热电冷三联供和吸收式制冷技术
燃气内燃机和吸附制冷机组成的冷热电三联供系统

燃气内燃机和吸附制冷机组成的冷热电三联供系统摘要:随着我国工业化和城市化进程的加快,资源和环境问题日趋严重。
同时,还有能源的匮乏、环境的日益恶化已成为当今世界各国共同面对的问题。
利用燃气替代煤作为燃料,既能提高能源利用率,又能保护环境。
但其不足之处在于,燃气价格较高,燃气资源匮乏。
因此,推广燃气内燃机和吸附制冷机组成的冷热电三联供系统技术,对我国特别是城市的环境与能源利用具有重要意义。
关键词:内燃机;吸附制冷机;冷热电三联供系统引言:燃气内燃机和吸附制冷机组成的冷热电三联供系统是一种既能利用自然气又能利用电能,又能回收废热的高效节能制冷技术,三联供可为建筑供热、供冷、供电,具有显著的节能降耗、降低二氧化碳排放等优点,已成为国内外研究热点。
一、技术原理燃气冷热电三联供系统是指将燃气燃料同时转换成三种产品:电力、热或蒸汽以及冷水,并将其一体化的多联产供能系统,是分布式能源的表现形式之一。
冷热电三联供供能模式与传统分散供能方式相比,该系统的能量综合利用率超过80%。
燃气燃烧产生的高品位能源将被用于三联供发电,其排出的热能等级较低,可被用来供给冷热电等中、低品位能源,从而形成冷热电三种能源的协同供给。
二、冷热电三联供系统的积极作用(一)、提高电力供应可靠性国家的飞速发展致使用电的依赖性也在不断增加,但是,2003年美国、加拿大的大面积停电以及2008年我国南方的冰雹灾害表明,在目前的大电网体系框架下,不管我们如何投入大量的技术和财力,都无法彻底杜绝此类停电事件的发生。
为了进一步提升电网的供电可靠性,需要对电网进行修复,因此,基于低碳思想,开发基于燃气的冷热电三联供系统,可以说是解决电网结构问题的一剂良药。
由于三联供距离客户较近,冷、热、电三联供可降低线路损耗6%-7%,解决了远距离传输、多层变配电设施建设难题,缓解了通道负荷;同时,在智能电网中,该系统不仅可用于正常供电,还可用于紧急情况下的应急备用,对某些关键客户的用电安全提供了可靠的保障。
热电冷三联供原理讲解

热电冷三联供原理1.3 BCHP的组成方式根据热源的类型可以将BCHP分为两种:第一种是直接利用烟气,也就是将尾气直接输送到烟气型制冷机中进行制冷。
第二种是将高温尾气进行二次换热,用热水或是蒸汽输送到蒸汽机或是热水机中制冷。
具体形式如下:1.微型涡轮发电机加尾气再燃/热交换并联型吸收式制冷机-工作原理:燃气涡轮发电机排气余热一部分被溴化锂制冷机的稀溶液回收,另一部分参与二次燃烧,对外提供制冷、采暖和卫生热水。
电力、空调、采暖和卫生热水几种负荷容量搭配灵活,可以满足不同场合的需要。
2燃气轮机加吸收式烟气机-工作原理:燃气轮机中高温高压气体带动发电机发电后排出,这时还保持着相当的温度(一般在400℃以上),并具有较高的含氧量。
溴化锂制冷机可以直接回收排气余热进行制冷,也可以将排气作为助燃空气进行第二次燃烧,二次燃烧回收热效率更高,达95%以上。
使用建筑物:燃气轮机电厂或燃气轮机自备电站的改造,特别适合于简单循环的燃气轮机电(站),其经济性特别显著。
3.微型涡轮发电机加吸收式烟气机-工作原理:燃气涡轮发电机的排气送入单效烟气机,余热用于制冷或采暖。
适用于小型建筑场合使用。
系统流程图:4.微型涡轮发电机加烟气机-工作原理:燃气涡轮发电机高温富氧排气(温度250℃,含氧量18%)进入冷温水机直接进行燃烧利用,提供制冷、采暖和卫生热水。
5. 蒸汽轮机加溴化锂冷机-工作原理:锅炉燃烧产生的高温高压蒸汽进入蒸汽轮机推动涡轮旋转,带动发电机发电,发电后的乏汽或从蒸汽轮机中的抽出一部分蒸汽进入蒸汽制冷机制冷,另外一部分进入热交换器采暖或提供卫生热水。
根据对热电厂“以热定电”的要求,适合于各个规模的火电厂或热电厂。
6. 燃气轮机前置循环加溴化锂制冷机-工作原理:燃气轮机发电后排出的高温烟气通过余热锅炉回收,产生的蒸汽供蒸汽吸收式制冷机制冷,其余通过热交换器提供采暖/卫生热水或供工业用户使用。
夏季采暖/热水负荷最小的时候,蒸汽溴化锂制冷机可以充分利用燃气轮机余热制冷,保证较高的系统综合能源利用效率。
冷热电三联供系统的现状研究与应用前景

冷热电三联供系统的现状研究与应用前景随着人们对环保节能的重视以及现代城市化程度的不断提高,冷热电三联供系统作为一种综合能源利用技术,越来越受到广泛关注和应用。
本报告就冷热电三联供系统的现状研究与应用前景进行探讨。
一、现状研究冷热电三联供系统是指利用热电联产技术、吸收式冷热联供技术和地源热泵技术等多种能源技术,通过协同综合利用,实现一个系统内热、冷、电的同时供应。
近年来,冷热电三联供系统得到快速发展,逐步成为城市建筑能源管理的重要手段。
在国内外,冷热电三联供系统的应用不断扩大,已有不少经典案例。
如美国纽约大学生活系统中心采用了冷热电三联供系统,实现了供暖、制冷及生活照明等多种功能;上海新天地项目中,采用了地源热泵及吸收式制冷系统,节约了60%的能耗。
同时,对冷热电三联供系统的研究也在不断推进。
在应用方面,国内外均有规范和标准对其提出具体要求,并对其节能和环保效果进行了评价。
在技术方面,各种相关能源技术也在不断更新和完善,为其应用提供了更为广阔的发展空间。
二、应用前景随着城市化进程的加速和人们对环保节能的要求的不断提高,冷热电三联供系统的应用前景十分广泛。
其优点主要体现在以下几个方面:1、节能环保。
冷热电三联供系统可以大幅度地降低建筑能耗,减少二氧化碳的排放,有利于应对能源紧缺和环境污染的挑战。
2、综合利用。
该系统通过多种能源技术的协同配合,实现了对能源的更加充分和综合利用,使能源更为高效和经济。
3、运行稳定。
该系统具备自动控制和调节功能,能够根据实际需要实现对供、需的平衡调节,运行稳定可靠。
因此,冷热电三联供系统将会是未来城市建筑节能环保的主要手段之一。
同时,其应用前景也十分广泛,尤其在如医院、学校、数据中心等公共建筑中能够得到更加广泛的应用。
燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统节能分析燃气冷热电三联供制冷系统是一种利用燃气发电系统产生的余热和冷凝水,结合燃气制冷机组和吸收式制冷机组共同供热供冷的系统。
通过优化能源利用、提高系统效率和节能降耗的技术手段,可以实现对传统空调供热供冷系统的节能改造和提升。
通过对燃气冷热电三联供制冷系统的节能分析,可以为推动燃气冷热电技术在供热供冷领域的广泛应用提供指导和借鉴,促进能源利用效率的提高,推动我国节能减排目标的实现。
2. 正文2.1 燃气冷热电系统简介燃气冷热电系统是一种集热电、空调、供暖等功能于一体的多能源综合利用系统。
其核心是利用燃气发电机组在发电的同时产生的废热进行供暖或制冷,从而实现能源的高效利用与综合利用。
燃气冷热电系统主要由燃气发电机组、吸收式制冷机组、燃气锅炉、换热器、冷热水泵及控制系统等组成。
燃气冷热电系统具有能量利用高效、环境污染少、运行稳定等特点。
燃气发电机组通过发电产生的废热可被充分利用,实现能量的高效利用;吸收式制冷机组和燃气锅炉能够根据实际需要进行灵活调节,提高系统的灵活性和适应性;系统的运行稳定性高,具有较长的使用寿命和低维护成本等优点。
2.2 燃气冷热电三联供系统能源利用特点分析燃气冷热电三联供系统是一种集制冷、供热和发电于一体的综合能源系统,具有独特的能源利用特点。
燃气冷热电系统采用燃气发电技术,通过燃烧燃气产生电力,同时利用废热进行供热,实现了能源的多重利用。
这种一体化设计有效提高了能源利用效率,减少了能源的浪费。
燃气冷热电系统具有较高的灵活性和可调性,能够根据实际需求对能源进行灵活配置,有效平衡制冷、供热和发电之间的关系,提高系统整体运行效率。
燃气冷热电系统还具有分布式能源特点,可以实现多能源互补、灵活调度,降低能源输送损耗,提高能源利用效率。
燃气冷热电三联供系统在能源利用方面具有高效、灵活、可靠等特点,是一种节能环保的能源利用方式,有着广阔的应用前景。
燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种将燃气动力、供热系统与制冷系统相结合的综合能源系统,通过燃气内燃机发电产生的热量和电能来实现供热和制冷的双重功能。
这种系统利用了能源的多重利用,有效提高了能源利用效率,减少了对传统能源的依赖,具有节能环保的特点。
燃气冷热电三联供制冷系统包括燃气内燃机、余热锅炉、吸收式制冷机组等核心设备,通过燃烧燃气产生电能和热能,再利用余热进行供热,最后利用吸收式制冷机组将余热转化为制冷能力,实现了热电冷三联供的综合利用。
通过智能控制系统实现系统运行的优化调度,进一步提高了能源利用效率。
燃气冷热电三联供制冷系统在节能减排方面具有显著优势,能够有效降低能耗、减少环境负荷,是未来绿色能源系统发展的重要方向。
通过对其工作原理、节能特点、节能效果、节能措施以及节能案例的分析,可以更深入地了解和掌握这种先进的节能技术,为未来的能源转型和可持续发展提供重要参考。
2. 正文2.1 燃气冷热电三联供制冷系统工作原理燃气冷热电三联供制冷系统工作原理是通过综合利用燃气、蒸汽等能源,利用吸收式制冷技术,实现供暖、制冷和热水供应的一体化系统。
该系统由锅炉、制冷机组、换热器、输电线路等组成,通过协同工作,实现能源的高效利用。
燃气锅炉燃烧燃气产生热量,通过换热器将热量传递给水,将冷却水加热成蒸汽。
蒸汽经过蒸汽轮机驱动发电机产生电力,同时也供暖热水。
然后,蒸汽通过蒸发器将冷却水蒸发,吸收制冷剂。
制冷剂经过蒸发、压缩、冷凝、膨胀等过程实现制冷效果,将冷却水降温。
冷却水供暖循环系统,实现建筑物的供暖需求。
通过这样的工作原理,燃气冷热电三联供制冷系统实现了能源的高效利用,减少了能源的浪费,降低了能源消耗,实现了节能环保的目的。
2.2 燃气冷热电三联供制冷系统节能特点燃气冷热电三联供制冷系统具有高效能耗比。
通过优化系统设计和运行控制,系统可实现能源的最大化利用,降低能耗,提高能源利用效率,在传统供冷系统中,供热与供电是分开的,而三联供制冷系统则能够有效利用废热或废气发电,充分发挥能源的综合效益。
冷热电三联供的原理及应用

冷热电三联供的原理及应用1. 冷热电三联供的定义冷热电三联供是指在一个系统中同时供给制冷、供热和电力的技术和系统。
通过整合制冷、供热和发电的设备,实现了能源的综合利用和能源效率的最大化。
2. 冷热电三联供的原理2.1 热电联供原理热电联供是指利用燃气或其他燃料驱动热机发电,同时利用废热产生热水或蒸汽供暖。
热机通过燃烧燃料产生高温高压气体,推动涡轮发电机发电,同时废热经过回收利用供热。
2.2 制冷供热联供原理制冷供热联供是指利用制冷机组在制冷过程中产生的废热,通过回收利用转化为热能供暖。
制冷机组吸收外界热量并排出冷空气,同时产生废热。
这部分废热通过回收和转化,供给供热系统使用,实现了制冷和供热的综合利用。
2.3 热电制冷供热联供原理热电制冷供热联供是指利用热电联供和制冷供热联供的原理,实现了冷热电三联供。
热电机组通过燃烧燃料发电,同时产生废热供热;制冷机组通过制冷过程产生废热供热。
这种方式不仅能够提供制冷和供热,还可以同时发电,将能源综合利用的效率达到最大化。
3. 冷热电三联供的应用3.1 城市建筑冷热电三联供技术在城市建筑中有广泛的应用。
通过在建筑中安装热电联供或制冷供热联供系统,能够满足建筑的制冷、供热和电力需求。
这种方式不仅节约能源消耗,还降低了建筑的能源成本和碳排放。
3.2 工业园区工业园区中通常存在大量的能源浪费和废热排放。
冷热电三联供技术可以通过回收和利用废热,将其转化为热能供暖,实现能源的综合利用。
这种技术的应用可以为工业园区提供可靠的制冷、供热和电力,同时减少了能源消耗和环境污染。
3.3 高校和医院在高校和医院中,冷热电三联供技术可以满足建筑内的制冷、供热和电力需求。
这种技术的应用不仅能够提高能源利用效率,还可以降低建筑的能源成本。
对于高校和医院这种大规模的场所,能源的综合利用对于节约能源和保护环境非常重要。
3.4 居民社区冷热电三联供技术在居民社区中的应用可以满足居民的制冷、供热和电力需求。
浅谈冷热电三联产系统

建材发展导向2018年第09期376应用程度,加强房建施工的质量。
5 结语总而言之,目前绿色施工技术处于初步发展阶段,国家应大力支持进行财政补贴,居民也应该逐渐学会接受由绿色施工建设的房屋,促进资源可持续发展减少污染浪费,建筑业企业也应加强环保意识大力推广绿色施工技术的应用,减少物料浪费。
参考文献:[1] 祁振峰.绿色施工技术在房建施工中的应用[J].工程建设与设计, 2017(18):12-13.[2] 刘昱辰.绿色施工技术在房建施工中的应用[J].建材与装饰,2017 (31):40-41.[3] 王玉.绿色施工技术在房建施工中的应用[J].城市建设理论研究(电子版),2017(16):73-74.[4] 赵世明.绿色施工技术在房建工程中的运用[J].江西建材,2015 (13):112+114.能量品质、能源价格、空气品质、电网稳定性以及全球性气候改变,是21世纪人类所要面临的重要问题。
伴随着社会与经济的发展进步,这些问题将会变得越来越尖锐。
在传统的利用燃料生产电能的过程当中,有将近2/3的输入能量没被有效的利用,然后就释放到环境之中,带来严重的能量损失。
通过利用总能系统代替原来的传统电力系统,便可有效地利用热机将热量排放给环境,生产热水、蒸汽或者可以用于通风、制冷、除湿等功能,可称这种系统为冷热电联产系统(CCHP),或者被简称为热电联产系统(CHP)。
由于对输入的燃料能量利用进行梯级分类,冷热电联产系统在节能的方面具备很大的优势;使用燃料量的减少以及对于低排放技术的采用,能够很大程度上降低了系统的污染物排放,进而减轻对于环境的压力,此外能够产生出多种能量的输出,并有效的应对多种用户的不同需求。
冷热电联产系统相比于电网的独立运行,能够降低了对于大电网的依赖性,同时也可以增加电力供应的安全性。
在夏季采用吸收式制冷方式,不仅能够有效的减少制冷高峰时期对于电网产生的压力,与此同时也能够增加天然气使用量,进而提升天然气网络运行的可靠性。
热电冷三联供系统节能环保效能分析

热电冷三联供系统节能环保效能分析热电冷三联供系统是指将地源热泵、余热发电和吸收式制冷三种技术有机地结合在一起,形成一种能够满足供暖、制冷和热水需求的全新能源利用体系。
这种系统以其高效节能的特点,逐渐成为建筑行业中的一种新兴热能供应方式。
本文将就热电冷三联供系统的节能环保效能进行分析,探讨其优势和应用前景。
热电冷三联供系统的节能效果非常显著。
传统的能源供应方式往往会存在能源浪费的问题,而热电冷三联供系统可以通过地源热泵和余热发电的协同作用,实现能源的高效利用。
地源热泵利用地下恒定的温度进行换热,不会受到季节变化和气候影响,因此能够稳定、高效地供应热能。
余热发电则可以将燃气发电过程中产生的余热转化为热能,实现了能源的二次利用。
通过这两种技术的结合,热电冷三联供系统在能源利用上具有明显的优势,大大减少了能源的浪费,提高了能源利用的效率。
热电冷三联供系统在实际应用中具有广阔的市场前景。
随着人们环保意识的提高和能源问题的日益突出,热电冷三联供系统正逐渐成为建筑行业的热门选择。
在城市综合体、办公大楼、商业中心等建筑项目中,热电冷三联供系统都有着广泛的应用前景。
政府对节能环保领域也在不断加大支持力度,通过财政补贴、税收优惠等政策推动热电冷三联供系统的应用,为其市场发展提供了有力的支持。
热电冷三联供系统具有明显的节能环保效能。
通过地源热泵和余热发电的协同作用,实现了能源的高效利用,减少了能源的浪费,提高了能源利用的效率。
热电冷三联供系统在环保方面也表现突出,减少了对环境的污染,有利于保护生态环境。
在实际应用中,热电冷三联供系统具有广阔的市场前景,得到了政府的大力支持。
可以预见,热电冷三联供系统将会成为未来建筑行业的发展方向,为建筑行业的绿色发展作出重要贡献。