2016-2017年河北省唐山市古冶区初三上学期期末数学试卷含答案解析

合集下载

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。

第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。

70° C。

125° D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。

4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。

2017-2018学年河北省唐山市九年级(上)期末数学试卷

2017-2018学年河北省唐山市九年级(上)期末数学试卷

2017-2018学年河北省唐山市九年级(上)期末数学试卷一、选择题.(请将唯一正确的答案的选项填涂在答题卡上,3分×10)1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣22.近年来,我市民用汽车拥有量持续增长,自2011年民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为()A.15.6 B.19 C.20 D.223.如图,⊙O是△ABC的外接圆,∠A=40°,则∠OCB等于()A.60°B.50°C.40°D.30°4.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.﹣2 B.2 C.﹣D.5.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A .1:2 B.1:3 C.1: D.:16.兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D 得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为()A.B.C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:29.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)10.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB 等于()A.55°B.60°C.65°D.70°二、填空题(请将正确答案填在答题卡相应题号后.每小题3分,共21分)11.6月5日是世界环境日,其主题是“海洋存亡,匹夫有责”,目前全球海洋总面积约为36100万平方公里.用科学记数法表示为平方公里.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.16.从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是.17.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是.三.解答题(本题共9小题,共69分.请将正确答案写在答题卡相应位置上)18.解方程:x(x﹣2)+x﹣2=0.19.求抛物线y=x2﹣x﹣2与x轴的交点坐标.20.如图所示的网格图中,每小格都是边长为1的正方形,△ABC 的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(﹣1,2).(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1;并标出A1,B1,C1的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并标出A2,B2,C2的坐标.21.已知抛物线的顶点坐标是(﹣1,4),且过点(1,0),求该抛物线的解析式.22.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)23.如图,四边形ABCD内接于⊙O,AD∥BC,求证:AB=CD.24.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?25.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G 是否在该抛物线上?请说明理由.2017-2018学年内蒙古通辽市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(请将唯一正确的答案的选项填涂在答题卡上,3分×10)1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.【解答】解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.【点评】此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.2.近年来,我市民用汽车拥有量持续增长,自2011年民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为()A.15.6 B.19 C.20 D.22【考点】算术平均数.【分析】根据平均数的公式求解即可,利用5个数的平均数得出5个数的总和,进而得出x 的值即可.【解答】解:根据平均数的求法:共5个数,这些数之和为:11+13+15+19+x=16×5,解得:x=22.故选D【点评】本题考查的是样本平均数的求法,利用五个数的平均数为16得出x是解题关键.3.如图,⊙O是△ABC的外接圆,∠A=40°,则∠OCB等于()A.60°B.50°C.40°D.30°【考点】圆周角定理.【分析】由⊙O是△ABC的外接圆,∠A=40°,然后由圆周角定理,即可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OCB的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=40°,∴∠BOC=2∠A=80°,∵OB=OC,∴∠OCB==50°.故选B.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.﹣2 B.2 C.﹣D.【考点】待定系数法求反比例函数解析式.【专题】计算题;待定系数法.【分析】直接把点的坐标代入解析式即可.【解答】解:把点A代入解析式可知:m=﹣.故选C.【点评】主要考查了反比例函数的求值问题.直接把点的坐标代入解析式即可求出点坐标中未知数的值.5.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1:D.:1【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【解答】解:水平距离==4,则坡度为:2:4=1:2.故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.6.兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为()A.B.C.D.【考点】解直角三角形的应用-仰角俯角问题.【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG长,加上2m 即为这幢教学楼的高度AB.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=30m,即AG﹣=30m,∴AG=15m,∴AB=(15+2)m.故选:D.【点评】考查了解直角三角形的应用﹣仰角俯角问题,构造仰角所在的直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、有两边及一角对应相等的两三角形全等是随机事件,故A错误;B、若a2=b2则有a=b是随机事件,故B错误;C、方程x2﹣x+1=0有两个不等实根是不可能事件,故C错误;D、圆的切线垂直于过切点的半径是必然事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米【考点】二次函数的应用.【专题】应用题;压轴题;数形结合.【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a>0,b>0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=﹣=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=2,∴﹣=2,∴b=﹣4a>0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴﹣=2,∴b=﹣4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(﹣1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当﹣1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.二、填空题(请将正确答案填在答题卡相应题号后.每小题3分,共21分)11.6月5日是世界环境日,其主题是“海洋存亡,匹夫有责”,目前全球海洋总面积约为36100万平方公里.用科学记数法表示为 3.61×108平方公里.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将36100万用科学记数法表示为3.61×108.故答案为:3.61×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有30件是次品.【考点】概率的意义.【分析】利用总数×出现次品的概率=次品的数量,进而得出答案.【解答】解:由题意可得:次品数量=600×0.05=30.故答案为:30.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是=3.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义得到n2+mn+3n=0,然后两边除以n即可得到m+n 的值.【解答】解:把x=n代入x2+mx+3n=0得n2+mn+3n=0,∵n≠0,∴n+m+3=0,即m+n=﹣3.故答案是:﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=﹣1.【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),则a=2,b=﹣3,a+b=﹣1,故答案为:﹣1.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是60π.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可.【解答】解:底面圆的直径为12,则半径为6,∵圆锥的高为8,根据勾股定理可知:圆锥的母线长为10.根据周长公式可知:圆锥的底面周长=12π,∴扇形面积=10×12π÷2=60π.故答案为60π.【点评】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.16.从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,让点数和是奇数的情况数除以总情况数即为所求的概率.【解答】解:画树状图为:共有12种等可能的结果数,其中这两张牌的点数奇数的结果数为3,所以这两张牌的点数都是奇数的概率==.故答案为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是第45行,第10列.【考点】规律型:数字的变化类.【分析】根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2016所在的位置.【解答】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2016在第45行,向右依次减小,故201所在的位置是第45行,第10列.故答案为:第45行,第10列.【点评】此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三.解答题(本题共9小题,共69分.请将正确答案写在答题卡相应位置上)18.解方程:x(x﹣2)+x﹣2=0.【考点】解一元二次方程-因式分解法;等式的性质;解一元一次方程.【专题】计算题.【分析】把方程的左边分解因式得到(x﹣2)(x+1)=0,推出方程x﹣2=0,x+1=0,求出方程的解即可【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.【点评】本题主要考查对解一元二次方程,解一元一次方程,等式的选择等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.求抛物线y=x2﹣x﹣2与x轴的交点坐标.【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据抛物线与x轴的交点问题,通过解方程x2﹣x﹣2=0可得到抛物线与x轴的交点坐标.【解答】解:当y=0时,x2﹣x﹣2=0,解得x1=2,x2=﹣1,所以抛物线与x轴的交点坐标为(﹣1,0),(2,0).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.20.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(﹣1,2).(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1;并标出A1,B1,C1的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并标出A2,B2,C2的坐标.【考点】作图-旋转变换.【分析】(1)根据旋转的性质分别得出A1,B1,C1的坐标,进而得出答案;(2)根据旋转的性质分别得出A2,B2,C2的坐标,进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(3,1),B1(1,2),C1(3,4);(2)如图所示:△A2B2C2,即为所求,A2(4,﹣2),B2(3,﹣4),C2(1,﹣2).【点评】此题主要考查了旋转变换,根据题意分别得出对应点位置是解题关键.21.已知抛物线的顶点坐标是(﹣1,4),且过点(1,0),求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x+1)2+4,然后把(1,0)代入求出a的值即可.【解答】解:设抛物线解析式为y=a(x+1)2+4,把(1,0)代入得a(1+1)2+4=0,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)2+4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.22.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)【考点】列表法与树状图法.【分析】(1)根据概率的意义解答即可;(2)根据袋中还剩5只球,然后根据概率的意义解答即可;(3)列出图表,然后根据概率公式列式进行计算即可得解.【解答】解:(1)∵一共有6只球,黑球1只,∴取出的球是黑球的概率为;(2)∵取出1只红球,∴袋中还有5只球,还有1只黑球,∴取出的球还是黑球的概率是;所以,P(两次取出的球都是白球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,四边形ABCD内接于⊙O,AD∥BC,求证:AB=CD.【考点】圆内接四边形的性质.【专题】证明题.【分析】根据AD∥BC,得出∠A+∠B=180°,再根据圆内接四边形的对角互补得出∠A+∠C=180°,由同角的补角相等得到∠B=∠C,所以四边形ABCD是等腰梯形,于是AB=CD.【解答】证明:∵AD∥BC,∴∠A+∠B=180°,∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠B=∠C,又∵AD∥BC,且AD≠BC,∴四边形ABCD是等腰梯形,∴AB=CD.【点评】此题考查了圆内接四边形的对角互补的性质,平行线的性质,补角的性质,等腰梯形的判定与性质,得出∠B=∠C是解题的关键.24.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【解答】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)=1500解得x=5或x=10,∴为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点评】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.25.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D 在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【考点】切线的判定;勾股定理.【专题】证明题.【分析】(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8.【解答】(1)证明:连结OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC=DC=4,在Rt△ABC中,∠B=30°,∴AB=2AC=8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式.(2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积.(3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可.【解答】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=﹣x2+bx+c中,得,解得,∴抛物线所对应的函数解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为D(1,4),∴△ABD中AB边的高为4,令y=0,得﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以AB=3﹣(﹣1)=4,∴△ABD的面积=×4×4=8;(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2),当x=3时,y=﹣32+2×3+3=0≠2,所以点G不在该抛物线上.【点评】这道函数题综合了图形的旋转、面积的求法等知识,考查的知识点不多,难度适中.。

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

冀教版九年级数学上册期末考试(含答案)

冀教版九年级数学上册期末考试(含答案)

冀教版九年级数学上册期末考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是()A.﹣15B.15C.﹣5 D.52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 5.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 6.用配方法解方程2x2x10--=时,配方后所得的方程为()A.2x10+=()B.2x10-=()C.2x12+=()D.2x12-=()7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)123=______________.2.分解因式:244m m++=___________.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=__________度.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、D7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、()22m+3、5或34、805、406、454353x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、x=52、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略;(24、(1)(m,2m﹣5);(2)S△ABC =﹣82aa+;(3)m的值为72或.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

冀教版九年级上数学期末试卷(含解析答案)

冀教版九年级上数学期末试卷(含解析答案)

冀教版九年级(上)数学期末试卷一一、选择题(共10小题,每小题2分,计20分)1.﹣2的绝对值是()A .2B .12C .12-D .2-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是()A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列说法正确的是()A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.用配方法将二次函数y =x 2﹣2x 化为y =a (x ﹣h )2+k 的形式为()A .y =﹣(x ﹣1)2+1B .y =(x +1)2﹣1C .y =(x +1)2+1D .y =(x ﹣1)2﹣15.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S 2(单位:千克2)如表所示:甲乙丙丁24242320S 2 2.1 1.92 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A .甲B .乙C .丙D .丁6.如图,若△ABC 与△A 1B 1C 1是位似图形,则位似中心的坐标为()A .(1,0)B.(0,1)C .(﹣1,0)D .(0,﹣1)7.如图,在⊙O 中,已知=,则AC 与BD 的关系是()A .AC =BDB .AC <BDC .AC >BDD .不确定8.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.9.如图,圆锥体的高h=2cm,底面圆半径r=2cm,则圆锥体的全面积为()cm2.A.12πB.8πC.4πD.(4+4)π10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0)B.(-6,0)C.(-52,0)D.(-32,0)二、填空题(共9小题,每空2分,计22分)11.(2的平方根是.12.(2分)因式分解:x3﹣4x=.13.(2分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.14.(4分)已知二次函数y=﹣x2+bx+c中函数y与自变量x之间部分对应值如表所示,点A(x1,y1),B(x2,y2),在函数图象上.x…0123…y…m n3n…则表格中的m=;当﹣1<x1<0,3<x2<4时,y1和y2的大小关系为.15.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=3.点D是AB上一动点,以DC为斜边向右侧作等腰直角三角形CDE,使∠CED=90°,连接BE.(1)若点E恰好落在AB上,则AD的值为;(2)线段BE的最小值为.16.(2分)已知线段a=4cm,b=9cm,则线段a,b的比例中项为cm.17.(2分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)18.(2分)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.19.(2分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.三、计算题(共2小题,计8分)20.(1)(2分)解方程:x2﹣1=2(x+1)(2)(2分)计算:2cos30°﹣tan45°﹣.21.(4分)先化简,再求值:2443(1)11m m mm m-+÷----,其中2m=-.四、解答题(共5小题,计50分)22.(10分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”重庆实验外国语学校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生人,并将条形统计图补充完整;(2)读书本数的众数是本,中位数是本.(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.23.(8分)如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?24.(12分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.25.(8分)如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P 与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;(2)当∠PCD=30°时,求AE的长;(3)是否存在这样的点P,使△CDP的周长等于△PAE周长的2倍?若存在,求DP的长;若不存在,请说明理由.26.(12分)如图,在四边形ABCD中,AB=20,AD=8,AD⊥AB,DC⊥BC,sin B=,P是AD 上一点,以点P为圆心的圆切BC于点T,分别交AB,AD的延长线于点M,N,设AP=x.(1)当x=0时,求扇形PMN的面积;(2)求BC的长;(3)若⊙P上的点到点A,D的距离均不小于8,求x的取值范围.冀教版九年级(上)数学期末试卷一参考答案与试题解析一、选择题1.A2.B3.D4.【解答】解:y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,故选:D.5.【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.6.【解答】解:如图所示:位似中心的坐标为(0,﹣1).故选:D.7.【解答】解:∵=,∴,∴,∴AC=BD.故选:A.8.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.9.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:A.10.C二、填空题11.±2.12.x(x+2)(x﹣2)13.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.14.【解答】解:由表可知,抛物线的对称轴为直线x=2,∴函数解析式为y=﹣(x﹣2)2+3,当x=0时,m=﹣1,∵a=﹣1,∴函数图象开口向下,∵﹣1<x1<0,3<x2<4,∴y1<y2.故答案为﹣1;y1<y2.15.【解答】解:(1)若点E恰好落在AB上时,∵∠CED=90°,∴CE⊥AB,在△ABC中,∠ACB=90°,∠A=30°,BC=3,∴AB=2BC=6,AC=BC=3,∵CE=DE=,∴AD=AE﹣DE=,故答案为;(2)解:以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB交于点G,连接E1E延长与AB交于点F,连接CF,作BE2⊥E1F于点E2.∵Rt△DCE与Rt△AE1C为等腰直角三角形,∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,∴∠ACD=∠E1CE,∵==,∴△ACD∽△E1CE,∴∠CAD=∠CE1E=30°,∵D为AB上的动点,∴E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.在△AGC与△E1GF中,∠AGC=∠E1GF,∠CAG=∠GE1F,∴∠GFE1=∠ACG=45°,∴∠BFE2=45°,∵∠CAD=∠CE1F=30°,∴点A、C、F、E1四点共圆,∴∠AE1C=∠AFC=90°,且∠ABC=60°,则∠BCF=30°,∴BF=BC=3=,∴BE2=BF=×=,故答案为.16.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.17.【解答】解;设P(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.18.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.19.12 7三、计算题20.【解答】解:(1)x2﹣1=2(x+1),移项,得x2﹣1﹣2x﹣2=0,即x2﹣2x﹣3=0,分解因式,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=2×﹣1﹣=﹣1﹣(﹣1)=0.21.22mm-+1-.四、解答题22.【解答】解:(1)本次共抽查学生14÷28%=50(人),读书10本的学生有:50﹣9﹣14﹣7﹣4=16(人),补全的条形统计图如右图所示,故答案为:50;(2)读书本数的众数是10本,中位数是(10+15)÷2=12.5(本),故答案为:10,12.5;(3)2000×=1000(人),即读书15本及以上(含15本)的学生估计有1000人;(4)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是.23.【解答】解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1,m=﹣1(舍去).∴m=1,∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1.∴一次函数的表达式y2=x+1;(2)B点的坐标为(﹣2,﹣1).当0<x<1或x<﹣2时,y1>y2.24.(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m的值为,1,2.25.【解答】(1)△CDP∽△PAE.证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△CDP∽△PAE.(2)在Rt△PCD中,由tan∠PCD=,∴,∴,解法1:由△CDP∽△PAE知:,∴,解法2:由△CDP∽△PAE知:∠EPA=∠PCD=30°,∴;(3)假设存在满足条件的点P,设DP=x,则AP=11﹣x,∵△CDP∽△PAE,根据△CDP的周长等于△PAE周长的2倍,得到两三角形的相似比为2,∴即,解得x=8,此时AP=3,AE=4.26.【解答】解:(1)如图,连接PT,则PT⊥BC,当x=0时,点P与点A重合,此时PB=AB=20,∠MPN=∠MAN=90°,∵∠PTB=90°,sin B=,∴PT=AB•sin B=20×=16,∵∠MPN=∠MAN=90°,∴扇形PMN的面积为;(2)如图,过点A作AE∥BC于点E,过点D作DF⊥AE于点F,则四边形CDFE是矩形,∠BAE+∠B=90°,∴CE=DF,CD=EF,在Rt△ABE中,AE=AB•sin B=20×=16,∴BE===12,∵∠BAD=90°,即∠BAE+∠DAE=90°,∴∠DAE=∠B,∴sin∠DAE=sin B=,在Rt△ADF中,AD=8,∴DF=AD•sin∠DAE=8×=,∴AF===,∴CE=DF=,EF=AE﹣AF=16﹣=,∴CD=EF=,∴BC=BE+CE=12+=,即BC的长是;(3)如图,连接TP并延长交BA的延长线于点G,则∠APG+∠G=90°,∠B+∠G=90°,∴∠APG=∠B,∴sin∠APG=sin B=,∴,设AG=4k,则PG=5k,则AP=3k,∵AP=x,∴,∴,,,在Rt△BGT中,,∴圆的半径,由题意,得,,即,,解得,∴x的取值范围为.。

河北省唐山市古冶区2016年中考数学二模试卷(含解析)

河北省唐山市古冶区2016年中考数学二模试卷(含解析)

2016年河北省唐山市古冶区中考数学二模试卷一、选择题(每题3分)1.﹣5的绝对值为()A.﹣5 B.5 C.﹣ D.2.如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是()A.B.C.D.3.如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.94.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()A.B.C.D.5.如图,已知:AB∥EF,CE=CA,∠E=65°,则∠CAB的度数为()A.25° B.50° C.60° D.65°6.下列事件属于不可能事件的是()A.两个有理数的和是无理数B.从装有5个红球和1个白球的袋子中随机摸出1球是白球C.买一张电影票,座位号是偶数D.购买1张彩票中奖7.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元8.某住宅小区五月份1日至5如每天用水量变化情况如图所示,那么这5天平均每天用水量的中位数是()A.28 B.32 C.34 D.369.如图,边长为1的小正方形构成的网格中,⊙O半径为1,圆心O在格点上,则tan∠AED=()A.1 B.C.D.10.某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.11.在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则CF:CA=()A.2:1 B.2:3 C.3:2 D.1:312.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间13.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=014.小亮和小明沿同一条路同时从学校出发到市图书馆,学校与图书馆的路程是4千米,小亮骑自行车,小明步行,当小亮从原路回到学校时,小明刚好到达市图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分)之间的函数关系,根据图象提供信息,下列结论错误的是()A.小亮在图书馆停留的时间是15分钟B.小亮从学校去图书馆的速度和从图书馆返回学校的速度相同C.小明离开学校的路程s(千米)与时间t(分)之间的函数关系式为S=tD.BC段s(千米)与t(分)之间的函数关系式为S=t+1215.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km16.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分)17.计算:2×(﹣)= .18.已知a+b=1,则a2﹣b2+2b= .19.如图,正三角形ABC的边长为1,点A,B在半径为的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,则点C转过的度数为.20.如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC 沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为cm.三、解答题21.已知二元一次方程2x+y=3(1)若y的值是负数,求x的取值范围;(2)已知关于x,y的方程组的解x,y满足二元一次方程2x+y=3,求a2+2ab+b2的值.22.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.23.如图,O为原点,反比例函数y=(x>0)的图象经过线段OA的端点A,作AB⊥x轴于点B,点A的坐标为(2,3).(1)反比例函数的解析式为;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E,①求直线AE的函数表达式;②若直线AE与x轴交于点M,与y轴交于点N,请你写出线段AN与线段ME的大小,并说明理由.24.在Rt△ABC中,∠CAB=90°,AC=AB=6,D,E分别是AB,AC的中点,若等腰Rt△ADE 绕点A逆时针旋转,得到Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(2)如图2,当α=135°时,设直线BD1与CA的交点为F,求证:BD1=CE1,且BD1⊥CE1;(3)点P到AB所在直线的距离的最大值是.25.某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+n.(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n= ;(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.26.如图1,在Rt△ABC中,∠ACB=90°,AC=15cm,BC=20cm,点D从点B出发沿BC边向点C运动,同时点E从点A出发沿AC边向点C运动,速度均为1cm/s,当一个点到达点C 时,另一点也停止运动,连接DE,设点D的运动时间为t(单位:s,0≤t<15),△CDE的面积为S(单位:cm2)(1)在点D、E运动过程中,DC﹣EC= cm,并求出S与t的函数关系式;(2)点D运动到什么位置时,S等于△ABC面积的一半?(3)如图2,在点D、E运动的同时,将线段DE绕点E逆时针旋转45°,得到线段EP,过点D作DF⊥EP,垂足为F,连接CF,在DC上截取GC=5cm,连接FG,在点D、E运动过程中,线段CF的长是一个定值,求出其值;(4)点D、E及EP按照(3)中的方式运动到某个时刻停止,仍过点D作DF⊥EP,垂足为F,如图3,令点Q在DE的右侧运动(点Q不与A、B重合),且DQ⊥EQ,连接QF,若DQ=m,EQ=n (m>0,n>0且m≠n),直接写出QF的长(用含m,n的式子表示)2016年河北省唐山市古冶区中考数学二模试卷参考答案与试题解析一、选择题(每题3分)1.﹣5的绝对值为()A.﹣5 B.5 C.﹣ D.【考点】绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣5的绝对值为5,故选:B.2.如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:C.3.如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.9【考点】平方根.【分析】根据一个正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a 的值.【解答】解:根据题意得:2a+1+3a﹣11=0,移项合并得:5a=10,解得:a=2,故选C4.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】根的判别式;在数轴上表示不等式的解集.【分析】根据已知得出22﹣4×1×m>0,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【解答】解:∵关于x的方程x2+2x+m=0有两个不相等的实数根,∴22﹣4×1×m>0,解得:m<1,在数轴上表示为:,故选C.5.如图,已知:AB∥EF,CE=CA,∠E=65°,则∠CAB的度数为()A.25° B.50° C.60° D.65°【考点】平行线的性质;等腰三角形的性质.【分析】CE=CA即△ACE是等腰三角形.∠E是底角,根据等腰三角形的两底角相等得到∠E=∠EAC=65°,由平行线的性质得到:∠EAB=115°,从而求出∠CAB的度数.【解答】解:∵CE=CA,∴∠E=∠EAC=65°,又∵AB∥EF,∴∠EAB=180°﹣∠E=115°,∴∠CAB=∠EAB﹣∠EAC=50°.故选B.6.下列事件属于不可能事件的是()A.两个有理数的和是无理数B.从装有5个红球和1个白球的袋子中随机摸出1球是白球C.买一张电影票,座位号是偶数D.购买1张彩票中奖【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、两个有理数的和是无理数是不可能事件,故A正确;B、从装有5个红球和1个白球的袋子中随机摸出1球是白球,是随机事件,故B错误;C、买一张电影票,座位号是偶数,是随机事件,故C错误;D、购买1张彩票中奖,是随机事件,故D错误;故选:A.7.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元【考点】一元一次方程的应用.【分析】本题等量关系:利润=售价﹣进价.【解答】解:设这件衣服的进价为x元,则132×0.9=x+10%x解得:x=108故选D.8.某住宅小区五月份1日至5如每天用水量变化情况如图所示,那么这5天平均每天用水量的中位数是()A.28 B.32 C.34 D.36【考点】中位数;折线统计图.【分析】根据折线统计图可以得到这五天的用水量,然后按照从小到大的顺序排列,即可得到这组数据的中位数.【解答】解:由折线统计图可知,这5天的用水量分别为:30,32,36,28,34,按照从小到大排列是:28,30,32,34,36,故这5天平均每天用水量的中位数是32,故选B.9.如图,边长为1的小正方形构成的网格中,⊙O半径为1,圆心O在格点上,则tan∠AED=()A.1 B.C.D.【考点】锐角三角函数的定义;圆周角定理.【分析】根据锐角三角函数的定义求出tan∠ABC,根据圆周角定理得到∠AED=∠ABC,得到答案.【解答】解:∵AC=1,AB=2,∴tan∠ABC==,由圆周角定理得,∠AED=∠ABC,∴tan∠AED=,故选:C.10.某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据实际生产180吨与原计划生产120吨的时间相等,可以建立方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,=,故选C.11.在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则CF:CA=()A.2:1 B.2:3 C.3:2 D.1:3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,即可判定△AEF∽△CBF,又由点E为AD的中点,然后由相似三角形的对应边成比例,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△AEF∽△CBF,∵点E为AD的中点,∴AE=AD=BC,∴AF:CF=AE:BC=1:2,∴CF:CA=2:3.故选B.12.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;估算无理数的大小;坐标与图形性质.【分析】先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.【解答】解:∵点P坐标为(﹣2,3),∴OP==,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.故选A.13.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称性是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.14.小亮和小明沿同一条路同时从学校出发到市图书馆,学校与图书馆的路程是4千米,小亮骑自行车,小明步行,当小亮从原路回到学校时,小明刚好到达市图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分)之间的函数关系,根据图象提供信息,下列结论错误的是()A.小亮在图书馆停留的时间是15分钟B.小亮从学校去图书馆的速度和从图书馆返回学校的速度相同C.小明离开学校的路程s(千米)与时间t(分)之间的函数关系式为S=tD.BC段s(千米)与t(分)之间的函数关系式为S=t+12【考点】一次函数的应用.【分析】根据两个函数的图象表示的意义,即可判断AB,利用待定系数法求函数关系式,即可判断CD.【解答】解:根据图象可以得到:OABC表示小亮的路程与时间的关系.OA表示从学校到市图书馆,小亮从学校去图书馆的速度是千米/分钟,AB段表示停留的时间,从第15分钟,到30分钟,则共用了15分钟,故A正确;BC段表示从市图书馆到学校,时间是从第30分钟到第45分钟,共用了15分钟,路程是4千米,则速度是千米/分钟,故B正确;OD表示小明的路程与时间的关系,45分钟走了4千米,速度是千米/分钟,则路程与时间的关系式是:s=t,故C正确;设BC的函数关系式是s=kt+b,根据题意得解得:∴s=t+12,∴D错误;故选:D.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km【考点】解直角三角形的应用-方向角问题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.16.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠A EG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE ≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AE F=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.二、填空题(每题3分)17.计算:2×(﹣)= ﹣1 .【考点】有理数的乘法.【分析】根据有理数的乘法法则,即可解答.【解答】解:2×(﹣)=﹣2,故答案为:﹣1.18.已知a+b=1,则a2﹣b2+2b= 1 .【考点】完全平方公式.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=1,∴原式=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1,故答案为:119.如图,正三角形ABC的边长为1,点A,B在半径为的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,则点C转过的度数为30°.【考点】旋转的性质;等边三角形的性质;垂径定理.【分析】设圆心为O,点C的对应点为C′,连接OA、OB、OC′,利用勾股定理逆定理求出∠AOC′=∠AOB=90°,从而判断出点B、O、C′三点共线,然后根据直径所对的圆周角是直角求出∠BAC′=90°,再根据点C转过的度数=∠BAC′﹣∠BAC代入数据计算即可得解.【解答】解:如图设圆心为O,点C的对应点为C′,连接OA、OB、OC′,∵正三角形ABC的边长为1,点A,B在半径为的圆上,∴AO2+C′O2=()2+()2=+=1,∴AO2+C′O2=AC′2,∴∠AOC′=90°,同理可得∠AOB=90°,∴∠AOC′=∠AOB=90°,∴点B、O、C′三点共线,∴∠BAC′=90°,又∵△ABC是等边三角形,∴∠BAC=60°,∴点C转过的度数=∠BAC′﹣∠BAC=90°﹣60°=30°.故答案为:30°.20.如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC 沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为7 cm.【考点】相似三角形的判定与性质;等腰三角形的性质;矩形的性质;平移的性质.【分析】作AE⊥BC于E,根据等腰三角形的性质和矩形的性质求得∠BAE=∠AC1B,∠AEB=∠BAC1=90°,从而证得△ABE∽△C1BA,根据相似三角形对应边成比例求得BC1=9,即可求得平移的距离即可.【解答】解:作AE⊥BC于E,∴∠AEB=∠AEC1=90°,∴∠BAE+∠ABC=90°∵AB=AC,BC=2,∴BE=CE=BC=1,∵四边形ABD1C1是矩形,∴∠BAC1=90°,∴∠ABC+∠AC1B=90°,∴∠BAE=∠AC1B,∴△ABE∽△C1BA,∴=∵AB=3,BE=1,∴=,∴BC1=9,∴CC1=BC1﹣BC=9﹣2=7;即平移的距离为7.故答案为7.三、解答题21.已知二元一次方程2x+y=3(1)若y的值是负数,求x的取值范围;(2)已知关于x,y的方程组的解x,y满足二元一次方程2x+y=3,求a2+2ab+b2的值.【考点】二元一次方程组的解;二元一次方程的解.【分析】(1)把x看作已知数求出y,根据y的值是负数求出x的范围即可;(2)把两个方程相加得出2x+y=a+b,那么a+b=3,再利用完全平方公式即可求出a2+2ab+b2的值.【解答】解:(1)方程整理得:y=3﹣2x,由y为负数,得到3﹣2x<0,解得:x>1.5;(2),①+②,得2x+y=a+b,∵2x+y=3,∴a+b=3,∴a2+2ab+b2=(a+b)2=9.22.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:(1)求得样本容量为50 ,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.【考点】列表法与树状图法;总体、个体、样本、样本容量;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据统计图可以求得本次调查的人数以及发言为C和F的人数,从而可以将直方图补充完整;(2)根据统计图中的数据可以估计在这一天里发言次数不少于12次的人数;(3)根据题意可以求得发言次数为A和E的人数,从而可以画出树状图,得到所抽的两位代表恰好都是男士的概率.【解答】解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如右图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是=,即所抽的两位代表恰好都是男士的概率是.23.如图,O为原点,反比例函数y=(x>0)的图象经过线段OA的端点A,作AB⊥x轴于点B,点A的坐标为(2,3).(1)反比例函数的解析式为y=(x>0);(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E,①求直线AE的函数表达式;②若直线AE与x轴交于点M,与y轴交于点N,请你写出线段AN与线段ME的大小,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k值,从而得出反比例函数解析式;(2)根据点E为CD的中点,可找出点E的纵坐标,结合点E在反比例函数图象上即可求出点E的坐标,再由点A、E的坐标利用待定系数法即可求出直线AE的函数表达式;(3)AN=ME,根据直线AE的函数表达式可求出点M的坐标,结合点A、E的坐标可得出点B、C的坐标,由此即可得知:点B、C为线段OM的三等分点,再结合平行线的性质即可得出点A、E为线段MN的三等分点,由此即可得出结论.【解答】解:(1)∵点A(2,3)在反比例函数y=(x>0)的图象上,∴k=2×3=6,∴反比例函数的解析式为y=(x>0).故答案为:y=(x>0).(2)∵AB=CD,点E为线段CD的中点,∴点E的纵坐标为,将y=代入y=中,则有=,解得:x=4,∴点E的坐标为(4,).设直线AE的表达式为y=mx+n,将点A(2,3)、E(4,)代入y=mx+n中得:,解得:,∴直线AE的表达式为y=﹣x+.(3)AN=ME,利用如下:令y=﹣x+中y=0,则0=﹣x+,解得:x=6,∴点M 的坐标为(6,0).∵点A (2,3)、E (4,),∴点B (2,0),点C (4,0),∴点B 、C 为线段OM 的三等分点,∵AB ∥CD (平移的性质),∴点A 、E 为线段MN 的三等分点,∴AN=ME .24.在Rt △ABC 中,∠CAB=90°,AC=AB=6,D ,E 分别是AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 3 ,线段CE 1的长等于 3 ;(2)如图2,当α=135°时,设直线BD 1与CA 的交点为F ,求证:BD 1=CE 1,且BD 1⊥CE 1;(3)点P 到AB 所在直线的距离的最大值是 .【考点】三角形综合题.【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD 1的长和CE 1的长;(2)根据旋转的性质得出,∠D 1AB=∠E 1AC=135°,进而求出△D 1AB ≌△E 1AC (SAS ),即可得出答案;(3)首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【解答】解:(1)∵∠CAB=90°,AC=AB=6,D ,E 分别是边AB ,AC 的中点,∴AE=AD=3,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=3,∠E1AE=90°,∴BD1==3,E1C==3;故答案为:3,3;(2)证明:当α=135°时,如图2,连接CE1,∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BFA=∠CFP,∴∠CPF=∠FAB=90°,∴BD1⊥CE1;(3)解:如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,∴当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=3,则BD1==3,故∠ABP=30°,则PB=3+3,故点P到AB所在直线的距离的最大值为:PG=,故答案为:.25.某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+n.(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n= 500 ;(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.【考点】二次函数的应用.【分析】(1)根据已知得出w=(x﹣20)•y进而代入x=25,W=1250进而求出n的值即可;(2)利用w=(x﹣20)•y得出W与x之间的函数关系式,令:函数关系式的关系式﹣10x2+700x ﹣10000=2000,进而求出即可;(3)利用公式法求出x=35时二次函数取到最值,再利用这种护眼台灯的销售单价不得高于32元得出答案即可.【解答】解:(1)∵y=﹣10x+n,当销售单价x定为25元时,李明每月获得利润为w为1250元,∴则W=(25﹣20)×(﹣10×25+n)=1250,解得:n=500;故答案为:500.(2)由题意,得:w=(x﹣20)•y,=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,令:﹣10x2+700x﹣10000=2000,解这个方程得:x1=30,x2=40(舍).答:李明想要每月获得2000元的利润,销售单价应定为30元.(3)由(2)知:w=﹣10x2+700x﹣10000,∴.∵﹣10<0,∴抛物线开口向下.∵x≤32∴w随x的增大而增大.∴当x=32时,w最大=2160.答:销售单价定为32元时,每月可获得最大利润,最大利润为2160元.26.如图1,在Rt△ABC中,∠ACB=90°,AC=15cm,BC=20cm,点D从点B出发沿BC边向点C运动,同时点E从点A出发沿AC边向点C运动,速度均为1cm/s,当一个点到达点C 时,另一点也停止运动,连接DE,设点D的运动时间为t(单位:s,0≤t<15),△CDE的面积为S(单位:cm2)(1)在点D、E运动过程中,DC﹣EC= 5 cm,并求出S与t的函数关系式;(2)点D运动到什么位置时,S等于△ABC面积的一半?(3)如图2,在点D、E运动的同时,将线段DE绕点E逆时针旋转45°,得到线段EP,过点D作DF⊥EP,垂足为F,连接CF,在DC上截取GC=5cm,连接FG,在点D、E运动过程中,线段CF的长是一个定值,求出其值;(4)点D、E及EP按照(3)中的方式运动到某个时刻停止,仍过点D作DF⊥EP,垂足为F,如图3,令点Q在DE的右侧运动(点Q不与A、B重合),且DQ⊥EQ,连接QF,若DQ=m,EQ=n (m>0,n>0且m≠n),直接写出QF的长(用含m,n的式子表示)【考点】几何变换综合题.【分析】(1)由题意知AE=BD=t,所以EC=15﹣t,DC=20﹣t,代入DC﹣EC中即可求出它的值,另外S=EC•DC,分别将DC和EC代入即可求出S与t的函数关系式;(2)容易求出△ABC的面积,令(1)的函数解析式中的S=75,即可求出t的值,要注意t 的范围;(3)延长AC至H使得,CH=GC=5,连接HF,利用条件易证△HEF≌△CDF,所以HF=CF,∠FHE=∠FCD,即可证明△HFC是等腰直角三角形,从而可知CF=CH;(4)延长QD至点G,使得DG=QE,连接GF,易证△GDF≌△QEF,所以GF=QF,∠GFD=∠QFE,从而可证明△GFQ是等腰直角三角形,所以FQ=QG=(DG+DQ)=(m+n).【解答】解:(1)由题意知:AE=BD=t,∴EC=15﹣t,DC=20﹣t,∴DC﹣EC=(20﹣t)﹣(15﹣t)=5,∴S=EC•DC=(15﹣t)(20﹣t)=﹣+150故答案为:5;(2)△ABC的面积为×20×15=150,当S=×150时,∴﹣+150=75,解得:t=5或t=30,∵0≤t<15,∴t=5,∴BD=t=5,∴点D运动到BD处时,S等于△ABC面积的一半;(3)延长AC至H使得,CH=GC=5,连接HF,如图2,由(1)可知,DC﹣EC=5,即DC﹣EC=CH,∴DC=EC+CH=EH,∵DF⊥EF,∠DEF=45°,∴△DFE是等腰直角三角形,∴DF=EF,∵∠DFE=∠DCE=90°,∴F、C、E、D四点共圆,∴∠FDC=∠FEH,在△HEF与△CDF中,,∴△HEF≌△CDF(SAS),∴HF=CF,∠FHE=∠FCD,∵HF=CF,∴∠FHE=∠FCH,∴∠FCH=∠FCD,∵∠HCB=90°,∴∠FCH=∠FCD=45°,∴△HFC是等腰直角三角形,∴CF=CH=;(4)延长QD至点G,使得DG=QE,连接GF,∵∠DFE=∠DQE=90°,∴∠FDQ+∠FEQ=180°,∵∠GDF+∠FDQ=180°,∴∠GDF=∠QEF,由(3)可知:△DFE是等腰直角三角形,∴DF=EF,在△GDF与△QEF中,31∴△GDF ≌△QEF (SAS ),∴GF=QF ,∠GFD=∠QFE ,∴∠DFQ+∠QFE=∠DFQ+∠GFD , ∴∠DFE=∠GFQ=90°,∴△GFQ 是等腰直角三角形,∴FQ=QG=(DG+DQ )=(m+n ).。

2016-2017年河北省唐山市古冶区初三上学期期末数学试卷及答案

2016-2017年河北省唐山市古冶区初三上学期期末数学试卷及答案

2016-2017学年河北省唐山市古冶区初三上学期期末数学试卷一、选择题(本题共15个小题,每小题2分,共30分)1.(2分)cos30°的值等于()A.B.C.1D.2.(2分)如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.(2分)“a是实数,|a|<0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4.(2分)如图,在△ABC中,DE∥BC,若AD=5,BD=10.AE=3,则CE=()A.3B.6C.9D.125.(2分)将抛物线y=x2向上平移1个单位,得到的抛物线解析式为()A.y=(x﹣1)2B.y=x2﹣1C.y=(x+1)2D.y=x2+16.(2分)如果关于x的一元二次方程x2﹣2x+m=0有实数根,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤17.(2分)如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.:18.(2分)函数y=(2m﹣1)x是反比例函数,在第一象限内y随x的增大而减小,则m=()A.1B.﹣1C.±1D.±9.(2分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米210.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=60°,则∠C=()A.15°B.30°C.45°D.60°11.(2分)调查显示,截止2015年底某市汽车拥有量为16.9万辆,已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.912.(2分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3>k1>k2 13.(2分)一个扇形半径是5cm,面积是15πcm2,这个扇形的弧长是()A.5πcm B.6πcm C.5cm D.6cm14.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.AC=3,AB=6,则AD=()A.B.3C.D.315.(2分)如图,拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,则拱门的最大高度()A.100米B.150米C.200米D.300米二、填空题(本大题共4小题,每小题3分,共12分)16.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是.17.(3分)小明将一枚质地均匀的硬币连续掷了3次,其中3次均正面朝上的概率是.18.(3分)如图,点D在AB上,若点E在AC上,∠B=40°,∠C=70°,当以点A、D、E为顶点的三角形与△ABC相似时,则∠ADE=.19.(3分)如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.三、解答题(本大题共7小题,共55分)20.(8分)解方程:(1)x2﹣x=0(2)x2﹣4x+4=0.21.(6分)如图,点A的坐标为(2,3),点B的坐标为(2,0),作如下操作;①以点O为旋转中心,将△ABO顺时针方向旋转90°,得到△A1B1O;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1:2,且点A2在第三象限.在图中画出△A1B1O和△A2B2O.22.(8分)甲、乙两人进行摸牌游戏,现有三张性状大小完全相同的牌,正面分别标有数字1,2,3,将三张牌背面朝上,选匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张,请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为3的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.23.(9分)已知反比例函数y=(k≠0,k是常数)的图象过点P(﹣3,5).(1)求此反比例函数的解析式;(2)判断点Q(﹣,2)是否在图象上;(3)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.24.(5分)小梅家的阳台上放置了一个晒衣架,如图1和如图2是晒衣架的侧面示意图,A、B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=135cm,小梅的连衣裙穿在衣架后的总长度为115cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=(x﹣m)2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值;此时抛物线F上有两点(x1,y1),(x2,y2),且x2<x1<﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围为.26.(12分)如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD;(2)已知点E在AB上,且BC2=AB•BE;①证明:CD与以A为圆心、AE为半径的⊙A相切;②若tan∠ACD=,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=.2016-2017学年河北省唐山市古冶区初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共15个小题,每小题2分,共30分)1.(2分)cos30°的值等于()A.B.C.1D.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos30°=.故选:B.2.(2分)如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的性质直接判断得出.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.(2分)“a是实数,|a|<0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“a是实数,|a|<0”这一事件是不可能事件,故选:C.4.(2分)如图,在△ABC中,DE∥BC,若AD=5,BD=10.AE=3,则CE=()A.3B.6C.9D.12【分析】由DE∥BC,用平行线分线段成比例定理即可得到=,又由AD=5,BD=10,AE=3,代入即可求得答案.【解答】解:∵DE∥BC,∴=,∵AD=5,BD=10,AE=3,∴=,∴CE=6.故选:B.5.(2分)将抛物线y=x2向上平移1个单位,得到的抛物线解析式为()A.y=(x﹣1)2B.y=x2﹣1C.y=(x+1)2D.y=x2+1【分析】直接根据“上加下减”的法则即可得出结论.【解答】解:抛物线y=x2向上平移1个单位,得到的抛物线解析式为:y=x2+1.故选:D.6.(2分)如果关于x的一元二次方程x2﹣2x+m=0有实数根,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【分析】根据方程的系数结合根的判别式即可得出关于m的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m=4﹣4m≥0,解得:m≤1.故选:D.7.(2分)如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.:1【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B.8.(2分)函数y=(2m﹣1)x是反比例函数,在第一象限内y随x的增大而减小,则m=()A.1B.﹣1C.±1D.±【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:根据题意得:,解得:m=1.故选:A.9.(2分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.10.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=60°,则∠C=()A.15°B.30°C.45°D.60°【分析】先利用直径所对的圆周角是直角得:∠ADB=90°,从而计算出∠A的度数,再利用同弧所对的圆周角相等得出∠C的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=60°,∴∠A=30°,∴∠C=∠A=30°,故选:B.11.(2分)调查显示,截止2015年底某市汽车拥有量为16.9万辆,已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.9【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.12.(2分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3>k1>k2【分析】根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数y1═的图象在第一象限,∴k3>0.∵反比例函数y2=,y1=的图象在第二象限,∴k2<0,k1<0.∵y=的图象据原点较远,∴k1<k2,∴k3>k2>k1.故选:C.13.(2分)一个扇形半径是5cm,面积是15πcm2,这个扇形的弧长是()A.5πcm B.6πcm C.5cm D.6cm【分析】利用扇形的面积公式S=×弧长×半径,代入可求得弧长.扇形【解答】解:设弧长为L,则15π=L×5,解得L=6π.故选:B.14.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.AC=3,AB=6,则AD=()A.B.3C.D.3【分析】直角三角形斜边上的高线把直角三角形分的得两个三角形与原三角形相似,根据射影定理进行计算即可.【解答】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,即AC2=AD•AB,∵AC=3,AB=6,∴AD=.故选:A.15.(2分)如图,拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,则拱门的最大高度()A.100米B.150米C.200米D.300米【分析】因为拱门是抛物线形,所以符合抛物线的性质,以CD的中垂线为y轴,CD所在的直线为x轴,可列出含有未知量的抛物线解析式,由A、B的坐标可求出抛物线的解析式,然后就变成求抛物线的顶点坐标的问题.【解答】解:如图所示建立平面直角坐标系(以CD所在的直线为x轴,CD的垂直平分线为y轴建立直角坐标系),此时,抛物线与x轴的交点为C(﹣100,0),D(100,0),设这条抛物线的解析式为y=a(x﹣100)(x+100),∵抛物线经过点B(50,150),可得150=a(50﹣100)(50+100).解得a=﹣,∴y=﹣(x﹣100)(x+100).即抛物线的解析式为y=﹣x2+200顶点坐标是(0,200)∴拱门的最大高度为200米,故选:C.二、填空题(本大题共4小题,每小题3分,共12分)16.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是3.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y=6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故答案为:3.17.(3分)小明将一枚质地均匀的硬币连续掷了3次,其中3次均正面朝上的概率是.【分析】画树状图展示所有8种等可能的结果数,找出3次均正面朝上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中3次均正面朝上的结果数为1,所以中3次均正面朝上的概率=.故答案为.18.(3分)如图,点D在AB上,若点E在AC上,∠B=40°,∠C=70°,当以点A、D、E为顶点的三角形与△ABC相似时,则∠ADE=40°或70°.【分析】因为∠A是公共角,根据相似三角形对应角相等即可解答;由于没有确定三角形相似的对应角,故应分类讨论.【解答】解:分两种情况:①△ADE∽△ABC,如图1,∴∠ADE=∠B=40°②△AED∽△ABC,如图2,∴∠ADE=∠C=70°,∴∠ADE=40°或70°,故答案为:40°或70°.19.(3分)如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是2π+2.【分析】如图,用大扇形的面积减去小扇形的面积再加上正方形ABCD的面积.【解答】解:∵OA=AC=2,∴AB=BC=CD=AD=,OC=4,S阴影=+=2π+2,故答案为:2π+2.三、解答题(本大题共7小题,共55分)20.(8分)解方程:(1)x2﹣x=0(2)x2﹣4x+4=0.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再进行开方即可.【解答】解:(1)∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1;(2)∵x2﹣4x+4=0,∴(x﹣2)2=0,∴x1=x2=2.21.(6分)如图,点A的坐标为(2,3),点B的坐标为(2,0),作如下操作;①以点O为旋转中心,将△ABO顺时针方向旋转90°,得到△A1B1O;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1:2,且点A2在第三象限.在图中画出△A1B1O和△A2B2O.【分析】①利用旋转的定义得出点A、B的对应点,顺次连接即可得;②利用位似变换的定义得出点A、B的对应点,顺次连接即可得.【解答】解:①如图,△A1B1O即为所求作三角形;②如图,△A2B2O即为所求作三角形.22.(8分)甲、乙两人进行摸牌游戏,现有三张性状大小完全相同的牌,正面分别标有数字1,2,3,将三张牌背面朝上,选匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张,请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为3的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.【分析】(1)画树状图展示所有9种等可能的结果数,再找出两人抽取相同数字的结果数,然后根据概率公式求解;(2)找出两人抽取的数字和为2的倍数的结果数和抽取的数字和为3的倍数的结果数,然后根据甲乙两人获胜的概率,再通过比较概率的大小判断游戏是否公平.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中两人抽取相同数字的结果数为3,所以两人抽取相同数字的概率==;(2)两人抽取的数字和为2的倍数的结果数为5,所以甲获胜的概率=;抽取的数字和为3的倍数的结果数为3,所以乙获胜的概率==,因为>,所以这个游戏不公平.23.(9分)已知反比例函数y=(k≠0,k是常数)的图象过点P(﹣3,5).(1)求此反比例函数的解析式;(2)判断点Q(﹣,2)是否在图象上;(3)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.【分析】(1)直接把点P(﹣2,3)代入反比例函数y=(k≠0,k是常数),求出k的值即可;(2)把点A(﹣1,﹣3)代入反比例函数的解析式进行检验即可;(3)分两种情况根据反比例函数的性质即可判断.【解答】解:(1)∵将P(﹣3,5)代入反比例函数y=(k≠0,k是常数),得5=,解得,k=﹣15.∴反比例函数表达式为:y=﹣;(2)反比例函数图象经过点Q.理由是:∵﹣×2=﹣15=k,∴反比例函数图象经过点Q;(3)①当两点(a1,b1)和(a2,b2)在同一个分支上,由反比例函数y=﹣可知,在每一个象限内,y随x的增大而增大,∴b1与b2的关系是:b1<b2.②当两点(a1,b1)和(a2,b2)不在同一个分支上,∵a1<a2,∴b1>0,b2<0,∴b1>b2.24.(5分)小梅家的阳台上放置了一个晒衣架,如图1和如图2是晒衣架的侧面示意图,A、B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=135cm,小梅的连衣裙穿在衣架后的总长度为115cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【分析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO 中,利用三角函数sin∠OAB=,求得OE,即可作出判断.【解答】证明:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=135×sin59°≈135×0.86=116.1,∵116.1<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=(x﹣m)2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值;此时抛物线F上有两点(x1,y1),(x2,y2),且x2<x1<﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围为﹣2≤m≤0或2≤m≤4.【分析】(1)根据抛物线F:y=(x﹣m)2﹣2过点C(﹣1,﹣2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或,解得:﹣2≤m≤0或2≤m≤4.故答案为:﹣2≤m≤0或2≤m≤4.26.(12分)如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD;(2)已知点E在AB上,且BC2=AB•BE;①证明:CD与以A为圆心、AE为半径的⊙A相切;②若tan∠ACD=,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=.【分析】(1)根据∠ACB=∠DCO=90°,得到∠ACD=∠OCB,根据直角三角形的性质得到OC=OB,得到∠OCB=∠B,利用等量代换证明结论;(2)①因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,过点A 作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切;②根据正切的概念分别求出CE、BE、AC、AE,根据正弦的定义解答即可.【解答】(1)证明:∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B;(2)①作AF⊥CD于点F,∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切;②∵∠B=∠ACD,tan∠ACD=,∴tan∠B=,∵BC=10,∴CE=6,BE=8,AC=,AB=,∴AE=,OE=,∵O为AB的中点,∴CO=AB=,∴sin∠OCE==,∵∠D=∠OCE,∴sin∠D=,又AF=AE=,∴=,解得,AD=,∴DE=AD﹣AM=,故答案为:.。

人教版九年级上册数学期末试卷解析版

人教版九年级上册数学期末试卷解析版

人教版九年级数学考试题测试题人教版初中数学2017-2018学年河北省唐山市玉田县九年级(上)期末数学试卷一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1.如图,已知点A,B,C在⊙O上,AC∥OB,∠BOC=40°,则∠ABO=()A.40°B.30°C.20°D.10°2.△ABC与△DEF的相似比为1:3,则△ABC和△DEF的面积比为()A.1:B.:1 C.9:1 D.1:93.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定4.如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对 B.2对 C.3对 D.4对5.顶点是(2,﹣1)的抛物线的表达式是()A.y=﹣(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=2(x﹣1)2+16.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A.(3,3) B.(4,1) C.(3,1) D.(4,3)7.若一元二次方程x2﹣ax+4=0有两个不相等的实数根,则a的值可以是()A.2 B.3 C.4 D.58.下列命题中,正确的个数是()①半径相等的两个圆是等圆;②一条弦把圆分成的两段弧中,至少有一条是优弧;③任何一个三角形只有一个外接圆;④内心到三角形各顶点的距离相等.A.1个 B.2个 C.3个 D.4个9.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.10.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能11.对于函数y=﹣,下列结论错误的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.x=1时的函数值大于x=﹣1时的函数值D.在函数图象所在的每个象限内,y随x的增大而增大12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.613.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm14.一个圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积为()A.15πcm2B.30πcm2C.18πcm2D.12πcm215.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣16.如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线绕点B按顺时针方向旋转()A.40°或80°B.50°或110°C.50°或100°D.60°或120°二、填空题(每小题3分,共12分)17.已知抛物线y=x2﹣kx﹣8经过点P(2,﹣8),则k=.18.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=.19.将抛物线y=﹣3x2的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为.20.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD=米(结果可保留根号)三、解答题(共6个小题,共66分)21.(1)计算:tan45°﹣tan30°+cos45°(2)解方程:x2+2x=3.22.已知,如图所示,在平面直角坐标系中,Rt△OAB的直角顶点A在反比例函数y=(x>0)图象上,∠AOB=30°,顶点B在x轴上,求此△OAB顶点A的坐标和△OAB面积.23.甲、乙两名队员参加射击训练,成绩分布被制成下列两个统计图:根据以上信息,整理分析数据如下:中位数/环众数/环方差平均成绩/环甲7b7c乙a7.58 4.2(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.如图,某小区两座楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示,根据实际情况画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF 的中点,路灯AB高8米,DF=102米,tan∠AGB=,求甲、乙两人的观测点到地面的距离的差.25.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y 与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2017-2018学年河北省唐山市玉田县九年级(上)期末数学试卷参考答案与试题解析一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1.如图,已知点A,B,C在⊙O上,AC∥OB,∠BOC=40°,则∠ABO=()A.40°B.30°C.20°D.10°【考点】M5:圆周角定理.【分析】先根据圆周角定理求出∠BAC=20°,再根据平行线的性质可证∠ABO=∠BAC=20°.【解答】解:∵∠BOC=40°,∴∠BAC=20°,∵AC∥OB,∴∠ABO=∠BAC=20°.2.△ABC与△DEF的相似比为1:3,则△ABC和△DEF的面积比为()A.1:B.:1 C.9:1 D.1:9【考点】S7:相似三角形的性质.【分析】由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.【解答】解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选D.3.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定【考点】T1:锐角三角函数的定义.【分析】根据锐角A的对边a与斜边c的比叫做∠A的正弦解答即可.【解答】解:设Rt△ABC的三边长为a,b,c,则sinA=,如果各边长都扩大5倍,∴sinA==,故∠A的正弦值大小不变.故选:C.4.如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对 B.2对 C.3对 D.4对【考点】S8:相似三角形的判定.【分析】由DE∥BC,EF∥AB,即可得△ADE∽△ABC,△EFC∽△ABC,继而证得△ADE∽△EFC.【解答】解:∵DE∥BC,EF∥AB,∴△ADE∽△ABC,△EFC∽△ABC,∴△ADE∽△EFC.∴图中相似三角形的对数是:3对.故选C.5.顶点是(2,﹣1)的抛物线的表达式是()A.y=﹣(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=2(x﹣1)2+1【考点】H3:二次函数的性质.【分析】顶点(2,﹣1)为抛物线的顶点且二次系数为不为0的任意数即可.【解答】解:y=﹣(x﹣2)2﹣1.故选A.6.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A.(3,3) B.(4,1) C.(3,1) D.(4,3)【考点】SC:位似变换;D5:坐标与图形性质.【分析】把B点的横纵坐标都乘以即可得到D点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴D(4,1).故选B.7.若一元二次方程x2﹣ax+4=0有两个不相等的实数根,则a的值可以是()A.2 B.3 C.4 D.5【考点】AA:根的判别式.【分析】根据一元二次方程x2﹣ax+4=0有两个不相等的实数根,可知一元二次方程根的判别式△>0,据此求出a的取值范围,进而求解即可.【解答】解:∵一元二次方程x2﹣ax+4=0有两个不相等的实数根,∴△>0,∴(﹣a)2﹣4×4>0,∴a2>16,∴a>4或a<﹣4.故选D.8.下列命题中,正确的个数是()①半径相等的两个圆是等圆;②一条弦把圆分成的两段弧中,至少有一条是优弧;③任何一个三角形只有一个外接圆;④内心到三角形各顶点的距离相等.A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】根据圆的性质以及三角形内心的性质对各小题分析判断即可得解.【解答】解:①半径相等的两个圆是等圆,正确;②一条弦把圆分成的两段弧中,至少有一条是优弧,错误,例如:圆的直径将圆分成两个半圆;③任何一个三角形只有一个外接圆,正确;④应为:内心到三角形各边的距离相等;综上所述,正确的命题有①③共2个.故选B.9.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】GA:反比例函数的应用;G2:反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y 实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=2,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.10.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【考点】M3:垂径定理的应用.【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.11.对于函数y=﹣,下列结论错误的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.x=1时的函数值大于x=﹣1时的函数值D.在函数图象所在的每个象限内,y随x的增大而增大【考点】G4:反比例函数的性质.【分析】根据反比例函数图象的性质进行逐一分析即可.【解答】解:A、当x>0时,y=﹣的图象位于第四象限,y随x的增大而增大,正确;B、当x<0时,y=﹣的图象位于第二象限,y随x的增大而增大,正确;C、x=1时的函数值为y=﹣2,x=﹣1时的函数值为2,x=1时的函数小于x=﹣1时的函数值,错误;D、根据A、B可知,正确.故选C.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.6【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,可得答案.【解答】解:由勾股定理,得BD==5.在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C 中至少有一个点在圆内,且至少有一个点在圆外,得3<r<5,故选:B.13.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm【考点】MM:正多边形和圆.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.14.一个圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积为()A.15πcm2B.30πcm2C.18πcm2D.12πcm2【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为6cm,则底面周长=6πcm,所需纸片为扇形,扇形的面积=×6π×5=15π(cm2).故选A.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】H4:二次函数图象与系数的关系.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.16.如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线绕点B按顺时针方向旋转()A.40°或80°B.50°或110°C.50°或100°D.60°或120°【考点】MD:切线的判定;R2:旋转的性质.【分析】设旋转后与⊙O相切于点D,连接OD,则可求得∠DBO=30°,再利用角的和差可求得∠ABD的度数.【解答】解:如图,设旋转后与⊙O相切于点D,连接OD,∵OD=OB,∴∠OBD=30°,∴当点D在射线BC上方是时,∠ABD=∠ABC﹣∠OBD=80°﹣30°=50°,当点D在射线BC下方时,∠ABD=∠ABC+∠OBD=80°+30°=110°,故选B.二、填空题(每小题3分,共12分)17.已知抛物线y=x2﹣kx﹣8经过点P(2,﹣8),则k=2.【考点】H5:二次函数图象上点的坐标特征.【分析】抛物线解析式只有一个待定系数,把点P(2,﹣8),代入解析式即可求k.【解答】解:∵抛物线y=x2﹣kx﹣8经过点P(2,﹣8),∴4﹣2k﹣8=﹣8,解得k=2,故答案为2.18.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=.【考点】MN:弧长的计算;KW:等腰直角三角形.【分析】首先根据根据勾股定理求得该扇形的半径,然后根据弧长公式进行计算.【解答】解:如图,∵OA=OB=3,∠AOB=90°,∴弧AB的弧长l==.故答案是:.19.将抛物线y=﹣3x2的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为y=﹣3(x﹣1)2﹣2.【考点】H6:二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=﹣3x2向右平移1个单位,得:y=﹣3(x﹣1)2;再向下平移2个单位,得:y=﹣3(x﹣1)2﹣2.故答案为:y=﹣3(x﹣1)2﹣2.20.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD=21+7米(结果可保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AE⊥CD于点E,则△AED和△ABD都是等腰直角三角形,即可求得DE的长,然后在直角三角形中利用三角函数求得CE的长,进而求得CD的长.【解答】解:作AE⊥CD于点E.在直角△ABD中,∠ADB=45°,∴DE=AE=BD=AB=21(米),在直角△AEC中,CE=AE•tan∠CAE=21×=7(米).则CD=(21+7)米.故答案是:21+7.三、解答题(共6个小题,共66分)21.(1)计算:tan45°﹣tan30°+cos45°(2)解方程:x2+2x=3.【考点】A6:解一元二次方程﹣配方法;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据实数的混合运算顺序和法则计算可得;(2)公式法求解可得.【解答】解:(1)原式=1﹣×+=1﹣1+=;(2)原方程可化为x2+2x﹣3=0,∵△=22﹣4×1×(﹣3)=16>0,∴x=,∴x1=1,x2=﹣3.22.已知,如图所示,在平面直角坐标系中,Rt△OAB的直角顶点A在反比例函数y=(x>0)图象上,∠AOB=30°,顶点B在x轴上,求此△OAB顶点A的坐标和△OAB面积.【考点】G5:反比例函数系数k的几何意义.【分析】作AC⊥OB于C,设OC=x,根据题意得AC=x,则A(x,x),根据k=x•x=4,进一步求得A的坐标,根据射影定理求得BC,最后根据三角形面积求得即可.【解答】解:作AC⊥OB于C,∵∠AOB=30°,∴设OC=x,则AC=x,∴A(x,x),∵顶点A在反比例函数y=(x>0)图象上,∴x•x=4,∴x=2,∴A(2,2 ),∴OC=2,AC=2,∵在Rt△AOB中,AC2=OC•BC,∴BC=,=×(2+)×2=.∴S△AOB23.甲、乙两名队员参加射击训练,成绩分布被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲7b7c乙a7.58 4.2(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数;W7:方差.【分析】(1)根据表格中的数据求出乙的平均成绩,找出甲的中位数,方差,确定出a,b,c的值即可;(2)综合平均数,中位数,众数以及方差分析,确定出合适人选即可.【解答】解:(1)乙的平均成绩a=×(3+6+4+8×3+7×2+9+10)=7(环);∵甲射击的成绩从小到大从新排列为:5、6、6、7、7、7、7、8、8、9,∴甲射击成绩的中位数b==7(环),其方差c=×[(5﹣7)2+2×(6﹣7)2+4×(7﹣7)2+2×(8﹣7)2+(9﹣7)2]=×(4+2+2+4)=1.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数多而乙射中8环的次数多,从方差看甲的成绩比乙成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选乙参赛,因为获得高分的可能更多.24.如图,某小区两座楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示,根据实际情况画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF 的中点,路灯AB高8米,DF=102米,tan∠AGB=,求甲、乙两人的观测点到地面的距离的差.【考点】T8:解直角三角形的应用.【分析】先用锐角三角函数求出BG,再由相似三角形的性质得出比例式求出CD,从而求解.【解答】解:∵CD⊥DF,AB⊥DF,EF⊥DF,∴AB∥CD∥EF,由题意可知:DF=102米,BD=51米,AB=8米,∴EF=2AB=16米,∵AB=8,tan∠AGB=,∠ABG=90°∴BG=3AB=24米;∴DG=75米,∵AB∥CD∥EF,∴△ABG∽△CDG,∴=,即=,∴CD=25米,∴CD﹣EF=25﹣16=9米,故甲的观测点比乙的观测点高9米.25.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,根据S阴影=S扇形OAD+S△BOD即可求解.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ODB+∠CDB=∠OBD+∠CBD=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:∵OD=OB,∴∠DOE=∠ODB+∠OBD=2∠DBE,∵OD⊥EC,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:如图,作OF⊥DB于点F,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠AOD=60°,∴S阴影=S扇形OAD+S△BOD=+×2×1=.26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y 与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【考点】HE:二次函数的应用.【分析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.【解答】解:(1)根据题意,得y=(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.初三第一学期期末学业水平调研数 学本试卷共8页,共三道大题,28道小题,满分100分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河北省唐山市古冶区初三上学期期末数学试卷一、选择题(本题共15个小题,每小题2分,共30分)1.(2分)cos30°的值等于()A.B.C.1D.2.(2分)如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.(2分)“a是实数,|a|<0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4.(2分)如图,在△ABC中,DE∥BC,若AD=5,BD=10.AE=3,则CE=()A.3B.6C.9D.125.(2分)将抛物线y=x2向上平移1个单位,得到的抛物线解析式为()A.y=(x﹣1)2B.y=x2﹣1C.y=(x+1)2D.y=x2+16.(2分)如果关于x的一元二次方程x2﹣2x+m=0有实数根,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤17.(2分)如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.:18.(2分)函数y=(2m﹣1)x是反比例函数,在第一象限内y随x的增大而减小,则m=()A.1B.﹣1C.±1D.±9.(2分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米210.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=60°,则∠C=()A.15°B.30°C.45°D.60°11.(2分)调查显示,截止2015年底某市汽车拥有量为16.9万辆,已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.912.(2分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3>k1>k2 13.(2分)一个扇形半径是5cm,面积是15πcm2,这个扇形的弧长是()A.5πcm B.6πcm C.5cm D.6cm14.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.AC=3,AB=6,则AD=()A.B.3C.D.315.(2分)如图,拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,则拱门的最大高度()A.100米B.150米C.200米D.300米二、填空题(本大题共4小题,每小题3分,共12分)16.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是.17.(3分)小明将一枚质地均匀的硬币连续掷了3次,其中3次均正面朝上的概率是.18.(3分)如图,点D在AB上,若点E在AC上,∠B=40°,∠C=70°,当以点A、D、E为顶点的三角形与△ABC相似时,则∠ADE=.19.(3分)如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.三、解答题(本大题共7小题,共55分)20.(8分)解方程:(1)x2﹣x=0(2)x2﹣4x+4=0.21.(6分)如图,点A的坐标为(2,3),点B的坐标为(2,0),作如下操作;①以点O为旋转中心,将△ABO顺时针方向旋转90°,得到△A1B1O;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1:2,且点A2在第三象限.在图中画出△A1B1O和△A2B2O.22.(8分)甲、乙两人进行摸牌游戏,现有三张性状大小完全相同的牌,正面分别标有数字1,2,3,将三张牌背面朝上,选匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张,请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为3的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.23.(9分)已知反比例函数y=(k≠0,k是常数)的图象过点P(﹣3,5).(1)求此反比例函数的解析式;(2)判断点Q(﹣,2)是否在图象上;(3)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.24.(5分)小梅家的阳台上放置了一个晒衣架,如图1和如图2是晒衣架的侧面示意图,A、B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=135cm,小梅的连衣裙穿在衣架后的总长度为115cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=(x﹣m)2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值;此时抛物线F上有两点(x1,y1),(x2,y2),且x2<x1<﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围为.26.(12分)如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD;(2)已知点E在AB上,且BC2=AB•BE;①证明:CD与以A为圆心、AE为半径的⊙A相切;②若tan∠ACD=,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=.2016-2017学年河北省唐山市古冶区初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共15个小题,每小题2分,共30分)1.(2分)cos30°的值等于()A.B.C.1D.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos30°=.故选:B.2.(2分)如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的性质直接判断得出.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.(2分)“a是实数,|a|<0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“a是实数,|a|<0”这一事件是不可能事件,故选:C.4.(2分)如图,在△ABC中,DE∥BC,若AD=5,BD=10.AE=3,则CE=()A.3B.6C.9D.12【分析】由DE∥BC,用平行线分线段成比例定理即可得到=,又由AD=5,BD=10,AE=3,代入即可求得答案.【解答】解:∵DE∥BC,∴=,∵AD=5,BD=10,AE=3,∴=,∴CE=6.故选:B.5.(2分)将抛物线y=x2向上平移1个单位,得到的抛物线解析式为()A.y=(x﹣1)2B.y=x2﹣1C.y=(x+1)2D.y=x2+1【分析】直接根据“上加下减”的法则即可得出结论.【解答】解:抛物线y=x2向上平移1个单位,得到的抛物线解析式为:y=x2+1.故选:D.6.(2分)如果关于x的一元二次方程x2﹣2x+m=0有实数根,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【分析】根据方程的系数结合根的判别式即可得出关于m的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m=4﹣4m≥0,解得:m≤1.故选:D.7.(2分)如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.:1【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B.8.(2分)函数y=(2m﹣1)x是反比例函数,在第一象限内y随x的增大而减小,则m=()A.1B.﹣1C.±1D.±【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:根据题意得:,解得:m=1.故选:A.9.(2分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.10.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=60°,则∠C=()A.15°B.30°C.45°D.60°【分析】先利用直径所对的圆周角是直角得:∠ADB=90°,从而计算出∠A的度数,再利用同弧所对的圆周角相等得出∠C的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=60°,∴∠A=30°,∴∠C=∠A=30°,故选:B.11.(2分)调查显示,截止2015年底某市汽车拥有量为16.9万辆,已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.9【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.12.(2分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3>k1>k2【分析】根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数y1═的图象在第一象限,∴k3>0.∵反比例函数y2=,y1=的图象在第二象限,∴k2<0,k1<0.∵y=的图象据原点较远,∴k1<k2,∴k3>k2>k1.故选:C.13.(2分)一个扇形半径是5cm,面积是15πcm2,这个扇形的弧长是()A.5πcm B.6πcm C.5cm D.6cm【分析】利用扇形的面积公式S=×弧长×半径,代入可求得弧长.扇形【解答】解:设弧长为L,则15π=L×5,解得L=6π.故选:B.14.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.AC=3,AB=6,则AD=()A.B.3C.D.3【分析】直角三角形斜边上的高线把直角三角形分的得两个三角形与原三角形相似,根据射影定理进行计算即可.【解答】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,即AC2=AD•AB,∵AC=3,AB=6,∴AD=.故选:A.15.(2分)如图,拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,则拱门的最大高度()A.100米B.150米C.200米D.300米【分析】因为拱门是抛物线形,所以符合抛物线的性质,以CD的中垂线为y轴,CD所在的直线为x轴,可列出含有未知量的抛物线解析式,由A、B的坐标可求出抛物线的解析式,然后就变成求抛物线的顶点坐标的问题.【解答】解:如图所示建立平面直角坐标系(以CD所在的直线为x轴,CD的垂直平分线为y轴建立直角坐标系),此时,抛物线与x轴的交点为C(﹣100,0),D(100,0),设这条抛物线的解析式为y=a(x﹣100)(x+100),∵抛物线经过点B(50,150),可得150=a(50﹣100)(50+100).解得a=﹣,∴y=﹣(x﹣100)(x+100).即抛物线的解析式为y=﹣x2+200顶点坐标是(0,200)∴拱门的最大高度为200米,故选:C.二、填空题(本大题共4小题,每小题3分,共12分)16.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是3.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y=6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故答案为:3.17.(3分)小明将一枚质地均匀的硬币连续掷了3次,其中3次均正面朝上的概率是.【分析】画树状图展示所有8种等可能的结果数,找出3次均正面朝上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中3次均正面朝上的结果数为1,所以中3次均正面朝上的概率=.故答案为.18.(3分)如图,点D在AB上,若点E在AC上,∠B=40°,∠C=70°,当以点A、D、E为顶点的三角形与△ABC相似时,则∠ADE=40°或70°.【分析】因为∠A是公共角,根据相似三角形对应角相等即可解答;由于没有确定三角形相似的对应角,故应分类讨论.【解答】解:分两种情况:①△ADE∽△ABC,如图1,∴∠ADE=∠B=40°②△AED∽△ABC,如图2,∴∠ADE=∠C=70°,∴∠ADE=40°或70°,故答案为:40°或70°.19.(3分)如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是2π+2.【分析】如图,用大扇形的面积减去小扇形的面积再加上正方形ABCD的面积.【解答】解:∵OA=AC=2,∴AB=BC=CD=AD=,OC=4,S阴影=+=2π+2,故答案为:2π+2.三、解答题(本大题共7小题,共55分)20.(8分)解方程:(1)x2﹣x=0(2)x2﹣4x+4=0.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再进行开方即可.【解答】解:(1)∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1;(2)∵x2﹣4x+4=0,∴(x﹣2)2=0,∴x 1=x2=2.21.(6分)如图,点A的坐标为(2,3),点B的坐标为(2,0),作如下操作;①以点O为旋转中心,将△ABO顺时针方向旋转90°,得到△A1B1O;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1:2,且点A2在第三象限.在图中画出△A1B1O和△A2B2O.【分析】①利用旋转的定义得出点A、B的对应点,顺次连接即可得;②利用位似变换的定义得出点A、B的对应点,顺次连接即可得.【解答】解:①如图,△A1B1O即为所求作三角形;②如图,△A2B2O即为所求作三角形.22.(8分)甲、乙两人进行摸牌游戏,现有三张性状大小完全相同的牌,正面分别标有数字1,2,3,将三张牌背面朝上,选匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张,请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为3的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.【分析】(1)画树状图展示所有9种等可能的结果数,再找出两人抽取相同数字的结果数,然后根据概率公式求解;(2)找出两人抽取的数字和为2的倍数的结果数和抽取的数字和为3的倍数的结果数,然后根据甲乙两人获胜的概率,再通过比较概率的大小判断游戏是否公平.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中两人抽取相同数字的结果数为3,所以两人抽取相同数字的概率==;(2)两人抽取的数字和为2的倍数的结果数为5,所以甲获胜的概率=;抽取的数字和为3的倍数的结果数为3,所以乙获胜的概率==,因为>,所以这个游戏不公平.23.(9分)已知反比例函数y=(k≠0,k是常数)的图象过点P(﹣3,5).(1)求此反比例函数的解析式;(2)判断点Q(﹣,2)是否在图象上;(3)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.【分析】(1)直接把点P(﹣2,3)代入反比例函数y=(k≠0,k是常数),求出k的值即可;(2)把点A(﹣1,﹣3)代入反比例函数的解析式进行检验即可;(3)分两种情况根据反比例函数的性质即可判断.【解答】解:(1)∵将P(﹣3,5)代入反比例函数y=(k≠0,k是常数),得5=,解得,k=﹣15.∴反比例函数表达式为:y=﹣;(2)反比例函数图象经过点Q.理由是:∵﹣×2=﹣15=k,∴反比例函数图象经过点Q;(3)①当两点(a1,b1)和(a2,b2)在同一个分支上,由反比例函数y=﹣可知,在每一个象限内,y随x的增大而增大,∴b1与b2的关系是:b1<b2.②当两点(a1,b1)和(a2,b2)不在同一个分支上,∵a1<a2,∴b1>0,b2<0,∴b1>b2.24.(5分)小梅家的阳台上放置了一个晒衣架,如图1和如图2是晒衣架的侧面示意图,A、B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=135cm,小梅的连衣裙穿在衣架后的总长度为115cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【分析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO 中,利用三角函数sin∠OAB=,求得OE,即可作出判断.【解答】证明:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=135×sin59°≈135×0.86=116.1,∵116.1<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=(x﹣m)2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值;此时抛物线F上有两点(x1,y1),(x2,y2),且x2<x1<﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围为﹣2≤m≤0或2≤m≤4.【分析】(1)根据抛物线F:y=(x﹣m)2﹣2过点C(﹣1,﹣2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或,解得:﹣2≤m≤0或2≤m≤4.故答案为:﹣2≤m≤0或2≤m≤4.26.(12分)如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD;(2)已知点E在AB上,且BC2=AB•BE;①证明:CD与以A为圆心、AE为半径的⊙A相切;②若tan∠ACD=,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=.【分析】(1)根据∠ACB=∠DCO=90°,得到∠ACD=∠OCB,根据直角三角形的性质得到OC=OB,得到∠OCB=∠B,利用等量代换证明结论;(2)①因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,过点A 作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切;②根据正切的概念分别求出CE、BE、AC、AE,根据正弦的定义解答即可.【解答】(1)证明:∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B;(2)①作AF⊥CD于点F,∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切;②∵∠B=∠ACD,tan∠ACD=,∴tan∠B=,∵BC=10,∴CE=6,BE=8,AC=,AB=,∴AE=,OE=,∵O 为AB 的中点,∴CO=AB=,∴sin ∠OCE==,∵∠D=∠OCE ,∴sin ∠D=,又AF=AE=, ∴=,解得,AD=,∴DE=AD ﹣AM=, 故答案为:.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档