最新近世代数知识点

合集下载

近世代数(复习duo)

近世代数(复习duo)
【定义】设整数 a 与整数 n 互素且 n > 0 ,若 ordna = φ(n) ,则称 a 是模 n 的一个原根。 〖例子〗 ord7 3= 6= φ(7),因此 3 是 7 的一个原根。
6、等价关系,举例说明。
【定义】设 R 是某个集合上的一个二元关系。若满足以下条件: (1)自反性: ∀x ∈ A , xRx ; (2)对称性: ∀x, y ∈ A , xRy ⇒ yRx ;
〖例子〗
G 是全体整数的集合, G 对于普通加法来说作成一个群。 G 是所有不等于零的整数的集合, G 对于普通乘法来说不作成一个群。(不满足 4) G 是全体不等于零的有理数的集合,那么 G 对于普通乘法来说作成一个群。 G 是全体整数的集合, G 对于普通减法来说不作成一个群。(不满足 2) 4、什么是一个群 G 的生成元,给出一个子集合会判断该子集是不是子群。 【定义】若一个群 G 的每一个元都是 G 的某一个固定元 a 的乘法,我们就把 G 叫做循环群;我们也说, G 是由 a 所生成的,并且用符号 G = (a) 表示。 a 叫做 G 的一个生成元。 【定义】一个群 G 的一个子集 H 叫做 G 的一个子群,假如对于 G 的乘法来说做成一个群。一个群 G 的一 个不空子集 H 做成 G 的一个子集的充分必要条件是: (1) a,b ∈ H ⇒ ab ∈ H ; (2) a ∈ H ⇒ a−1 ∈ H ; (3) a, b ∈ H ⇒ ab−1 ∈ H 。
【定义】一个集合 A 的代数运算 适合结合律,假如对于 A 的任何三个元 a, b, c 来说,都有:
(a b) c = a (b c) 。
〖例子〗
(1) A = {所有不等于零的实数} , 是普通除法,a b = a / b ,这个运算 不适合结合律。(4 / 2) / 2

(完整版)近世代数复习知识点

(完整版)近世代数复习知识点

一、二、(45分)
单项选择题和填空题的知识点:
1.
任何有限群G 的子群H 的阶数是G 阶数的因子 2.
任何素数阶数的群是循环群,而循环群是交换群 3.
群的定义是什么?给出一些集合和集合上的运算,能判断集合关于运算是不是群。

4.
什么是一个群G 的生成元,给出一个子集合会判断该子集是不是子群。

5. 什么叫做结合律?给出一个集合和集合上的运算,会判断该运算是不是可结合的。

6. 已知群G 的元素a 的阶是n, 那么m a 的阶是(,)
n n m 。

7. 环、整环、除环、域的定义。

8. 什么是单位元,什么是一个元的逆元素,单位元和一个元素的逆元素唯一吗?
9. 什么叫做一个群的左、右陪集, 有限群的左、右陪集的个数是什么关系?
10. 环无零因子是什么意思?
11. 无零因子的特征是什么意思?
12. 有限群G 的任何元素的阶数都是G 阶数的因子。

13. 集合的直积是怎么定义的。

14. 循环群的子群是循环群吗?
15. 一个集合可以和其真子集建立一一对应吗?
三、问答题知识点(25分)
1. 正规子群,举例说明
2. 循环群, 举例说明
3. 有限域,举例说明
5 . 群的左、右陪集,举例说明
6. 原根,举例说明
7. 等价关系,举例说明
8. 系统同态,举例说明
9. 检错和纠错
10.理想和商环
四、证明题知识点(30分)
1. lagrange 定理。

P .69
2. 例1. P .94
3. 定理1 p.72
4. 定理 p.88。

近世代数——精选推荐

近世代数——精选推荐

近世代数⽬录基本概念元素。

集合。

空集合。

⼦集 。

真⼦集 。

A =B ⟺A ⊆B ∧B ⊆A 。

幂集:⼀个集合所有⼦集组成的集合, P (A ) 。

交集。

并集。

性质:幂等性;交换律;结合律;⼆者之间有分配律。

关系:M ×M 的⼦集。

即 ∀a ,b ∈M ,法则 R 可以确定 a 和 b 符合/不符合这个法则。

记做 aRb 和 a ¯R b 。

等价关系:满⾜⾃反性(∀a ∈M ,aRa )、对称性( aRb ⇔bRa )和传递性( aRb ,bRc ⇒aRc )的关系,⽤ ∼ 表⽰,即 a ∼b 。

分类:把集合 M 的全体元素分为若⼲互不相交的⼦集。

每个分类与⼀个等价关系⼀⼀对应。

映射:集合 A ,B ,有⼀个 法则 φ 使得所有的 x ∈A 存在唯⼀的 y ∈B 与之对应。

记作 φ:x ⟶y 或 y =φ(x ) 。

y 叫做 x 在映射 φ 下的像,把 x 叫做 y 在映射 φ 下的原像或逆像。

满射:B 中每个元素在 A 中都有原像。

单射:A 中不同的元素在 B 中像不同。

双射:满射+单射。

逆映射:只有双射才有逆映射,记为 φ−1 。

有限集合满⾜ |A |=|B | 且 φ 是 A 到 B 的⼀个映射,则 φ 是满射 ⟺ φ 是单射;推论:得出 φ 是双射。

相等映射 : A 到 B 的映射 σ 和 τ 满⾜ ∀x ∈A ,σ(x )=τ(x ) 。

映射合成/映射乘法: τ:A ⟶B ,σ:B ⟶C ,则 x ⟶σ(τ(x ))(∀x ∈A ) 是 A 到 C 的⼀个映射,记为 στ(x ) 。

代数运算:集合 M 的对应法则 M ×M ⟶M ,即任意两个有次序的元素 a 和 b 有唯⼀确定的元素 d 与它们对应。

代数系统:有代数运算的集合。

(注意代数运算的封闭性。

即 d ∈M )。

⽤“乘法表”法表⽰有限集合的代数运算时,注意每列⾏⾸(第⼀列)是参与运算第⼀个元素,每列列⾸(第⼀⾏)是第⼆个元素。

近世代数知识点

近世代数知识点

近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。

下面让我们一起来了解一些近世代数的关键知识点。

首先是群的概念。

群是近世代数中最基本的结构之一。

简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。

比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。

群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。

环也是近世代数中的重要概念。

一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。

加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。

常见的环有整数环、多项式环等。

接下来是域。

域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。

比如有理数域、实数域和复数域。

同态和同构是近世代数中用来比较不同代数结构的重要工具。

同态是指两个代数结构之间存在一种保持运算的映射。

如果这个映射还是一一对应的,那就是同构。

同构的两个代数结构在本质上可以看作是相同的。

在近世代数中,子群、子环和理想也具有重要地位。

子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。

再来说说商群和商环。

以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。

商群中的元素是由N 的陪集构成的。

近世代数中的重要定理也不少。

比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。

该定理指出,子群的阶整除群的阶。

最后,我们谈谈近世代数的应用。

在密码学中,群和环的理论被广泛用于加密和解密算法的设计。

近世代数辅导(四)(复习指导).doc

近世代数辅导(四)(复习指导).doc

近世代数辅导(四)(复习指导)第一部分内容提要一、基本概念1.集合概念;子集;运算:交、并、积2.映射定义;满射;单射;一一映射;变换3.代数运算定义;运算律:结合律、交换律、分配律4.同态与同构同态映射;同态满射;同态;同构映射;同构;自同构5.等价关系与集合的分类二、群论1.样的定义及基本性质笫一定义:I, II, in;笫二定义:I, II, iv, v;有限群的另一定义:I, II, nr2.了集定义;判定条件3.群的同态群的同态;样的同构4.变换群与置换群定义;置换的两种表示方法;凯莱定理5.循环群定义;整数加样与模n的剩余类加群;循环样的构造6.子群的陪集右陪集与左陪集;两个元同在一个右(左)陪集的条件;子群的指数;拉格朗口定理7.不变子群与商群不变子群的定义及其判定条件;商群的定义;群的同态基本定理三、环与域1.环的定义及其计算规则2.有附加条件的环交换环;冇单位元环;无零因了环及其特征;整环;除环及其乘群;域3.子环、环的同态子环、子除环的定义及其判定条件;环的同态(同构)4.理想与剩余类环理想(了环)的定义;主理想的定义;剩余类环的定义;环的同态基木定理5. 设A={所有实数}, 入={所有2()的实数}, A和瓜的代数运算是普通乘法,证明:A第二部分思考题1.设A={1, 2,…,10},给出一个AXA到A的映射,这个映射是不是单射?2.设A={1, 2, 3},规定A的一个代数运算,这个代数运算是不是适合交换律?3.设人={所有实数},瓜={所有>0的实数},给出一个A-L/I间的一一映射。

4.设A={所有实数},给出A的两个不同的一一变换(恒等变换除外)。

到入的映射O : X -> X2, x G A是A到入的一个同态满射。

6.设A二{所有有理数}, A的代数运算是普通加法,证明:A到A的映射①:x —> 2x , x e A是A的一个自同构映射。

7.举一个有两个元的群的例,并写出它的运算表。

近世代数复习

近世代数复习

第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。

第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。

b. 若G是一个有乘法的有限非空集合,且满足消去律。

群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。

6.群满足左右消去律。

推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。

7.若群G的元a的阶是n(有限),则a k n|k。

8.群中的任意元素a和他的逆元a-1具有相同的阶。

9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。

交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。

元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。

若是这样的m不存在,则称a是无限阶的。

有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。

一个有限群的元的个数叫做这个群的阶。

定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。

若是对于上述乘法来说G做成一个群,那么G只包含A的一一变换。

近世代数科普

近世代数科普

近世代数科普群论⼆1. 同态与同构群的同态:设f:G→G′,如果其满⾜∀a,b∈G,f(a)f(b)=f(ab),则称f是⼀个同态当f是⼀个满射时,称为满同态当f是⼀个单射时,称为单同态当f是⼀个双射时,称为同构,称为G≅G′常记f(G)={f(x):x∈G},f−1(x)={a:f(a)=x},f−1(S)={a:f(a)∈S}常⽤结论设f:G→G′为⼀个同态,则f(e)=e′,f(a)−1=f(a−1)设f:G→G′为⼀个同态,则f(G)⩽G′Prof:对a′,b′∈f(G),∃a,b∈G,f(a)=a′,f(b)=b′,则a′b′−1=f(a)f(b)−1=f(ab−1)∈f(G)2. 正规⼦群Def:设H⩽G,若∀a∈G,aH=Ha,则称H为⼀个正规⼦群,记做H⊲G正规⼦群的等价结论:设H⩽G,∀a∈G,aHa−1=H设H⩽G,∀a∈G,aHa−1⊆HProf:取a和a−1,aHa−1⊆H,a−1Ha⊆H设H⊲G,K⩽G,则H∩K⊲KProf:∀x∈H∩K,∀g∈K,g−1xg∈H∩K(H是由正规⼦群,K由群的封闭性)3. 核Def:设f:G→G′是⼀个同态,则f−1(e)称为f的核,记做ker(f)核⼀定是正规⼦群:⼦群:∀a,b∈ker(f),f(ab−1)=f(a)f(b−1)=e∈ker(f)正规⼦群:∀g∈G,h∈ker(f),f(ghg−1)=f(g)ef(g−1)=e∈ker(f),从⽽g ker(f)g−1⊆ker(f),从⽽ker(f)是正规⼦群f−1(a)=a ker(f)4. 商群定义⼀种集合运算,AB={ab|a∈A,b∈B}Def:设H⩽G,G/H为H的陪集的集合,若H⊲G,G/H在上述集合运算下构成群,称为商群,商群的单位元为H,元素aH的逆元为a−1HProf:∀aH,bH∈G/H,aHb−1H=ab−1H∈G/H5. ⾃然同态设H⊲G,则存在G→G/H的同态φ(a)=aH,称为H的⾃然同态⾃然同态⼀定是满同态φ(H)=φ−1(H)=H6. 群同态基本定理设f:G→G′是⼀个满同态,则G/ker(f)≅G′Prof:记N=ker(f),构建映射ϕ(aN)=f(a)先证为双射,如果f(a)=f(b),则a∈bN,则aN=bN,故为单射∀a′∈G′,∃a∈f−1(a′),s.t.ϕ(aN)=a′,故为满射再证同构,ϕ(aN)ϕ(bN)=f(a)f(b)=f(ab)=ϕ(abN)=ϕ(aNbN)推论:设f:G→G′是⼀个同态,则G/ker(f)≅f(G)7. 群同态定理设f:G→G′是⼀个满同态,记N=ker(f)f建⽴G包含N的⼦群与G′的⼦群之间的⼀⼀对应Prof:设S1={K:N⩽K⩽G},S2={K:K⩽G′}(a) ⾸先证明映射合法,∀H∈S1,f:H→G′是⼀个同态,因此f(H)⩽G′(b) 证明单射,先证∀H∈S1,f−1(f(H))=H,知H⊂f−1(f(H)),并且∀x∈f−1(f(H)),f(x)∈f(H),因⽽∃h∈H,f(x)=f(h),故x∈hN⊂H,故f−1(f(H))⊂H,因此f−1(f(H))=H,那么如果f(H1)=f(H2)就有H1=H2(c) 证明满射,∀H′∈S2,f(f−1(H′))=H′f建⽴G包含N的正规⼦群与G′的正规⼦群之间的⼀⼀对应Prof:设S a={K:N⩽K⊲G},S b={K:K⊲G′}(a) f:S a→S b合法,因为∀K∈S a,∀g∈G,gKg−1=K,故f(K)=f(gKg−1)=f(g)f(K)f(g)−1,由f是满同构知f(K)∈S b,⼜由f:S1→S2是双射知,f是⼀个单射(b) 反之,∀K′∈S b,∀g∈G,f(g−1f−1(K′)g)=f(g)−1K′f(g)=K′,从⽽g−1f−1(K′)g⊂f−1(K′),从⽽f−1(K′)∈S a,由f:S1→S2是双射知,f是⼀个满射上述两条主要是为了接下来的定理的描述第⼀群同构定理:设f:G→G′是⼀个满同态,设N=ker(f),设N⊂H⊲G,则G/H≅G′/f(H)Prof:设G′/f(H)的⾃然同态为π,那么我们考虑同态φ=πf(G→G′/f(H)),由π,f为满同态,则φ为满同态我们考虑证明H=ker(φ),即{x|πf(x)∈f(H)},显然H⊆ker(φ),⽽∀x∈ker(φ),有πf(x)∈f(H),即f(x)∈f(H),即x∈f−1(f(x))⊆H,从⽽H=ker(φ),由群同态基本定理,我们得到G/H≅G′/f(H)第⼆群同构定理:设H⩽G,N⊲G,则HN/N≅H/H∩N为了使定理有意义,先证HN是⼦群,⾸先HN=NH,∀h1,h2∈H,n1,n2∈N,n1h1(n2h2)−1=n1(h1h−12)n2∈NHN=HN,故HN为⼦群Prof:设H/H∩N的⾃然同态为π,π(a)=a(H∩N),构造f:HN→H,∀x∈aN,f(x)=a,则ϕ=πf是⼀个满同态我们考虑证明N=ker(ϕ),即{x|πf(x)∈H∩N},⾸先f(N)=e,π(e)=H∩N,故N⊆ker(ϕ)⽽且∀x∈ker(ϕ),f(x)∈{e},故x∈N,故ker(ϕ)⊆N第三群同构定理:设N⊲G,N⩽H⊲G,则G/H≅(G/N)/(H/N)Prof:第⼀群同构定理,取G′=G/N的特例群论三1. 单群Def:如果G没有⾮平凡的正规⼦群({e}和G),那么G称为单群G≠{e}是交换单群,当且仅当G为素数阶的循环群Prof:对任意g≠e,考虑⟨g⟩2. ⽣成⼦群记最⼩包含S的⼦群为⟨S⟩,即⟨S⟩=⋂S⊂H⩽G H∀x∈S,x=x1x2...x m(x1,x2,...,x m∈S∪S−1)当S有限时,⟨S⟩称为有限⽣成群3. 换位⼦群(导群)a−1b−1ab称为元素a,b的换位⼦(交换⼦),记做[a,b]所有的换位⼦⽣成的⼦群称为换位⼦群(导群),常记做G′, [G,G], G(1)(以后变量要取别的名字了...)当ab=ba时,[a,b]=a−1b−1ab=eG′⊲GProf:g[a,b]g−1=(ga−1g−1)(gb−1g−1)(gag−1)(gbg−1)=[gag−1,gbg−1]∀x∈G′,x=[a1,b1][a2,b2]...[a m,b m], 故gxg−1=[ga1g−1,gb1g−1][ga m g−1,gb m g−1]∈G′故∀g∈G,g−1G′g⊆G′,故G′⊲GG/G′是阿贝尔群Prof:aG′bG′=bG′aG′⇔aG′b=bG′a⇔G′=a−1bG′ab−1⇔G′=G′a−1bab−1⇔G′=G′[a,b−1]4. 可解群定义G(n)=(G(n−1))(1),注意到G⊳G(1)⊳G(2)⊳...Def:如果G(k)={e},则称G为可解群利⽤换位⼦群的商群的性质,有这样的充要条件:群G是可解群当且仅当存在G⊳G1⊳G2....⊳G k={e},且G i−1/G i(1≤i≤k)为阿贝尔群Prof:“⇒":显然,G,G(1),G(2),....,满⾜题意“⇐”:如果G/N是阿贝尔群,考虑φ:G→G/N为⾃然同态,那么有φ([a,b])=e,即[a,b]∈N从⽽我们有G(1)⩽N,在本题中,由于G/G1是阿贝尔群,故G(1)⩽G1,归纳得到G(k)⩽G k,即G(k)={e}5. 中⼼化⼦定义C(G)={x:∀a∈G,ax=xa},称为群G的中⼼C(G)⊲G类似的,定义C S(G)={x:∀a∈S,ax=xa},称为S的中⼼化⼦C S(G)⩽G6. 群对集合的作⽤设f:G×S→S,且满⾜[1] f(e,x)=x [2] f(g1g2,x)=f(g1,f(g2,x)),称f决定了群G在S上的作⽤,f(g1,x)常简写为g1(x)设G是⼀个群,X,X′是两个⾮空集合,G作⽤在X,X′上,如果存在双射ϕ:X→X′,使得ϕ(g(x))=g(ϕ(x)),则称这两个作⽤等价example:项链的旋转构成群,对长为n的全红项链和全蓝项链显然等价设G作⽤在X上,定义关系R={(x,y)|∃g∈G,g(x)=y},易证R是等价关系,在这个等价关系下,我们划分出的等价类称为轨道,和x 等价的元素记做O x={g(x)|g∈G}给⼀条项链染⾊,在旋转操作下等价的元素设G作⽤在X上,∀x∈X,定义H x={g∈G|g(x)=x}为x的稳定⼦群(显然为⼦群)如果|O x|=1,或者说∀g∈G,g(x)=x,则称x为不动点7. 齐性空间Def:设H⩽G,则H的所有左陪集构成的集合称为G的齐性空间⼀般的,默认g(aH)=gaH是G在G/H上的作⽤设G作⽤在X上,则\forall x \in X,G在O_x上的作⽤和其在G/H_x上的作⽤等价Prof:定义映射f:G/H_x \to O_x, f(aH_x) = a(x)其为单射,因为b(x) = a(x) \Leftrightarrow b^{-1}a(x)=x \Leftrightarrow bH_x=aH_x其显然为满射,因此此为⼀⼀映射,并且,f(gaH_x) = ga(x) = g(f(aH_x))设G为有限群,G作⽤在X上,则|O_x| = |G/H_x|Prof:由上⼀个命题,f是⼀个⼀⼀映射,故这两个集合的基数相等ex:求正⽅体的旋转群的⼤⼩我们考虑利⽤上式公式,不难得到|H_1| = 3,|O_1| = 8,从⽽|G| = 24在G作⽤到G上,并且g(x) = gxg^{-1}时,此时H_x = C_G(X),定义C(x)为和x共轭的元素的集合,则|C(x)| = |G :C_G(x)|根据等价类的定义,从每个共轭类中选择⼀个元素,得到|G| = \sum_x [G:C_G(x)]特别的,当x\in C(G)时,[G:C_G(x)] = 1,因此我们选择从每个⾮平凡的共轭类中选择⼀个x元,则有|G| = |C(G)| + \sum_x |G:C_G(x)|这称为共轭类⽅程设H\leqslant G,则H \cong xHx^{-1}(x\in G)8. p-群Def:如果|G| = p^k(k\geq 1),其中p为素数,则称G为p-群设p-群G作⽤于集合X上,设|X|=n,设t为X中不动点的数⽬,则t \equiv n(mod\;p)Prof:设集合X的全部轨道为O_1, O_2, ..., O_k,则有\sum |O_i| = n,注意到|O_i| = p^m(m\geq 0),当且仅当|O_i| = 1时,有|O_i|\;mod\;p =1,否则|O_i| \;mod\;p=0,因此t \equiv n(mod\;p)p-群⼀定有⾮\{e\}的中⼼Prof:考虑G到G上的共轭变换,任意G的中⼼中的元素⼀定是⼀个不动点,因此,我们有|C(G)|\equiv 0(mod\;p),⾃然我们得到|C(G)|>19. Burnside 引理设群G作⽤于集合S上,令t表⽰S在G作⽤下的轨道的条数,\forall g\in G,F(g)表⽰S在g作⽤下不动点的个数,则t = \frac{\sum_{g\in G} F(g)}{|G|}Prof:⾸先转化命题,我们运⽤双计数证明|G|*t = \sum_{g\in G}F(g)考虑右式,\sum_{g\in G}F(g) = \sum_{x\in S, g\in G} [gx = x] = \sum_{x\in S} \{g:g\in G, gx=x\} = \sum_{x\in S} |H_x|由于|H_x| = |G| / |O_x|,因此所求即|G|*\sum_{x \in S}\frac{1}{|O_x|},即证\sum_{x\in S} \frac{1}{|O_x|} = t考虑⼀个轨道O_x,这个轨道产⽣的贡献为|O_x| * \frac{1}{|O_x|} = 1,如此,t为不同的轨道的条数,命题得证群论四好像有些不太正常的要来了1. 西罗第⼀定理设G是⼀个阶为n的有限群,p为素数,如果p^k | n, k \geq 0,那么G中存在⼀个阶为p^k的⼦群Prof:引理:设n = p^r*m, (p, m) = 1,对k \leq r,有v_p(\binom{n}{p^k})=r-k(由Kummer\;TH显然)取G中所有含有p^k个元素的⼦集,构成集合X,令G作⽤在X上,定义g(A) = gA, A\in X那么有|X| = \sum |O_i|,由于p^{r-k+1} \nmid |X|,因此存在A\in X,使p^{r-k+1} \nmid |O_A|,下证|H_A|=p^k由|O_A| |H_A|= |G|知,v_p(H_A) \geq k,即|H_A| \geq p^k但\forall a\in A, H_Aa \subset A,故|H_A| \leqslant |A| = p^k,从⽽|H_A|=p^k设v_p(|G|) = k,则阶为p^k的⼦群称为西罗p-⼦群2. 西罗第⼆定理设v_p(|G|) = r,P是G的⼀个西罗p-⼦群,\forall H \leqslant G, |H|=p^k, \exists g\in G, s.t. H \leqslant gPg^{-1}Prof:考虑X为P的左陪集的集合,将H作⽤于X,h(aP)=haP由于(|X|, |H|) = 1,那么存在⼀个不动点,使得HgP = gP此时\forall h \in H ,\exists p_1, p_2\in P, hgp_1=gp_2,即h = gp_2p_1^{-1}g^{-1} \in gPg^{-1},因此H \leqslant gPg^{-1}推论1:任意两个西罗p-⼦群互相共轭推论的推论:⼀个群G有唯⼀的西罗p-⼦群P的充要条件为P \lhd G3. 正规化⼦Def:对H \leqslant G,定义\{g:g\in G, gH=Hg\}为H的正规化⼦,记做N(H) N(H) \leqslant GH \lhd N(H)C_G(H) \leqslant N(H)G中西罗p-⼦群的个数,以及对任⼀西罗p-⼦群P,N(P)的阶为|G|的因⼦Prof:设X为G中所有西罗p-⼦群的集合,在上⾯作共轭变换对任⼀西罗p-⼦群P,有O_P = X,H_P = N(P),从⽽|X|*|N(P)|= |G|4. 西罗第三定理若G中所有西罗p-⼦群的个数为t,则t \equiv 1(mod\;p)证明从略|G| = p^r * m, (p, m) = 1,结合t | |G|,我们有t | m。

近世代数基础知识点总结

近世代数基础知识点总结

近世代数基础知识点总结近世代数是数学中的一个重要分支,它研究的是代数结构及其性质。

本文将对近世代数的基础知识点进行总结,包括群、环、域和向量空间等的定义和性质。

一、群群是近世代数的基础概念,它是一个集合和一个二元运算构成的代数结构。

群的定义包括四个要素:集合、封闭性、结合律和单位元,还需要满足可逆性。

群的性质有唯一性、消去律、幂等性和逆元的唯一性等。

二、环环是在群的基础上引入了乘法运算的代数结构。

环的定义包括三个要素:集合、封闭性和满足环公理。

环的性质有零元的唯一性、加法逆元的唯一性、分配律和幂等性等。

三、域域是在环的基础上引入了除法运算的代数结构。

域的定义包括四个要素:集合、封闭性、满足域公理和乘法逆元的存在性。

域的性质有乘法单位元的唯一性、乘法逆元的唯一性和消去律等。

四、向量空间向量空间是线性代数的基础概念,它是一个集合和一个数域上的向量运算构成的代数结构。

向量空间的定义包括十个要素:集合、封闭性、加法单位元、加法逆元、加法交换律、加法结合律、标量乘法结合律、标量乘法分配律、标量乘法单位元和标量乘法结合律。

向量空间的性质有零向量的唯一性、加法逆元的唯一性和标量乘法的分配律等。

五、同态映射同态映射是近世代数中的一个重要概念,它是保持代数结构之间运算关系的映射。

同态映射的定义要求保持运算的封闭性、满足运算关系和保持单位元。

同态映射的性质有保持运算的封闭性、满足运算关系和保持单位元等。

六、理想理想是环和域中的一个重要概念,它是一个子集,并且满足加法逆元、封闭性和分配律。

理想的性质有加法单位元的存在性、加法逆元的存在性和分配律等。

七、同余关系同余关系是环中的一个重要概念,它是一种等价关系,表示两个元素具有相同的余数。

同余关系的性质有自反性、对称性和传递性等。

八、域的扩张域的扩张是域论中的一个重要概念,它是在一个域上构造出一个更大的域。

域的扩张可以通过添加一个或多个元素来实现,使得新的域仍然满足域公理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数知识点
第一章基本概念
1.1 集合
A的全体子集所组成的集合称为A的幕集,记作2A.
1.2 映射证明映射:单射:元不同,像不同;或者像相同,元相同。

满射:像集合中每个元素都有原像。

Remark:映射满足结合律!
1.3 卡氏积与代数运算
{ (a,b )1 a € A,b € B }此集合称为卡氏积,其中(a,b )为有序元素对,所以一般A*B 不等于B*A.
集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类
★等价关系: 1 自反性:?a € A,a a;
2 对称性:?a,b € R, a b=>b a€ R;
3 传递性:?a,b,c € R,a b,b c =>a c€ R
Remark:对称+传递工自反
★ 一个等价关系决定一个分类,反之,一个分类决定一个等价关系
★ 不同的等价类互不相交,一般等价类用[a] 表示。

第二章群
2.1 半群
1. 半群=代数运算+结合律,记作( S, )
Remark: i. 证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii. 若半群中的元素可交换,即a b=b a, 则称为交换半群。

2. 单位元
i. 半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不
存在;若都存在,则左单位元=右单位元=单位元。

ii. 单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元iii. 在有单位元的半群中,规定a0=e.
3. 逆元
i. 在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii. 逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii. 若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4. 子半群
i. 设S是半群,工T S,若T对S的运算做成半群,则T为S的一个子半群
ii. T是S的子半群?a,b T,有ab T
2.2 群
1 .群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i . 若代数运算满足交换律,则称为交换群或Abel 群.
ii. 加群=代数运算为加法+交换群
iii. 单位根群Um={ m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P), 数域P 上全体n 阶的行列式为 1 的矩阵集合SL
(n,p).
2. 群=代数运算+结合律+左(右)单位元+左(右)逆元= 代数运算+结合律+
单位元+逆元
= 代数运算+结合律+?a,b G,ax=b,ya=b 有解
3. 群的性质
i. 群满足左右消去律
ii. 设G是群,则?a,b Gax=b,ya=b在G中有唯一解
iii. e 是G单位元 e 2=e
iv. 若G是有限半群,满足左右消去律,则G是一个群
4. 群的阶
群G的阶,即群G中的元素个数,用表示。

若为无限群,则= Remark:i. 克莱因四元群是一个Abel 群
ii. 四阶群只有克莱因四元群和模4 的剩余类群
2.3 元素的阶
1. 定义:设G是一个群,a G,使得am=e成立的最小正整数m称为元素a的阶,记作=口若m不存在,则
2. 阶的性质
①G是一个群,a G, =m
n
i. a=e mn;
h k
ii. a=a m ;
0 12 m-1
iii. e=a ,a ,a , ........ a 两两不同;
iv. ★ ?r Z, a r = -------
Remark: i. ?r Z, a r =m (m,r)=l;
ii.若m=st,s,t N,则a s =t.
② ,
i. a n=e n=0;
h 」
ii. a =a ;
iii. ....... a-2,a-1,a °,a 1,a2 .......... 两两不等
iv. ?r Z\{0}, a r =.
Remark:若a < , b < ,贝U ab < ? .................. ( )
定理:有限群中的元素的阶均有限。

Remark定理的逆不成立,即群中所有的元素的阶都有限,但群不一定是有限群,例如n次单位根群。

单位根群是一个无限交换群。

3. ★★循环群
定义:设G是群,若在G中存在一个元素a,使得G中的任意元素都是a 的幕,则称该群为循环群,a为该循环群的生成元。

记G=(a).
Remark:生成元不一定唯一,例如(Z,+),1,-1都是生成元。

定理:设G=(a)是一个循环群,
(1)
(2)若

,则G是含m个元素的有限群,且G={a0,a1,a2••…-a m-1}
•…}.
,则G疋无限群,且G-{-2 -1 0 1 2 a ,a ,a ,a ,a
定理:设G=
(a)是一个循环群,
(1)若,则G有(m)个生成元:a r ,(r,m)-1(2
)(3)若,则G有两个生成兀:a,a 1
(4
(5) 若,ar是G的生成元a r =m;
( 6 )
(7) 设p是素数,则P阶循环群G=(a)有p-1个生成元:a,a2 ............ a p-1 Remark (m)表示小于m且与m互素的非负整数的个数
素数阶群一定是循环群。

★定理:设G是m阶群,则G是循环群G有m阶元
2.4 子群
定义:设G是半群,工H G,若H对G的运算构成群,则称H是G的子群,记为
H G.
1. 子群的性质
(1)
(2) 传递性:H K, K G则H G;
( 3) 保单位元:设H G, a H, 则e H=e G;
( 4 )
(5) 保逆元:设H G a H,则a-1H=a-1G.
★定理:设G是半群,丰 H G, H G ?a,b H,有ab,R H ?a,b H,ab「H。

相关文档
最新文档