数据挖掘中客户的特征化及其划分
客户关系管理中的数据分析技术

客户关系管理中的数据分析技术一、概述在客户关系管理(CRM)中,数据分析技术是一项重要的工具。
通过对客户数据的分析和解读,企业可以更好地了解和满足客户需求,提高客户忠诚度和市场占有率。
本文将重点介绍CRM中常用的数据分析技术,分别从数据挖掘、报表分析、预测分析、社交媒体分析、人工智能等方面进行讨论。
二、数据挖掘技术数据挖掘是从大量数据中发掘出有用信息的过程。
在CRM中,数据挖掘可以用于发现客户的行为模式和规律,把客户按照行为特征划分为不同的群体,深入了解客户需求。
在数据挖掘中,常用的技术包括聚类分析、决策树、关联规则和分类器等。
聚类分析可以将客户按照相似的行为特征划分为不同的群体,从而更好地推广和销售产品;决策树用于预测客户行为和决策过程;关联规则可以发现客户之间的关联性;分类器可以预测客户的重要级别。
三、报表分析技术报表分析是一种基于数据的可视化管理方法。
它将数据转化成图表、表格等易于理解的形式,让管理者更容易看到企业经营状况和客户行为特征。
在CRM中,报表分析可以帮助企业了解销售额、客户满意度、客户流失率等关键指标,发现问题和改进措施。
报表分析的常用工具包括Excel、Tableau和Power BI等。
四、预测分析技术预测分析是指通过历史数据和趋势的分析,预期未来的客户需求和趋势。
在CRM中,预测分析可以帮助企业做出更加符合客户需求的决策,提前预测客户流失率和收益增长率,制定合理的营销策略。
常用的预测分析技术包括线性回归、时间序列分析、回归树等。
五、社交媒体分析技术随着社交媒体的流行,越来越多的客户通过社交媒体表达对企业的看法和态度。
在CRM中,社交媒体分析可以帮助企业了解客户在社交媒体上的反应和想法,进而改进产品和服务。
社交媒体分析的工具包括Hootsuite、Buffer和Sprout Social等。
六、人工智能和机器学习技术随着人工智能和机器学习技术的发展,CRM也开始应用这些技术。
数据挖掘在客户关系管理中的应用

数据挖掘在客户关系管理中的应用数据挖掘是一种探索性数据分析方法,通过分析大量的数据来揭示隐藏在其中的规律与趋势,帮助企业做出更准确的决策。
随着企业竞争的日益激烈,客户关系管理成为了企业的重要战略之一,而数据挖掘在客户关系管理方面的应用越来越广泛。
一、客户分类数据挖掘可以从大量的客户数据中挖掘用户行为和特征,根据这些特征进行客户分类。
通过客户分类,企业能够更好地了解不同类型的客户的需求和特点,有针对性地推出符合客户需求的产品和服务,提高客户的满意度和忠诚度。
例如,在电商领域,通过数据挖掘可以将用户分为“新用户”、“老用户”、“高消费用户”、“低消费用户”等不同类别。
针对不同类别的用户,可以采取不同的营销策略。
对于新用户,可以通过优惠券、新手礼包等方式吸引其下单,提高转化率;对于老用户,可以推荐与其历史购买行为相似的商品,降低用户购买时的搜索成本,提高复购率。
二、客户流失预测客户流失是企业面临的一个重要问题。
数据挖掘可以通过对用户的购买、浏览、搜索等行为进行分析,预测哪些用户可能会流失,及时采取措施挽留用户。
例如,在通讯行业,通过数据挖掘可以挖掘客户的充值频率、通话时长、套餐类型、账户余额等多个指标,建立客户流失预测模型。
当模型发现某个客户存在流失风险时,即可采取优惠、礼品等手段与用户沟通,提高其留存率。
三、个性化营销个性化营销是针对不同客户推出不同的营销策略。
数据挖掘可以从客户的历史购买记录、行为特征、年龄性别等方面入手,推出符合客户需求的个性化产品和活动,提高客户满意度和忠诚度。
例如,在餐饮行业,通过数据挖掘可以发现某个用户喜欢吃什么类型的菜品、使用什么支付方式等信息,以此为基础推出符合其口味和消费习惯的套餐,提高消费者满意度和复购率。
四、售后服务数据挖掘在售后服务中也有着广泛的应用。
通过对客户投诉、退货、售后服务等数据进行分析,可以发现售后服务中存在的问题和瓶颈,及时进行改进和优化。
例如,在电商平台上,数据挖掘可以帮助企业发现质量问题突出的商品、需要改进的物流环节等,从而提高售后服务的效率和质量,增强用户对平台的信任度和忠诚度。
数据挖掘中的特征选择和聚类分析

数据挖掘中的特征选择和聚类分析数据挖掘是一种利用计算机技术对大量数据进行深入分析和处理的方法。
数据挖掘可以帮助我们从大量数据中发现规律、模式和趋势等信息。
其中,特征选择和聚类分析是数据挖掘中的两个重要步骤。
本文将深入探讨这两个步骤的相关概念、方法和应用。
一、特征选择特征选择是数据挖掘中的一项重要技术。
其目的是从原始数据中选择出最具有代表性和有效性的特征子集,以提高数据挖掘的准确性和效率。
特征选择可以帮助我们减少数据的维度,减少数据处理的时间和成本,还可以帮助我们发现数据中的规律和模式。
下面将介绍特征选择的方法和应用。
1.方法(1)过滤式特征选择:过滤式特征选择是在特征提取之前对所有特征进行筛选,选出与分类或回归任务相关性最高的特征。
常用的方法有相关系数法、卡方检验法、互信息法等。
(2)包裹式特征选择:包裹式特征选择是将特征选择嵌入到分类或回归模型中,通过评估分类或回归结果的精度来选择最佳特征子集。
常用的方法有遗传算法、模拟退火算法、梯度下降法等。
(3)嵌入式特征选择:嵌入式特征选择是将特征选择嵌入到分类或回归算法中,通过自动学习特征的权重和重要性来选择最佳特征子集。
常用的方法有决策树、支持向量机、神经网络等。
2.应用特征选择可以在许多领域中得到广泛应用,例如医学诊断、金融风险管理、文本分类等。
在医学诊断中,可以使用特征选择方法选择最具有代表性和有效性的生物标志物,以提高疾病的诊断准确性和治疗效果。
在金融风险管理中,可以使用特征选择方法选择最具有代表性和有效性的财务指标,以预测市场波动和风险。
在文本分类中,可以使用特征选择方法选择最具有代表性和有效性的单词或短语,以自动判断文本的主题和情感。
二、聚类分析聚类分析是数据挖掘中的一项常用技术。
其目的是将相似的数据点划分到同一类别中,以发现数据的内在结构和特征。
聚类分析可以帮助我们识别数据中的模式、群组和异常值等信息,还可以帮助我们预测未来的趋势和变化。
数据挖掘技术在客户关系管理中的应用

数据挖掘技术在客户关系管理中的应用在当今商业环境中,客户关系管理(Customer Relationship Management, CRM)是企业非常重要的一项策略。
通过有效地管理和维护客户关系,企业能够实现客户满意度的提高,增加销售额,提高市场竞争力等。
随着大数据时代的到来,数据挖掘技术被广泛应用于客户关系管理,以帮助企业更好地理解客户需求、预测市场变化并制定更有效的营销策略。
一、数据挖掘技术在客户分析中的应用客户分析是CRM的核心,通过对已有数据的挖掘和分析,能够帮助企业了解客户的特征、行为模式和需求。
数据挖掘技术在客户分析中能够发挥重要作用,主要体现在以下几个方面:1. 客户细分:通过数据挖掘技术,企业可以将客户按照一定标准进行细分,从而更好地了解不同客户群体的需求。
例如,根据客户的年龄、性别、地理位置等因素,将客户划分为不同的群体,有助于企业制定针对性的营销策略。
2. 客户价值分析:企业可以借助数据挖掘技术对客户进行价值评估,帮助企业确定哪些客户对企业价值更高,从而优先进行资源分配。
通过预测客户的未来消费行为,企业可以建立客户生命周期价值模型,制定相应的营销计划。
3. 客户流失预测:通过数据挖掘技术,企业可以获取大量历史数据,并利用这些数据建立预测模型,预测客户是否有可能流失。
一旦发现某个客户有流失的趋势,企业可以采取相应的措施,如提供个性化的服务或进行回访等,从而最大限度地减少客户流失率。
二、数据挖掘技术在个性化营销中的应用个性化营销是提高客户满意度和忠诚度的重要手段之一,而数据挖掘技术在个性化营销中具有独特的优势,能够帮助企业更好地理解客户需求并提供个性化的产品和服务。
以下是数据挖掘技术在个性化营销中的几个典型应用:1. 推荐系统:通过对用户历史行为数据的分析,企业可以为每个客户提供个性化的推荐产品和服务。
例如,电子商务平台可以基于用户的购买记录和浏览行为,推荐相似产品或潜在感兴趣的物品,提高购买转化率。
基于数据挖掘的客户细分及营销策略

基于数据挖掘的客户细分及营销策略近年来,数据挖掘技术的应用越来越广泛,尤其在商业领域的客户细分和营销策略上,其作用越发明显。
本文将探讨基于数据挖掘的客户细分及营销策略,探索如何利用数据挖掘技术解决企业在客户细分和营销策略上的难题。
1. 客户细分客户细分是企业营销策略的重要组成部分,其目的是根据消费者的需求、消费行为等因素将消费者划分为不同的群体,以便针对不同的群体制定具体的营销策略。
在数据挖掘技术的帮助下,企业可以更加准确地进行客户细分。
通过对历史销售数据、消费者行为数据等进行分析,可以确定不同群体的消费偏好、购买能力、购买频率等因素,从而将消费者划分为不同的群体。
例如,在一个商场中,同一类商品可能有不同的消费者群体,一部分人可能注重品质和服务,更愿意购买高价位的商品;另一部分则更注重价格,更愿意购买折扣力度较大的商品。
通过对消费者行为数据的分析,可以将消费者分为这两个群体,以便更好地推出针对性产品和营销策略。
2. 营销策略基于客户细分的结果,企业可以制定出更加具体化的营销策略,针对不同的消费者群体制定不同的推广方案。
例如,在B2C电商平台中,针对喜好高价位商品的消费者群体,可以推出高端品牌的产品和服务,提供更好的品质和服务以吸引他们的消费需求;而针对注重价格和折扣的消费者群体,则可以推出更多的打折、促销活动,以吸引他们的购买行为。
在制定营销策略时,数据挖掘技术可以起到重要的帮助作用。
通过对消费者行为、购物习惯等数据的挖掘和分析,企业可以洞察到消费者的需求和购物行为,为企业提供更加精细化、个性化的营销服务。
3. 技术实现基于数据挖掘的客户细分和营销策略,需要先获取大量的客户数据,然后进行数据清洗、处理和分析,最终得出客户分类的结果以及相应的营销策略。
在获取数据方面,企业可以通过多种途径来获取大量的客户数据,包括:通过线下销售渠道获得销售数据、通过在线平台获得消费者行为数据、通过调查问卷获得消费者信息等。
数据挖掘技术在客户细分中的应用

数据挖掘技术在客户细分中的应用数据挖掘技术在现代商业管理中扮演着日益重要的角色。
随着互联网和信息技术的迅猛发展,企业拥有了大量的客户数据,如何利用这些数据挖掘技术,对客户进行细分成为了企业所关注的重要问题。
本文将探讨数据挖掘技术在客户细分中的应用,并进一步分析其对企业的价值。
一、数据挖掘技术简介数据挖掘技术是一种通过从大规模数据集中提取未知、有用的信息和模式的过程。
它是统计学、计算机科学和人工智能等多门学科的交叉应用。
数据挖掘技术包括分类、聚类、关联规则挖掘等多种方法和算法,可以帮助企业从数据中发现隐藏的规律和趋势。
二、客户细分的重要性客户细分是指将大量的客户按照某种可比较的特征进行分类,从而实现更精准的市场营销和个性化的服务。
客户细分的重要性不言而喻。
首先,客户细分可以帮助企业了解不同群体客户的需求和偏好,从而优化产品设计和服务策略。
其次,客户细分可以提高市场营销的效率和精确度,减少资源浪费。
最后,客户细分可以改善企业与客户的互动体验,增加客户忠诚度和满意度。
三、1.分类分析分类分析是数据挖掘技术中的常用方法,它可以帮助企业将客户划分为不同的类别。
通过分析客户的历史购买记录、浏览行为等数据,利用分类算法可以判断客户属于哪个类别,并进一步预测客户的未来行为。
例如,一家电商企业可以利用分类分析将客户分为高消费群体、低消费群体以及潜在消费群体,并据此制定相应的市场营销策略。
2.聚类分析聚类分析是将相似的客户归类到一起的方法。
通过分析客户的共同特征,如地理位置、购买偏好等,利用聚类算法可以将客户进行分组。
聚类分析可以帮助企业发现潜在的客户群体,开展精准的市场营销活动。
例如,一家餐饮企业可以通过聚类分析将客户分为健康饮食群体、快餐爱好者等不同类别,据此推出相应的产品和服务。
3.关联规则挖掘关联规则挖掘是寻找数据中隐含的规律和关联关系的方法。
通过分析客户购买的物品之间的关联关系,利用关联规则挖掘算法可以发现商品之间的搭配、顾客之间的关联等信息。
数据挖掘技术在客户关系管理中的应用

数据挖掘技术在客户关系管理中的应用客户关系管理(Customer Relationship Management,CRM)是指企业通过运用各种资源和技术手段,建立和维护与客户之间的互动关系,以实现客户满意和企业利益最大化的管理活动。
随着信息技术的发展,数据挖掘技术在客户关系管理中发挥着越来越重要的作用。
本文将详细探讨数据挖掘技术在客户关系管理中的应用。
首先,数据挖掘技术可以帮助企业进行客户分析。
通过收集和分析大量的客户数据,企业可以了解客户的偏好、行为习惯和购买意愿,从而更好地满足客户需求。
数据挖掘技术可以通过对数据进行聚类分析、关联分析和预测分析等,帮助企业识别客户的特征和行为模式,并进行有效的客户细分。
例如,一家电子商务企业可以利用数据挖掘技术对用户行为数据进行分析,将用户划分为购买型、浏览型和潜在型客户,以便有针对性地推送个性化的产品推荐和营销活动。
其次,数据挖掘技术在客户关系管理中还可以用于客户挖掘。
企业通过数据挖掘技术可以挖掘潜在客户,即那些对企业产品或服务具有潜在需求的潜在客户。
通过对大量数据的分析,企业可以发现那些具有购买潜力的人群,并采取有针对性的营销活动,提高转化率和销售额。
例如,一家保险公司可以利用数据挖掘技术对公开的人口统计数据和社交媒体数据进行分析,挖掘出那些正在计划购买保险的潜在客户,并通过电话营销或电子邮件营销等方式与他们取得联系。
此外,数据挖掘技术还可以用于客户满意度分析。
通过对客户反馈数据和购买历史等数据的分析,企业可以了解客户对产品和服务的满意度,以及客户的投诉和退款情况,进而改进产品和服务质量。
数据挖掘技术可以通过对大量的文本数据进行情感分析,帮助企业识别客户的情绪和意见,并及时采取措施解决问题。
例如,一家酒店可以利用数据挖掘技术对客户的评论和评分进行情感分析,了解客户的意见和需求,进一步改进服务和提升客户满意度。
最后,数据挖掘技术还可以用于客户流失预测。
客户流失是企业重要的挑战之一,因为吸引新客户的成本通常比维持现有客户的成本要高。
销售数据挖掘的应用场景有哪些

销售数据挖掘的应用场景有哪些在当今竞争激烈的商业环境中,销售数据挖掘已成为企业获取竞争优势、优化销售策略和提升客户满意度的重要手段。
销售数据挖掘是指从大量的销售数据中提取有价值的信息和知识,以支持决策制定和业务优化。
那么,销售数据挖掘到底有哪些具体的应用场景呢?一、客户细分客户细分是根据客户的特征、行为和需求将客户分为不同的群体。
通过销售数据挖掘,企业可以分析客户的购买历史、消费金额、购买频率、购买偏好等信息,将客户细分为不同的类别,如高价值客户、潜在客户、流失客户等。
针对不同的客户细分群体,企业可以制定个性化的营销策略,提高营销效果和客户满意度。
例如,对于高价值客户,企业可以提供专属的服务和优惠,以增强客户的忠诚度;对于潜在客户,企业可以通过针对性的营销活动,激发他们的购买欲望;对于流失客户,企业可以分析其流失原因,采取相应的措施进行挽回。
二、销售预测销售预测是企业制定生产计划、库存管理和资源配置的重要依据。
通过销售数据挖掘,企业可以分析历史销售数据、市场趋势、季节因素、促销活动等影响销售的因素,建立销售预测模型,预测未来的销售趋势和销售额。
准确的销售预测可以帮助企业合理安排生产和库存,降低成本,提高资金使用效率。
例如,一家服装企业可以通过分析历年的销售数据和季节变化,预测不同季节、不同款式服装的销售情况,提前安排生产和采购,避免库存积压或缺货现象的发生。
三、产品推荐在电商平台和零售行业,产品推荐是提高销售额和客户满意度的重要手段。
通过销售数据挖掘,企业可以分析客户的购买历史和浏览行为,了解客户的兴趣和偏好,为客户推荐相关的产品。
个性化的产品推荐可以提高客户的购买转化率和客单价,同时增强客户的购物体验。
例如,当客户在电商平台上浏览一款手机时,系统可以根据客户的浏览历史和购买偏好,为其推荐相关的手机配件、耳机等产品。
四、价格优化价格是影响产品销售的重要因素之一。
通过销售数据挖掘,企业可以分析不同价格水平下产品的销售情况、客户的价格敏感度以及竞争对手的价格策略,制定合理的价格策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘中客户的特征化及其划分
[摘要] 良好客户关系已成为电子商务时代制胜的关键。
在激烈的市场竞争中,客户关系管理逐渐成为企业关注的焦点。
深入研究客户和潜在客户是在市场中保持竞争力的关键。
本文通过对客户行为的特征化分析,以数据挖掘为分析工具,对客户关系管理进行了讨论,给出了相应的划分方法,使用这些划分方法,对客户进行分析是有意义的。
[关键词] 客户关系管理数据挖掘聚类分析一、引言在激烈的市场竞争中,客户关系管理(Customer Relationship Management)逐渐成为各企业关注的焦点。
一个成熟的CRM 系统要能够有效地获取客户的各种信息,识别客户与企业间的关系及所有交互操作,寻找其中的规律,为客户提供个性化的服务,为企业决策提供支持。
在企业与客户的交互操作中,“二八原则”是值得借鉴的,即20%的客户对企业做出80%的利润贡献。
但究竟谁是那20%的客户?又如何确定特定消费群体的消费习惯与消费倾向,进而推断出相应消费群体或个体下一步的消费行为?这都是企业需要认真研究的问题。
二、客户的特征化及其划分企业认识客户和潜在客户是在市场保持竞争力的关键。
特征分析是了解客户和潜在客户的极好方法,包括对感兴趣对象范围进行一般特征的度量。
一旦知道带来最大利润客户的特征和行为,就可以直接将其应用到寻找潜在客户之中。
有效寻找客户,认识哪些人群像自己的客户。
因此,在争取客户的活动中,对感兴趣对象进行特征化及其划分是很有意义的。
对客户的特征化,顾名思义就是用数据来描述或给出客户(潜在客户)特征的活动。
特征化可以在数据库(或数据库的不同部分)上进行。
这些不同部分也称为划分,通常他们互不包含。
划分分析(Segmentation Analysis)通常用于根据利润和市场潜力划分客户。
如:零售商按客户在所有零售商店的总体购买行为,将客户划分为若干描述他们各自购买行为的区域,这样零售商可以评估哪些客户有最大利润。
划分是把数据库分成互不相交部分或分区的活动。
一般有两种方法:市场驱动法和数据驱动法。
市场驱动法需要决定那些对业务有重要影响的特征,即需要预先选择一些特征变量(属性),以最终定义得到划分。
数据驱动法是利用数据挖掘中的聚类技术或要素分析技术寻找同质群体。
三、数据挖掘的概念数据挖掘(Data Mining)是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息。
通过数据挖掘提取的知识表示为概念、规则、规律、模式等,它对企业的趋势预测和行为决策提供支持。
1.分类分析分类是指将数据映射到预先定义好的群组或类。
分类要求基于数据属性值来定义类别,通过数据特征来描述类别。
根据它与预先定义好的类别相似度,划分到某一类中去。
分类的主要应用是导出数据的分类模型,然后使用模型预测。
2.聚类分析
聚类是对抽象样本集合分组的过程。
与分类不同之处在于聚类操作要划分的类是事先未知。
按照同一类中对象之间较高相似度原则进行划分,目的是使同一类别个体之间距离尽可能小,不同类别中个体间距离尽可能大。
类的形成是由数据驱动的。
3.关联规则关联规则是从大量的数据中挖掘出有价值的描述数据项之间相互关联的知识。
关联规则中有两个重要概念:支持度(Support)和信任度(Confidence)。
它们是两个度量有关规则的方法,描述了被挖掘出规则的有用性和确定性。
关联规则挖掘,希望发现事务数据库中数据项之间的关联,这些规则往往能反映客户的购买行为模式。
4.时间序列分
析时间序列分析是通过对过去历史行为的客观记录分析,揭示其内在的规律,预测未来行为。
它旨在从大量的时间序列中提取人们事先不知道的,但又是潜在有用的、与时间属性相关的信息和知识。
5.孤立点分析数据库中包含那些不符合大多数数据对象所构成规律(模型)的数据对象,称为孤立点。
对孤立点挖掘分析可以处理一些特殊事件。
6.回归分析在掌握大量观察数据的基础上,利用数理统计方法,建立因变量与自变量之间的回归关系函数。
回归分析法是定量预测方法之一,它依据事物内部因素变化的因果关系来预测事物的发展趋势。
四、数据挖掘在CRM中的应用 1.对客户的相关属性分析(1)挖掘客户的特性DM的第一步就是识别客户群,挖掘客户特性,如:了解客户地址、年龄、性别、收入、教育程度、爱好等基本信息,还有健康、嗜好、配偶、家庭环境等特征信息,发现其行为规律,制定吸引客户的策略。
运用分类与聚类方法,从客户基本库中发现不同的客户群,用购买模式刻画不同客户群的特征,针对不同类型的客户,提供个性化的服务。
(2)客户行为分析①客户满意度客户满意度分析是对其产品或服务的消费经验总体评价,应用数据挖掘分析方法可以从零散客户反馈的信息中,分析客户的满意度,找出客户不满意原因。
②客户忠诚度客户忠诚度是指客户愿意继续购买该企业产品或服务的倾向。
以客户的购买倾向为度,对客户数据分析,对高忠诚度的客户继续保持,对低忠诚度的客户要下功夫将其培养成高忠诚度客户。
利用分类、聚类方法将客户分为不同客户群,并从中确定那20% 的对企业有80% 贡献率的最有价值的客户群,对不同价值贡献率客户采取不同策略和措施。
③客户保持保持客户的同时不断挖掘潜在客户,是企业持续发展的重要手段。
通过数据挖掘的决策树、神经网络等方法建立预测模型,识别潜在客户。
还可以通过客户盈利能力分析,帮助企业制定市场策略,留住有价值的客户,开发潜在客户。
用聚类(分类)和关联分析,发现有价值稳定的客户群,有价值易流失的客户群,低价值稳定的客户群和低价值不稳定的客户群,采取不同的服务(推销)和价格策略稳定有价值客户,转化低价值客户。
④客户跟踪服务对客户的变动要及时跟踪分析客户变动原因,防止客户群体的流失,指导企业合理配置资源,为客户提供“一对一”个性化服务,以抓住现有客户并吸引潜在客户。
⑤客户生命周期价值基于客户生活方式和购买行为建立客户分群,计算不同客户分群的生命周期价值,设计差异化的沟通策略。
分析客户不同时期收入、成本、风险,利用价值理论公式得出客户的价值并提供预测。
数据挖掘技术分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定市场策略。
⑥交叉销售分析客户消费记录,发现潜在交叉购买需求,选择最合适的交叉销售形式。
数据挖掘可寻找那些影响客户购买行为的因素,挖掘隐藏在数据间的表面看似独立事件间的相互关系。
如发现“90% 的顾客在一次购买活动中购买A 商品的同时购买B 商品”之类的知识,展开交叉营销。
⑦异常分析异常事件在商业领域中往往具有显著价值,如:金融欺诈、客户流失等。
通过数据挖掘中的偏差分析可以迅速准确地找到异常事件,制定相应的营销策略。
客户流失是异常情况之一,根据以前的客户流失数据,包括:客户属性、服务属性、消费属性与流失可能性关联的数学模型,找出客户流失原因,建立预测模型推测现有客户的流失情况。
2.市场分析预测不同区域消费者对不同产品的消费趋势、季节变化、非规则变化等。
采用时序分析方法,对基于时间序列销售数据进行趋势分析,预测市场的趋势变化、
循环变化、季节性变化、非规则或随机变化。
通过对客户关系管理系统分析,可有效地指导企业在市场、销售、服务等方面将资源分配给有价值的客户,掌握客户的行为模式,以应对各种客户行为以及市场变化。