一元二次方程概念ppt课件

合集下载

一元二次方程的概念-PPT课件

一元二次方程的概念-PPT课件
一元二次方程的概念 一元二次方程的解法 一元二次方程根的判别式 一元二次方程根与系数的关系 用一元二次方程解决实际问题
一 元 二 次 方 程 复 习
一.相关概念
只含有 一个未知数x的 整式方程,并且都可以化 成 ax2+bx+c=0(a,b,c为常数, a≠0)的形式, 这样的方程叫做一元二次方程. 把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二 次方程的一般形式,其中ax2 , bx , c分别称为二 次项、一次项和常数项,a, b分别称为二次项系数 和一次项系数.
注意:
第(1)题容易解得x=0这一个解; 第(2)题若方程两边都除以x-6,得: x=-2,则原方程少了一个解,原因是 6 时,应保证 x 60 在除以 x 。故此 种做法不可取,应避免在方程两边都除 以一个代数式。
例7、用指定的方法解下列方程:
2
(1) (x 1 0 ) 3 ——直接开平方法
2
a1 0
2、利用方程解的定义:
2 x 2 xp 0 例3、若关于x的一元二次方程
的一个根是-1,求p的值。 根据方程的解的定义将x=1代入原方程,解 之得 p 2 1
tx 2 0 例4、关于的一元二次方程 x , 若有一个根为2,
2
求另一个根和t的值。 分析:此例已知方程的一个根,利用这 个根,先确定t的值,再求另一个根。
配方法: 配方法解方程的基本步骤 把二次项系数化为1(方程的两边同时除以二次项系数a) 把常数项移到方程的右边; 把方程的左边配成一个完全平方式; 利用开平方法求出原方程的两个解. ★一除、二移、三配、四开平方、五解. 公式法:
1、把方程化成一般形式,并写出a,b,c的值.
2 、求出 b 4 a c 的值

《一元二次方程》PPT课件

《一元二次方程》PPT课件
75 1 x 2 108
整理,得 25x2 50x 11 0 ②
课堂小结
概念
① 是整式方程; ② 只含有一个未知数; ③ 最高次数是2
一元二 次方程
一般形式
ax2+bx+c=0 (a ≠0) 其中(a≠0)是一元二次 方程的必要条件
讲授新课
知识点 一元二次方程的相关概念
问题1:幼儿园某教室矩形地面的长为8 m,宽为5 m,现 准备在地面正中间铺设一块面积为18 m2 的地毯 ,四周未 铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?
解:如果设所求的宽为 x m ,那么 x (8 – 2x)
地毯中央长方形图案的长为
x
x
(8 - 2x)m,宽为 (5 - 2x) m,根据
该方程中未知数的个数 和最高次数各是多少?
观察与思考
方程①②③都不是一元一次方程.那么这两个方程与 一元一次方程的区别在哪里?它们有什么共同特点呢?
① 2x2 - 13x + 11 = 0 ;② x2 - 8x - 20=0; ③ x2 + 12 x - 15 = 0.
特点: 1.只含有一个未知数; 2.未知数的最高次数是2; 3.整式方程.
根据题意有,
0
3 4
整理,得 x2 2500 0 ①
200cm
(2) 如图,据某市交通部门统计,前年该市汽车拥有量 为75万辆,两年后增加到108万辆.求该市两年来汽车拥 有量的年平均增长率x应满足的方程. 解:该市两年来汽车拥有量的 年平均增长率为x 根据题意有,
解:(1)将方程式转化为一般形式,得(a-2)x2-x=0, 所以当a-2≠0,即a≠2时,原方程是一元二次方程;
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方 程是一元二次方程.

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

【跟踪训练】
3.把方程 x(2x-1)=1 化成 ax2+bx+c=0 的形式,则 a,
b,c 的一组值是( A )
A.2,-1,-1
B.2,-1,1
C.2,1,-1
D.2,1,1
4.把下列关于 x 的一元二次方程化为一般形式,并指出其 二次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c.
证明:∵关于 x 的一元二次方程 ax2+bx+c=0(a≠0)中的 二次项系数与常数项之和等于一次项系数,
∴a+c=b. ∴当 x=-1 时,ax2+bx+c=a-b+c=b-b=0, ∴-1 必是该方程的一个根.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话, 另一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
第二十一章 一元二次方程
21.1 一元二次方程
1.一元二次方程的概念 只含有__一__个___未知数,并且未知数的最高次数是___2____ 的___整__式___方程,叫做一元二次方程. 注意:一元二次方程有三个特点:(1)只含有一个未知数; (2)未知数的最高次数是 2;(3)是整式方程.

北师大九年级数学上册《一元二次方程》课件(共17张PPT)

北师大九年级数学上册《一元二次方程》课件(共17张PPT)
1.判断下列哪些是一元二次方程
(×1)4x25y22 (×5)y2 1 80
y
×23x429 ×62x3y0
3y2 1 y√
3
4x2 0 √
×7 x2 3 x 4x2 7 8 ×a2x b xc0
(a、b、c为常数 )
考点1、一元二次方程的概念及相关问题。
1、一元二次方程定义: 把握住:①整式方程②只含有一个未知数 ③未知数的最高次数是2 2、一元二次方程一般形式:
3x24x10
49x2212 0 1
强调:在选择解方程的方法时, 应先考虑直接开平方法和因式分解法; 再考虑用配方法,最后考虑用公式法.
考点3、一元二次方程根的判别式。
3.根的判别式△=___b_2-__4_a_c_: (1)△>0时 __原__方__程__有__两__个__不__相__等__的__实__数根 (2)△=0时 __原__方__程__有__两__个__相__等__的__实__数__根 (3)△<0时 __原__方__程__无__实__数__根__________
谢谢观赏
You made my day!
我们,还在路上……
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

一元二次方程课件ppt

一元二次方程课件ppt
(4)原方程变形为 (xm)2 n 形式
(5)如果右边为非负数,直接开平方法 求出方程的解,如果右边是负数,一元二 次方程无解。
心动 不如行动
例1: 用配方法解方程
x26x70
解: 移项得:x26x7
配方得:x26x32732
即(x3)2 16
开平方得: x34
∴原方程的解为:x11, x27
范例研讨运用新知
x12;x21.
学习是件很愉快的事
淘金者
❖ 你能用分解因式法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2 xb xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
2a
2a
b b 2a 2a
b0
❖用“因式分
解法”解一元 二次方程
回顾与复习 1
1.我们已经学过了几种解一元二次方程
1.x2 7;
2.3y2y1.4
解:1.一元二次方程解: 2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1 是7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22)y (73 . 7).
3

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
什么是一元二次方程?
2019/11/10
3
例1:
– 要将一块长100cm宽 50cm的长方形铁 块形的,四从个而角制分成别一剪面去积一为cm3相62 0同0大小的的铁正皮方 盖盒,小王不知道怎么裁剪,你能不能 用数学方程的思想帮小王合理策划呢?
A
裁剪前
B
裁剪后
4
怎样解这道实际应用题呢?
解:我们设剪去的正方形的边长为xcm,那 么制成的盖盒B的边长分别为(100-2x)cm、
方程
一般形式
二次项 一次项 常数 系 数系 数 项
3x2=5x-1 3x2-5x+1=0
3
(x+2)(x -
1)=6 1x2 +1x-8=0
1
-7x2 +4=0
4-7x2=0 或-7x2 +0 x+4=0 -7
x2 - 8x - 20=0.
1、化简后都是整式方程
( x+6)2+72=102 2、只含有一个未知数,
x2 +12 x -15 =0. 3、未知数的最高次数是2
2019/11/10
12
什么叫做一元二次方程 ?
经过变形后,只含有一个未知 数,并且未知数的最高次数是2 的整式方程,叫做一元二次方程 。
表示为x+1, x+2,x+3,x+4根据题意,可得
x²+(x+1)²+ (x+2)²=(x+3)²+ (x+4)²
2019/11/10
8
问题情景
要组织一次排球邀请赛,参赛的每两 队之间都要比赛一场,根据场地和时间 等条件,赛程计划安排7天,每天安排4场 比赛,比赛组织者应邀请多少个队参加 比赛?
基础练习2:
下列方程中有(
(1)
A )是一元二次方程
(2)
(3)
(4)
(5)
(A)(1)(5)(6) (C)(1)(3)(4)
(6)
(B)(1)(4)(5) (D)(2)(4)(5)
2019/11/10
15
重新定义一元二次方程:
2x2 - 13x + 11 = 0 .
x2 - 8x - 20=0.
案的面积为18平方米,那么花边有多宽?
数学化 5m
18平方米
8-2x
5-2x x
8m
用什么模型解决该问题?
2019/11/10
6
例2 有一块四周镶有宽度相等的花边的地毯,它的
长8米,宽长5米,如果地毯中央长方形图案
的面积为18平方米,那么花边有多宽?
5cm
5-2x
解 :设花边的宽为Xm,根 据题意,可列方程
根据题意得:x(x-1)=2×28
x²-x=56
9
引例4、一个长为10m的梯子斜靠在墙上,梯子 的顶端距离地面的垂直距离为8m, 如果梯子的顶 端下滑1m,那么梯子的底端滑动多少m?
数学化 1m
8m 7m
6m ?m
方法一:两次勾股定理。
2019/11/10
10
例3、一个长为10m的梯子斜靠在墙上,梯子的 顶端距离地面的垂直距离为8m, 如果梯子的顶端 下滑1m,那么梯子的底端滑动多少m?
注意:其中c是常数项。
一般形式的右边必须是0,左边按降幂排列:
当然也可以没有一次项、常数项。
2019/11/10
17
基础练习3:请完成下表
方程
x2-3x=-2
4x2+7x=0 3y2=6 x-7x2=1
一般形式
二次项系 一次项 数
x²-3x +2=0 1
-3X
4x²+7x =0 4 +7X
3y²-6=0
(50-2x)cm,面积为3600cm2 ,得到:
(100-2x)(50-2x)=3600
化简为:
? x2 75x 350 0
想一想
对于这样的一元二次方程我们
如何去求得其解呢?
解法
2019/11/10
5
◆例2:
有一块四周镶有宽度相等的花边的地毯,它
的长8米,宽长5米,如果地毯中央长方形图
2019/11/10
1
教学目标:
1、了解一元二次方程的概念。 2、会把一元二次方程化成一般形式。 3、会找一元二次方程二次项系数,
一次项系数,和常数项 4、会列一元二次方程。
2019/11/10
2
一、复习引入
方程
整式方程
一元一次方程 2x+7=4
二元一次方程 3x-4y=6
一元?二次方程 x2+3x+2=0
8-2x

x
(8-2x)(5-2x)= 18
8cm
40-16x-10x+4x2=18
2019/11/10
7
例3:数字问题
观察等式 10²+ 11²+12²=13²+14²
五个连续整数,前三个数的平方和等于后两个数的平方和, 你还能找到其他的五个连续整数,怎么找? 设:五个连续整数中的第一个数为x,那么后面四个数可
2019/11/10
13
基础练习1:
你能判断下列等式哪些是一元二次方程,
哪些不是吗。
① 2+3=5
②②xx2+2+3x+2=0
③2x22-9x=0
④④x(xx(+x+2)2=)=11+1+2(22(02x0-x5-)5)
1
⑤ x +x2-3=0 ⑥ x(x+1)=x(x+7)
2019/11/10
14
x2 +12 x -15 =0.
把一个整式方程经过变形后,只含有一个未
知数x,且可以化为ax2+bx+c=0(a,b,c为
常数,a≠0)形式的整式方程。
2019/11/10
16
一元二次方程定义:
把ax2+bx+c=0 (a≠0)称为一元二次方程一般 形式,
其中ax2是二次项,a是二次项的系数。 其中bx是一次项, b是一次项的系数。
3
0
-7x²+x -1=0 -7 +X
点拨:1按顺序化成一般形式ax²+bx +c=0 ,
2 要认真区别是求方程的各项还是各项的系数。 3当系数为负数时,千万不要丢负号。 4二次项为负时,也可以把他们都改变符号,使之成为正号。
2019/11/10
常数项
2 0 -6 -1
18
基础练习4:
1、课本4页练习 第1题 第2题
数学化 1m
8m 7m
6m xm X+6
方法二:设梯子底端滑动x米,由勾股定理得:
(x+6)²+7 ²=10²
2019/11/10
11
一元二次方程的概念
上面三个问题得到的三个方程可化简为: 共同特点? (8-2x)(5-2x)=18
2x2 - 13x + 11 = 0 .
x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2
2、课本4页习题22.1 第1题 第2题
2019/11/10
19
基础练习4:
解2: 9x2十12x+4=4x2-24x+36 5x2十36x-32=0
所以一般形式为5x2十36x-32=0
二次项系数为 : 5 一次项系数为 : 36 常数项为 : -32
2019/11/10
20
基础练习4:知识技能2
相关文档
最新文档