字滤波器的第一次陷波通过片内控制寄存器 来编程,此寄存器可以调节滤波的截止时间和建立时间。AD7714有3个差分模拟输入(也可以是5个伪差分模 拟输入)和一个差分基准输入。单电源工作(+3V或+5V)。因此,AD7714能够为含有多达5个通道的系统进行 所有的信号调节和转换。AD7714很适合于灵敏的基于微控制器或DSP的系统,它的串行接口可进行3线操作, 通过串行端口可用软件设置增益、信号极性和通道选择。AD7714具有自校准、系统和背景校准选择,也允许 用户读写片内校准寄存器。CMOS结构保证了很低的功耗,省电模式使待机功耗减至15μW(典型值)。 3)微功耗8通道12位AD转换器:AD7888 AD7888是高速、低功耗的12位AD转换器,单电源工作,电压范围为2.7V~5.25V,转换速率高达125ksps ,输入跟踪-保持信号宽度最小为500ns,单端采样方式。AD7888包含有8个单端模拟输入通道,每一通道的模

CC芯片介绍

CC2530芯片资料 CC2530有四种不同的版本:CC2530-F32 / 64 / 128 / 256。分别带有32 / 64 / 128 / 256 KB的闪存空间;它整合了全集成的高效射频收发机及业界标准的增强型8051微控制器,8 KB的RAM和其他强大的支持功能和外设。 主要特点: ●高达256kB的闪存和20kB的擦除周期,以支持无线更新和大型应用 程序 ●8kB RAM用于更为复杂的应用和Zigbee应用 ●可编程输出功率达+4dBm ●在掉电模式下,只有睡眠定时器运行时,仅有不到1uA的电流损耗 ●具有强大的地址识别和数据包处理引擎 利益: ●卓越的接收机灵敏度和可编程输出功率; ●在接收、发射和多种低功耗的模式下具有极低的电流消耗,能保证较 长的电池使用时间; ●一流的选择和阻断性能(50-dB ACR) 应用: ●智能能源/自动化仪表读取 ●远程控制 ●居家及楼宇自动化 ●消费类电子产品

●工业控制及监测 ●低功耗无线传感器网络 CC2530芯片参数特性: 可最大化通信范围的101dBm链路预算(101dBm link budget) 可最小化干扰源影响的业界一流的选择性(Best in class selectivity) 可最大化电池供电器件使用寿命的灵活低功耗模式(Flexible low-power modes) 功能强大的5通道DMA引擎(Powerful 5-channel DMA engine) 用于远程控制应用的IR生成电路(IR generation circuitry) 高达256K的闪存(Up to 256k Flash) CC2530开发套件 通过深圳市无线龙科技有限公司的CC2530-PK的开发系统,让您充分了解、熟悉和使用CC2530。在Zigbee 2007,Zigbee PRO协议栈做自如的应用开发。 深圳无线龙 ZigBee模块提供了101dB的链路质量,优秀的接收器灵敏度和健壮的抗干扰性,四种供电模式,多种闪存尺寸,以及一套广泛的外设集包括2个UART 14位ADC和个通用GPIO,4个定时器,18个中断源等等。除了封装更小,CC2530-PK改进了RF输出功率、灵敏度、选择性,且一般会提供一个超越上一代CC2430的重要的性能改进。除了通过优秀的RF性能、选择性和业界标准增强8051MCU内核,支持一般低功耗无线通信,CC2530-PK还可以配备 TI

四电压比较器LM339的典型应用

四电压比较器LM339的典型应用 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur 时,输出为高电平UOH。图2b为其传输特性。

lm339应用电路图

lm339应用电路图 lm339应用电路图:LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:失调电压小,典型值为2mV;电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;对比较信号源的内阻限制较宽;共模范围很大,为0~(Ucc-1.5V)Vo;差动输入电压范围较大,大到可以等于电源电压;输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM 339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端

电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。L M339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM3 39的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件Rt的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,Uo为高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器反转,Uo输出为零电位,使保护电路动作,调节R1的值可以改变门限电压,既设定温度值的大小。

PHY芯片介绍

问:如何实现单片以太网微控制器? 答:诀窍是将微控制器、以太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,这样能去掉许多外接元器件.这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积.单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下. 问:以太网MAC是什么? 答:MAC即Media Access Control,即媒体访问控制子层协议.该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质.在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层.该层协议是以太网MAC由IEEE-802.3以太网标准定义.最新的MAC同时支持10Mbps和100Mbps两种速率. 以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层.一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换. MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧.这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示).最后还有一个DWORD(4Byte)的CRC码. 可是目标的MAC地址是哪里来的呢?这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议).第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:”谁是,所有这个局域网的主机都收到了这个ARP请求.收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包.这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:”我是这个IP地址的主人”.这个包里面就包括了他的MAC地址.以后的给这个IP地址的帧的目标MAC地址就被确定了.(其它的协议如IPX/SPX也有相应的协议完成这些操作.) IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表,由驱动程序和操作系统完成.在Microsoft的系统里面可以用 arp-a的命令查看ARP表.收到数据帧的时候也是一样,做完CRC以后,如果没有CRC效验错误,就把帧头去掉,把数据包拿出来通过标准的借口传递给驱动和上层的协议客栈,最终正确的达到我们的应用程序. 还有一些控制帧,例如流控帧也需要MAC直接识别并执行相应的行为. 以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上,它们之间是通过MII接口链接的. 问:什么是MII? 答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准."媒体独立"表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作.它包括一个数据接口,以及一个MAC和PHY之间的管理接口. ?数据接口包括分别用于发送器和接收器的两条独立信道.每条信道都有自己的数据,时钟和控制信号.MII数据接口总共需要16个信号,包括TX_ER,TXD<3:0>,TX_EN,TX_CLK, COL,RXD<3:0>,RX_EX,RX_CLK,CRS,RX_DV等.MII以4位半字节方式传送数据双向传输,时钟速率25MHz.其工作速率可达100Mb/s; ?MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号.通过管理接口,上层能监视和控制PHY.其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的.PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等.当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等.不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作.当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改.

(完整版)四电压比较器LM339简介

四电压比较器LM339简介 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)V o;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 图1 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路

8251芯片介绍

串行通信线路有如下3种方式: (1) 单工通信:它只允许一个方向传输数据,不能进行反方向传输。 (2) 半双工通信:它允许两个方向传输数据,但不能同时传输,只能交替进行,A发B收或B发A收,这种协调可以靠增加接口的附加控制线来实现,也可用软件约定来实现。 (3) 全双工通信:它允许两个方向同时进行数据传输,A收B发的同时可A发B收,但是这两个传输方向的资源必须完全独立,A与B都必须有独立的接收器和发送器,从A到B和从B到A的数据通路也必须完全分开(至少在逻辑上是分开的)。 8251作用、特点 具有同步/异步的接受/发送功能 它能将并行输入的8位数据变换成逐位输出的串行信号;也能将串行输入数据变换成并行数据,一次传送给处理机。广泛应用于长距离通信系统及计算机网络。 8251A由发送器、接收器、数据总线缓冲存储器读/写控制电路及调制/解调控制电路等5部分组成, 各组成部分的工作过程: 8251A的发送器 包括发送缓冲存储器, CPU用OUT指令将要发送的数据送入到8251A的数据总线缓冲器,再并行送入发送数据缓冲器中。当TxRDY有效时,将数据送移位寄存器将并行数据转换为串行数据并格式化后,经TxD引脚串行输出。 发送移位寄存器(并→串转换)及发送控制电路3部分,CPU需要发送的数据经数据发送缓冲

存储器并行输入,并锁存到发送缓冲存储器中。如果是采用同步方式,则在发送数据之前,发送器将自动送出一个(单同步)或两个(双同步)同步字符(Sync)。然后,逐位串行输出数据。如果采用异步方式,则由发送控制电路在其首尾加上起始位及停止位,然后从起始位开始,经移位寄存器从数据输出线T X D逐位串行输出,其发送速率由T X C端上收到的发送时钟频率决定。 当发送器作好接收数据准备时,由发送控制电路向CPU发出T X RDY有效信号,CPU立即向8251A并行输出数据。如果8251A与CPU之间采用中断方式交换信息,那时T X RDY作为向CPU发出的发送中断请求信号。待发送器中的八位数据发送完毕时,由发送控制电路向CPU 发出T X EMPTY有效信号,表示发送器中移位寄存器已空。因此,发送缓冲存储器和发送移位寄存器构成发送器的双缓冲结构 8251A的接收器 包括接收缓冲存储器,接收移位寄存器(串→并转换)及接收控制电路3部分。 外部通信数据从R X T端,逐位进入接收移位寄存器中。如果是同步方式,则要检测同步字符,确认已经达到同步,接收器才可开始串行接收数据,待一组数据接收完毕,便把移位寄存器中的数据并行置入接收缓冲存储器中;如果是异步方式,则应识别并删除起始位和停止位。这时R X DRY线输出高电平,表示接收器已准备好数据,等待向CPU输出。8251A接收数据的速率由R X C端输入的时钟频率决定。 接收缓冲存储器和接收移位寄存器构成接收器的双缓冲结构。 数据总线缓冲存储器 是CPU与8251A之间信息交换的通道。它包含3个8位缓冲寄存器,其中两个用来存放CPU 向8251A读取的数据及状态,当CPU执行IN指令时,便从这两个寄存器中读取数据字及状态字。另一个缓冲寄存器存放CPU向8251A写入的数据或控制字。当CPU执行OUT指令时,可向这个寄存器写入,由于两者公用一个缓冲寄存器,这就要求CPU在向8251A写入控制字时,该寄存器中无将要发送的数据。为此,该接口电路必需要有一定的措施来防止。 读/写控制电路、 完成CPU对芯片的读写控制和复位功能 用来接收一系列的控制信号,由它们可确定8251A处于什么状态,并向8251A内部各功能部件发出有关的控制信号,因此它实际上是8251A的内部控制器 调制/解调控制电路 当使用8251A实现远距离串行通信时,8251A的数据输出端要经过调制器将数字信号转换成模拟信号,数据接收端收到的是经过解调器转换来的数字信号, 8251A芯片的控制字及其工作方式 控制字:PPT95页起 包括:方式选择控制字(95)、操作命令控制字(98)、状态控制字(100)、 8251的工作方式: 异步工作方式: CPU发出接收命令,接收电路监视RxD端,发现一个起始位,开始一个字符的接收过程。在接收手时针的作用下,接收到的数据串行进入接收移位寄存器,被移位并进行奇偶校验,再删除停止位,得到并行数据,经片内总线接收数据缓冲器,等待CPU读取,同时RxRDY引脚置高电平,且状态寄存器的RxRDY位为1 同步工作方式: 同比工作方式分为内同步和外同步: 工作于内同步:CPU发出允许接收和进入搜索指令,检测RxD引脚,将接收

电磁炉LM339比较器工作原理

电磁炉LM339比较器工作原理 整理日期:2013.6.25. 21:28:12 资料整理者 zhuwenwenwen 李英丽: LM339比较器引脚图 LM339内部有四组电压比较器,自身电压从(+2V-+36V)均可设计选定使用。比较器有: “反相输入端”分别为:第4脚,第6脚,第 8脚,第 10脚:有 “同相输入端”分别为:第5脚,第7脚,第 9脚,第 11脚:有“ 输出端”分别为:第2脚,第1脚,第14脚,第13脚:(第12脚为负极接地端,第3脚为正极电源接整机电源+18V端)。每个比较器“反相输入端”用“-”表示:“同相输入端”用:“+”表示:和一个输出端。当+端电位高于,“-端时”输出端截止(输出端开路)。当-端电位高于,“+端时”输出端翻转,使输出端变为低电位(输出端饱和)。 下面以维修美的MC—SY1913电磁炉为例: 一、“浪涌”保护电路故障维修: 测比较器LM339第1脚输出端为高电平+4.5V为正常,若为低电平时,应测LM339第7脚同相输入端对地+2.1V电压为正常,当电压偏低、或0电压时,则电

阻R22变值、或开路损坏。若测LM339第7脚同相输入端对地电压、电阻R22均正常时,测LM339第6脚反相输入端对地+1.9V电压为正常。当电压偏低、或0电压时,则电阻R34、R33、R50变值或开路,电容器C22、C23漏电,二极管D14断极开路损坏。若LM339第6脚反相输入端对地电压为正常,则LM339损坏,更换以上元器件故障排除。 二、高压保护电路故障维修: 当IGBT的集电极脉冲电压高于+1135V时,高压保护电路PWM脉宽调控电路就动作保护,令IGBT输出功率减小,从而避免IGBT和主电路元器件不受损坏。维修时先拆下加热线盘,测比较器LM339第14脚输出端为高电平+1.2V为正常,若是低电平,则高压保护电路已动作。测LM339第9脚同相输入端对地+4.2V电压为正常,当电压偏低时。为电容器C20漏电、或电阻R36变值开路。如果LM339第9脚同相输入端对地电压正常,则比较器LM339损坏。更换LM339后故障排除。另外;当浪涌保护电路、高压保护电路故障时,均造成电磁炉出现提锅具时“不报警不加热”故障。 三、同步电路故障维修: 维修时先接上加热线盘,测比较器LM339第2脚输出端对地+4.8V电压为正常。若电压偏低,测比较器LM339第4脚反相输入端对地+3.7V电压为正常。当偏低时,则滤波电容器C2、5uf/275V失效、及电阻R23(330K/2W)变值受损。测比较器LM339第5脚同相输入端对地+3.8V电压为正常,当电压偏低时,则电阻R24(240K/2W)、R27(240K/2W)变值开路受损、电容器C19漏电、稳压二极管Z3击穿、及CPU芯片第9脚PAN-IRO输出电压失地损坏。均导致LM339第2脚输出端对地电压偏低,更换损坏元器件故障排除。 四、驱动放大电路故障维修: 测驱动放大部分三极管Q9集电极对地+18V电压为正常,测比较器LM339第10脚反相输入端对地+4.6V电压为正常。当电压偏低时,则电阻R31变值。测比较

芯片基本功能介绍

总结芯片功能 线性稳压块:2951、LP2951、m5236、2950 开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48U I/O芯片:PC97338、PC87391、PC87392、pc87393、SMSC系列:FDC7N869、FDC37N958、LPC47N227、LPC47N267 系统供电芯片:MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC1402、LTC1628 CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897 供电芯片搭配使用:ADP3203/ADP3415、ADP3410/ADP3421、ADP3410/ADP3422 充电芯片:MAX1645、MAX745、MAX1772、MAX1773、ADP3806、TC490/591、MB3887、MB3878、MAX1908 ,LT1505G CPU温度控制芯片:MAX1617、MAX1020A、AD1030A、CM8500 MAX1989 显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001A 搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440 网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-119 声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552TS、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942 PC卡芯片:R5C551、R5C552、R5C476、R54472 PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564A COM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583

LM339芯片介绍

LM339芯片介绍 LM339电压比较器芯片内部装有四个独立的电压比较器,利用LM339可以方便组成各种电压比较器电路和振荡器电路。 LM339电压比较器的特点是:①失调电压小,典型值为2mV;②电源电压范围宽,单电源为2-36V,双电源电压为±1V-- ±18V;③对比较信号源的内阻限制较宽;④共模范围很大,为0--(Ucc-1.5V)V o;⑤差动输入电压范围较大,大到可以等于电源电压;⑥输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,外型及管脚排列如图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竞相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 LM339的应用范围有:①LM339可构成单限比较器、迟滞比较器、双限比较器(窗口比较器)、振荡器等。②LM339还可以组成高压数字逻辑门电路,并可直接与TTL、CMOS电路接口。LM339引脚功能配置图如图1所示。 图1 LM339引脚功能配置图

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介 1.1 PWM控制芯片SG3525功能简介 随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率MOSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级。下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 1.1.1 SG3525引脚功能及特点简介 其原理图如图4.13下: 1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。 2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现

与外电路同步。 4.OSC.Output(引脚4):振荡器输出端。 5.CT(引脚5):振荡器定时电容接入端。 6.RT(引脚6):振荡器定时电阻接入端。 7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 8.Soft-Start(引脚8):软启动电容接入端。该端通常接一只5 的软启动电容。 https://www.360docs.net/doc/5415451191.html,pensation(引脚9):PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 10.Shutdown(引脚10):外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 11.Output A(引脚11):输出端A。引脚11和引脚14是两路互补输出端。 12.Ground(引脚12):信号地。 13.Vc(引脚13):输出级偏置电压接入端。 14.Output B(引脚14):输出端B。引脚14和引脚11是两路互补输出端。 15.Vcc(引脚15):偏置电源接入端。 16.Vref(引脚16):基准电源输出端。该端可输出一温度稳定性极好的基准电压。 特点如下: (1)工作电压范围宽:8—35V。 (2)5.1(1 1.0%)V微调基准电源。 (3)振荡器工作频率范围宽:100Hz—400KHz. (4)具有振荡器外部同步功能。 (5)死区时间可调。 (6)内置软启动电路。 (7)具有输入欠电压锁定功能。 (8)具有PWM琐存功能,禁止多脉冲。 (9)逐个脉冲关断。 (10)双路输出(灌电流/拉电流): mA(峰值)。 1.1.2 SG3525的工作原理 SG3525内置了5.1V精密基准电源,微调至 1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。由于 SG3525内部集成了软启动电路,因此只需要一个外接定时电容。 SG3525的软启动接入端(引脚8)上通常接一个5 的软启动电容。上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM

相关文档
最新文档