芯片TLC549介绍(中文的)
TLC549的数字电压表设计

摘要在日常生活和各种电学实验中电压、电流和电阻三个量经常需要被测量,其中以电压的测量最多,这就要用到电压表。
与传统的指针电压表相比,数字电压表具有很多优点。
电压表的数字化,是将连续的模拟量(如直流电压)转换成不连续的离散的数字形式并加以显示。
这有别于传统的以指针与刻度盘进行读数的方法,避免了读数的视差和视觉疲劳,而且显示的范围宽,分辨率高。
由于CMOS 技术的发展.集成电路的功耗变得很小.即发热量很小,这样就可以在同一块芯片上集成更多的元件,形成大规模或超大规模集成电路,因此数字电压表的集成度高、功耗小、抗干扰能力强。
直流数字电压表本身可以扩展成交流电压表、交直电流表、峰值表、功率表等,还可以附加智能化。
本设计采用TLC549芯片将模拟量转化为数字量,通过单片机AT89C52与LCD1602显示出来。
关键词:数字电压表TLC549 AT89C52 LCD1602AbstractIn daily life and various electrical experiments, voltage, current, resistance, the three volumes often needs to be measured, most of which measure voltage, which use the voltage meter. And compared to the traditional pointer voltmeter, digital voltage meter has many advantages. Digital voltage meter, is the continuous analog (such as DC voltage) into discrete discontinuous and display them in digital form. This is different from the traditional to the pointer and dial for readings and preventing the reading of the disparity and visual fatigue, and display wide range of high resolution. IC power consumption becomes very small. That heat is very small, so that you can chip in with an additional component, the formation of large-scale or large scale integrated circuits, the digital voltage meter high integration, low power consumption, anti-jamming capability. DC digital voltage meter itself can be extended into the AC voltmeter, AC-DC current meter, peak meter, power meter, etc., you can also add intelligent. This design uses TLC549 chip analog to digital conversion by SCM AT89C52 and LCD1602 displayKey words :Digital V oltmeter TLC549 AT89C52 LCD1602目录前言 (5)第一章绪论 (6)第一节单片机的定义 (6)第二节单片机的发展历程 (6)第三节单片机的应用领域 (7)第四节单片机学习应用的六大重要部分 (8)第二章总体设计 (12)第一节设计实现功能 (12)第二节总体框图 (12)第三章单元电路设计 (13)第一节模数转换电路 (13)第二节单片机AT89C52 (17)第三节液晶LCD1602显示 (24)第四章程序流程图 (26)第五章总体电路图 (27)结束语 (28)参考文献 (29)附录 (30)致谢 (35)前言数字电压表用于测量电压的数字仪表。
基于tlc549和tlc5615模数数模转换讲解

任务书1、查阅资料,熟悉硬件和软件;(所使用硬件芯片型号,所使用软件编辑环境)2、掌握TLC549芯片和TLC5615芯片的特性,引脚功能。
3、确定详细软件设计方案,画程序流程图4、根据TLC549的时序图,使用汇编语言/C语言编写单片机STC89C52与TLC549的软件通信程序代码。
实现模/数转换功能。
5、根据TLC5615的时序图,使用汇编语言/C语言编写单片机STC89C52与TLC5615的软件通信程序代码。
实现数/模转换功能。
6、整合模数、数模转换代码,实现信号发生器在MAX1247输入端输入正弦波(频率不限),示波器在TLC5615输出端测量到同样的正弦波,记录输出波形。
7 .撰写课程设计报告。
目录1、绪论 (XX)2、方案论证(规划、选定) (XX)3、方案说明(设计)XX (XX)4、硬件方案设计 (XX)5、软件方案设计 (XX)6、调试 (XX)6、技术小结(结束语) (XX)8、参考文献 (XX)9、附录(源程序代码、电路图等) (XX)1.绪论本实验主要是基于单片机微型控制器的控制,实现将模拟信号转换成数字信号的一个简单实验。
通过这个实验,可以为广大研究人员提供一个比较系统的模数数模转换基础资料,以便于将模拟信号转换为数字信号或将数字信号转换成模拟信号。
2.方案论证2.1.试验原理本实验主要是通过单片机stc89c52芯片控制模数转换芯片tlc549将所给模拟信号转换成数字信号,然后将数字信号读进数模转换芯片tlc5615,从输出端口将转换后的信号输出来。
可用图1简洁明了地表现出来:2.2模/数转换器(1)模/数转换器的作用TLC549是一种高性能的8位A/D转换器,它以8位开关电容逐次逼近的方法实现A/D转换,本实验通过用该芯片采集模拟量,然后将采集到的模拟量转换为数字量后送至单片机。
(2)芯片特性;TLC549芯片, 可与通用微处理器、控制器通过I/ O CLOCK、CS、DATA OU T 三条口线进行串行接口。
目前常用的AD芯片(TI公司)

⽬前常⽤的AD芯⽚(TI公司)⽬前AD/DA的常⽤芯⽚介绍:TI公司AD/DA器件:1)TLC548/549TLC548和TLC549是以8位开关电容逐次逼近A/D转换器为基础⽽构造的CMOSA/D转换器。
它们设计成能通过3态数据输出与微处理器或外围设备串⾏接⼝。
TLC548和TLC549仅⽤输⼊/输出时钟和芯⽚选择输⼊作数据控制。
TLC548的最⾼I/OCLOCK 输⼊频率为2.048MHz,⽽TLC549的I/OCLOCK输⼊频率最⾼可达1.1MHz。
TLC548和TLC549的使⽤与较复杂的TLC540和TLC541⾮常相似;不过,TLC548和TLC549提供了⽚内系统时钟,它通常⼯作在4MHz且不需要外部元件。
⽚内系统时钟使内部器件的操作独⽴于串⾏输⼊/输出端的时序并允许TLC548和TLC549象许多软件和硬件所要求的那样⼯作。
I/OCLOCK和内部系统时钟⼀起可以实现⾼速数据传送,对于TLC548为每秒45,500次转换,对于TLC549为每秒40,000次的转换速度。
TLC548和TLC549的其他特点包括通⽤控制逻辑,可⾃动⼯作或在微处理器控制下⼯作的⽚内采样-保持电路,具有差分⾼阻抗基准电压输⼊端,易于实现⽐率转换(ratiometricconversion).定标(scaling)以及与逻辑和电源噪声隔离的电路。
整个开关电容逐次逼近转换器电路的设计允许在⼩于17µs的时间内以最⼤总误差为±0.5最低有效位(LSB)的精度实现转换。
2)TLV5616TLV5616是⼀个12位电压输出数模转换器(DAC),带有灵活的4线串⾏接⼝,可以⽆缝连接TMS320.SPI.QSPI和Microwire串⾏⼝。
数字电源和模拟电源分别供电,电压范围2.7~5.5V。
输出缓冲是2倍增益rail-to-rail输出放⼤器,输出放⼤器是AB类以提⾼稳定性和减少建⽴时间。
rail-to-rail输出和关电⽅式⾮常适宜单电源。
串行AD转换器TLC549的应用设计

串行AD转换器TLC549的应用设计
一、TLC549的简介
TLC549是一种高精度的8位左对齐的模拟-数字转换器,它由Texas Instruments公司公司开发。
使用了低功耗CMOS和 Flash-Plus(快速结构)技术,它具有较高的性能,抗干扰性和功耗低的特点。
它的电源电压
为3 V - 5 V,并具有外部时钟,转换速度可达6个MHz,带宽为200 KHz,转换精度高达8位。
根据TLC549的特性,它可以实现高精度,高带宽,高速率,低功耗,低失真和低噪声等功能,因此,它在很多领域中得到了广泛的应用。
(1)量测系统
应用TLC549可以设计一种低功耗的量测系统,因为TLC549可以将模
拟量(如温度、湿度、压力等)转换成数字量,并将数字量输出至数字接口,从而实现模拟信号检测以及声音检测的功能。
TLC549采用单片机的
接口结构,它的带宽高达200KHz,转换精度高达8位,可以满足多种精度,带宽的需求。
(2)无线传感器系统
TLC549可以用于设计无线传感器系统,它可以将模拟信号转换成数
字信号,然后将数字信号传输至接收端,进而实现无线传感器的功能。
TLC549能够将模拟信号转换为8位高精度的数字信号,并将数据以比特
的形式传输出去,降低了传输成本,实现了真正的无线传感器系统。
芯片TLC549,TLC548介绍_中文的_

8位串行模数转换器TLC548、TLC549的应用1. 概述TLC548,TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器、控制器通过CLK、CS、DATA OUT三条口线进行串行接口。
具有4MHz片内系统时钟和软、硬件控制电路,转换时间最长17μs,TLC548允许的最高转换速率为45 500次/s,TLC549为40 000次/s。
总失调误差最大为±0.5LSB,典型功耗值为6mW。
采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,V REF-接地,V REF+-V REF-≥1V,可用于较小信号的采样。
2. 芯片简介2.1 TLC548、TLC549的内部框图和管脚名称TLC548、TLC549的内部框图和引脚名称如图1所示。
2.2 极限参数TLC548/549的极限参数如下:●电源电压:6.5V;●输入电压范围:0.3V~V CC+0.3V;●输出电压范围:0.3V~V CC+0.3V;●峰值输入电流(任一输入端):±10mA;●总峰值输入电流(所有输入端):±30mA;●工作温度:TLC548C、TLC549C:0℃~70℃TLC548I、TLC549I:-40℃~85℃TLC548M、TLC549M:-55℃~125℃3. 工作原理TLC548、TLC549均有片内系统时钟,该时钟与I/O CLOCK是独立工作的,无须特殊的速度或相位匹配。
其工作时序如图2所示。
当CS为高时,数据输出(DATA OUT)端处于高阻状态,此时I/O CLOCK 不起作用。
这种CS控制作用允许在同时使用多片TLC548、TLC549时,共用I/O CLOCK,以减少多路(片)A/D并用时的I/O控制端口。
一组通常的控制时序为:(1)将CS置低。
内部电路在测得CS下降沿后,再等待两个内部时钟上升沿和一个下降沿后,然后确认这一变化,最后自动将前一次转换结果的最高位(D7)位输出到DATA OUT端上。
TLC548,TLC549 8位串行AD转换器芯片介绍

TLC548,TLC549 8位串行A/D转换器芯片介绍TLC548,TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器、控制器通过I/O CLOCK、CS、DATA OUT三条口线进行串行接口。
具有4MHz片内系统时钟和软、硬件控制电路,转换时间最长17μs,TLC548允许的最高转换速率为45 500次/s,TLC549为40 000次/s。
总失调误差最大为±0.5LSB,典型功耗值为6mW。
采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,VREF-接地,VREF+-VREF-≥1V,可用于较小信号的采样。
2. 芯片简介2.1 TLC548、TLC549的内部框图和管脚名称TLC548、TLC549的内部框图和引脚名称如图1所示。
2.2 极限参数TLC548/549的极限参数如下:●电源电压:6.5V;●输入电压范围:0.3V~VCC+0.3V;●输出电压范围:0.3V~VCC+0.3V;●峰值输入电流(任一输入端):±10mA;●总峰值输入电流(所有输入端):±30mA;●工作温度:TLC548C、TLC549C:0℃~70℃TLC548I、TLC549I:-40℃~85℃TLC548M、TLC549M:-55℃~125℃3. 工作原理TLC548、TLC549均有片内系统时钟,该时钟与I/O CLOCK是独立工作的,无须特殊的速度或相位匹配。
其工作时序如图2所示。
当CS为高时,数据输出(DATA OUT)端处于高阻状态,此时I/O CLOCK不起作用。
这种CS控制作用允许在同时使用多片TLC548、TLC549时,共用I/O CLOCK,以减少多路(片)A/D并用时的I/O 控制端口。
一组通常的控制时序为:(1)将CS置低。
内部电路在测得CS下降沿后,再等待两个内部时钟上升沿和一个下降沿后,然后确认这一变化,最后自动将前一次转换结果的最高位(D7)位输出到DATA OUT端上。
tlc549时序图

CS = 0; 出最高位 _nop_(); _nop_();
//CS 置低,片选有效 ,同时 DO 输 //适当延迟时间1.4us Setup Time
for(i = 0; i < 8; i++) //串行数据移位输入 {
tmp <<= 1; tmp |= DO;
CLK = 1; _nop_(); CLK = 0;
void Data_Conversion(void) { unsigned char AD_Data; AD_Data = TLC549_ADC(); Volt = 5.0 / 256 * AD_Data * 1000; }
/*-------------------------------------------------------------*/
//防止头文件被重复调用 #ifndef __TLC549_ADC_H__ #define __TLC549_ADC_H__
/*-------------------------------------------------------------*/ //包含头文件
#include<intrins.h>
//0.4us //CLK transition time Max 0.1us
//0.4us
}
CS = 1;
//CS 置高,片选无效
for(i = 17; i != 0; i--) _nop_(); //Next Coversion 需要延迟时间17us
return (tmp);
}
/*-------------------------------------------------------------*/ //电压换算并扩大1000倍
tcl549翻译

TLC549 8bit 模数转换和串行控制●微处理器外设和独立操作●8bit分辨率A/D转换●差分参考输入电压●转化时间最大…17us●每秒访问总次数和转换周期:TCL549 (40000)●片上软件控制器,采样和保持●最大误差…±0.5LSB●4M内部系统时钟●电源电压范围…3-6V●低功耗…最大15mW●理想的高性价比,高性能的应用,包括电池供电的便携式仪表。
●引脚和控制信号与TLC540和TLC545 8位A / D转换器以及TLC1540 10位A / D转换器兼容描述TLC548和TLC549是围绕8位开关电容逐次逼近型ADC构建的CMOS模数转换器(ADC)集成电路。
这个器件设计用于通过3态数据输出和模拟输入与微处理器或外设进行串行接口。
TLC548和TLC549使用I/O CLOCK以及片选(CS)输入进行数据控制。
TLC548的最大I/O CLOCK输入频率为2.048 MHz,TLC549的I/O CLOCK输入频率为1.1 MHz。
TLC548和TLC549的操作与更复杂的TLC540和TLC541设备的操作非常相似;然而,TLC548和TLC549提供片上系统时钟,通常工作在4 MHz,无需外部元件。
片内系统时钟允许内部器件操作独立于串行输入/输出数据定时进行,并允许按照所需的软件和硬件要求操作TLC548和TLC549。
I/O CLOCK 与内部系统时钟允许TLC548的高速数据传输和每秒45500次转换的转换速率,以及TLC549的每秒40000次转换。
另外TLC548和TLC549的特征包括多功能控制逻辑,可在微处理器控制下工作的片上采样保持电路,以及具有差分高阻参考电压输入的高速转换器用来简化比例转换,缩放,独立的逻辑电路抑制噪声。
完全开关电容逐次逼近型转换器电路的设计允许在小于17μs 的时间内实现±0.5最低有效位(LSB )的最大总误差转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8位串行模数转换器TLC548、TLC549的应用1. 概述
TLC548,TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器、控制器通过CLK、CS、DATA OUT三条口线进行串行接口。
具有4MHz片内系统时钟和软、硬件控制电路,转换时间最长17μs,TLC548允许的最高转换速率为45 500次/s,TLC549为40 000次/s。
总失调误差最大为±0.5LSB,典型功耗值为6mW。
采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,V REF-接地,V REF+-V REF-≥1V,可用于较小信号的采样。
2. 芯片简介
2.1 TLC548、TLC549的内部框图和管脚名称
TLC548、TLC549的内部框图和引脚名称如图1所示。
2.2 极限参数
TLC548/549的极限参数如下:
●电源电压:6.5V;
●输入电压范围:0.3V~V CC+0.3V;
●输出电压范围:0.3V~V CC+0.3V;
●峰值输入电流(任一输入端):±10mA;
●总峰值输入电流(所有输入端):±30mA;
●工作温度:TLC548C、TLC549C:0℃~70℃
TLC548I、TLC549I:-40℃~85℃
TLC548M、TLC549M:-55℃~125℃
3. 工作原理
TLC548、TLC549均有片内系统时钟,该时钟与I/O CLOCK是独立工作的,无须特殊的速度或相位匹配。
其工作时序如图2所示。
当CS为高时,数据输出(DATA OUT)端处于高阻状态,此时I/O CLOCK 不起作用。
这种CS控制作用允许在同时使用多片TLC548、TLC549时,共用I/O CLOCK,以减少多路(片)A/D并用时的I/O控制端口。
一组通常的控制时序为:
(1)将CS置低。
内部电路在测得CS下降沿后,再等待两个内部时钟上升沿和一个下降沿后,然后确认这一变化,最后自动将前一次转换结果的最高位(D7)位输出到DATA OUT端上。
(2) 前四个I/O CLOCK周期的下降沿依次移出第2、3、4和第5个位(D6、D5、D4、D3),片上采样保持电路在第4个I/O CLOCK下降沿开始采样模拟输入。
(3)接下来的3个I/O CLOCK周期的下降沿移出第6、7、8(D2、D1、D0)个转换位,
(4)最后,片上采样保持电路在第8个I/O CLOCK周期的下降沿将移出第6、7、8(D2、D1、D0)个转换位。
保持功能将持续4个内部时钟周期,然后开始进行32个内部时钟周期的A/D转换。
第8个I/O CLOCK后,CS必须为高,或I/O CLOCK保持低电平,这种状态需要维持36个内部系统时钟周期以等待保持和转换工作的完成。
如果CS为低时I/O CLOCK上出现一个有效干扰脉冲,则微处理器/控制器将与器件的I/O时序失去同步;若CS为高时出现一次有效低电平,则将使引脚重新初始化,从而脱离原转换过程。
在36个内部系统时钟周期结束之前,实施步骤(1)-(4),可重新启动一次新的A/D转换,与此同时,正在进行的转换终止,此时的输出是前一次的转换结果而不是正在进行的转换结果。
若要在特定的时刻采样模拟信号,应使第8个I/O CLOCK时钟的下降沿与该时刻对应,因为芯片虽在第4个I/O CLOCK时钟下降沿开始采样,却在第8个I/O CLOCK的下降沿开始保存。
4. 应用接口及采样程序
TLC548、TLC549可方便地与具有串行外围接口(SPI)的单片机或微处理器配合使用,也可与51系列通用单片机连接使用。
与51系列单片机的接口如图3所示。
其采样程序框图如图4所示,实际应用程序清单如下:
初始化:
SETB P1.2 ;置CS为1。
CLR P1.0 ;置I/O CLOCK为零。
MOV R0,#00H ;移位计数为零。
A/D过程:
A/DP: CLR P1.2
NOP ;等待1.4μs,NOP数根据晶振情况选择
NXT: SETB P1.0
MOV C, P1.1
RLC A
CLR P1.0
INC R0
CJNE R0,#8,NXT
MOV R0,#00
SETB P1.2
MOV DTSVRM,A ;DTSVRM:DATA SAVE RAM.
RET
TLC548/549片型小,采样速度快,功耗低,价格便宜,控制简单。
适用于低功耗的袖珍仪器上的单路A/D或多路并联采样。