水力平衡
水力平衡的定义

水力平衡的定义
水力平衡是指在一个封闭的水力系统中,流过每一点的水体的总体积输入等于总体积输出,并且流经任意一处之后,水的压力保持平衡的状态。
水压力的平衡可以保证系统内不会有过高或过低的水压力,从而确保整个系统能够顺畅地运行。
在一个水力系统中,水流通常是由水泵、输水管道和调节阀组成的。
水力平衡是一个非常重要的概念,因为它可以用来指导水力系统的设计和调节。
为了确保水力平衡,必须严格控制水的进出量,并通过适当的建造和设计来降低水流过程中的阻力和压力损失。
此外,还需要对水力系统进行定期维护和检修,以确保所有管道和阀门的运行状态良好。
水力平衡的维护对于各种不同类型的水力系统都非常重要。
例如,它在供水系统中起着保障用水安全和保证供水质量的作用。
同样,它也可以在水力发电系统或灌溉系统中发挥重要作用,确保水的流动和压力的变化贴近系统的设计需求。
总而言之,水力平衡是一个基本的水利工程概念,它对于各种类型的
水力系统来说都非常重要。
通过采取适当的设计和维护措施,可以保证水力平衡的良好维护并确保系统的顺畅运行。
供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨随着城市化进程的加快和居民生活水平的提高,供热管网作为城市基础设施的重要组成部分,承担着为居民提供温暖的重要任务。
在供热管网的运行中,水力平衡是一个重要问题,它直接关系到整个供热系统的运行效率和稳定性。
对供热管网水力平衡的调节措施进行探讨,对于提高供热系统的运行效率和保证居民供热质量有着重要的意义。
一、水力平衡的概念和意义水力平衡是指系统中各分支管道的局部压力、流量和温度等参数的合理调控,使各点的水压、流量和温度能够在规定的范围内保持稳定,并且水力资源得以均衡利用。
在供热管网中,水力平衡是指在整个系统中,各个分支管道的水压、流量和温度等参数能够平衡分布,保证热水能够均匀地传递给各个用户,从而实现供热系统的高效、稳定运行。
水力平衡对于提高供热系统的能效和稳定性具有重要的意义。
二、水力平衡调节措施的必要性1. 提高供热系统的运行效率如果供热管网中存在严重的水力不平衡现象,就会导致系统中部分管道的流量过大,而另一部分管道的流量过小,从而导致热水的传递不均匀,一些用户会得到过热的热水,而另一些用户则会得到过冷的热水。
这不仅会降低供热系统的能效,还会影响用户的供热体验。
2. 保证居民供热质量如果供热管网中存在水力不平衡的问题,就会导致一些用户受到供热质量的影响,有些用户会出现供热不足的情况,而另一些用户则会出现供热过热的情况,这不仅会影响用户的生活质量,还会造成用户的投诉和维修成本的增加。
水力平衡调节措施的必要性无疑是非常明显的,它关系到整个供热系统的运行效率和居民供热质量,是供热系统运行中需要高度重视的问题。
1. 合理设置阀门在供热管网中,合理设置阀门是保证系统水力平衡的必要措施之一。
通过合理设置调节阀和截止阀等,可以实现对供热系统中不同支路的流量、压力、温度等参数的调节和控制,从而达到整个系统的水力平衡。
2. 使用比例阀比例阀是一种根据流量大小自动调节开度的阀门,通过安装比例阀,可以实现对各分支管道流量的自动调节,从而达到供热系统的水力平衡。
水力失调和水力平衡的概念

这篇文章应该对大家有用一、水力失调和水力平衡的概念在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。
水力失调的程度可以用实际流量与设计要求流量的比值X来衡量,X称水力失调度。
X = QS/QJ (QS用户的实际流量,QJ:用户的设计要求流量)水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。
r =1/ XMAX = QJ/ QMAX(QJ:用户的设计要求流量,QMAX用户出现的最大流量)二、水力失调和水力平衡的分类:1、静态水力失调和静态水力平衡:由于设计、施工、设备材料等原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。
静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。
通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。
2、动态水力失调和动态水力平衡:当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的水力失调,叫做动态水力失调。
动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。
通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,此时系统实现动态水力平衡。
三、变流量水力平衡分析:由于人们对系统品质的要求以及节能意识的不断提高,变流量水力系统在暖通空调工程中占据越来越重要的位置。
供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究随着城市化进程的加快,城市热力供应系统也得到了迅速发展。
而在热力供应系统中,供热管网的水力平衡调节是非常重要的一环。
水力平衡是指在供热管网中,各个支路、回路以及末端用户之间保持合理的压力、流量等参数的均衡状态,以保证整个供热系统的稳定工作和高效能运行。
提高供热管网的水力平衡调节方法显得尤为重要。
本文将对当前供热管网水力平衡调节方法进行研究,并提出一些改进措施,以期能够提高供热系统的运行效率和稳定性。
1. 静态平衡调节方法静态平衡调节方法是最为直接和常见的一种方法,通常是通过合理的管道设计和安装来保证供热管网的水力平衡。
在设计和安装过程中,需要考虑管道的布局、管径、阀门的位置等因素,以确保各个支路和回路在负载均衡时能够保持相对稳定的水力平衡状态。
此方法的优点是操作简单,易于理解和掌握。
但是其缺点也显而易见,即在实际运行中由于用户用热量的变化,会使得管网产生不同程度的水力不平衡,从而影响整个供热系统的运行效率。
2. 动态平衡调节方法动态平衡调节方法是通过安装调节阀、联动阀等设备来实现管网的水力平衡调节。
这些设备能够根据系统的实际运行情况,及时调整水流的分配,从而保证管网的各个部分能够在不同的工况下保持水力平衡。
这种方法相对于静态平衡调节方法来说,能够更加灵活地应对管网运行中可能出现的各种情况,保证整个供热系统的稳定运行。
但是这种方法需要有较高的技术水平和经验来进行操作,同时成本也相对较高,对于一些小型和中小型供热系统来说,可能会存在一定的困难。
1. 结合现代控制技术随着现代控制技术的不断发展,人们可以更加方便地对供热系统进行监控和调节。
结合现代控制技术,可以通过安装传感器、控制阀等设备,对供热管网进行实时监测和调节。
在管网中设置控制节点,通过数据采集和处理,可以根据实际运行情况进行动态调节,及时解决管网中的水力不平衡问题。
这种方法能够更加精确地掌握管网的运行情况,提高供热系统的运行效率和稳定性。
供热系统水力平衡节能改造应用与研究

供热系统水力平衡节能改造应用与研究供热系统水力平衡是指系统内各支路流量的平衡性,是保证供热系统正常运行和节能的重要因素。
在供热系统中,如果各支路的流量分布不均衡,就会导致一些支路供热不充分,而另一些支路流量过大,造成能源的浪费。
对供热系统进行水力平衡节能改造应用与研究是十分必要和重要的。
一、供热系统水力平衡的作用1. 保证供热系统正常运行水力平衡是供热系统正常运行的基础。
只有保证了各支路的流量平衡,系统才能正常运行,满足用户的供暖需求。
2. 提高供热系统的热效率水力平衡能够提高供热系统的热效率。
通过调整各支路的流量,使供热系统工作在最佳状态,能够有效地降低系统的能耗,提高能源利用率。
3. 延长供热设备的使用寿命水力平衡可以减少供热设备的负荷不均衡,减少设备的过载运行,降低设备的故障率,延长设备的使用寿命。
二、供热系统水力平衡节能改造的方法1. 流量调节阀的安装在供热系统的支路中安装流量调节阀,通过调节阀门的开度来控制支路的流量,从而实现各支路的流量平衡。
2. 管网改造对供热系统的管网进行改造,通过增加或减少管道的长度、直径等方式,调整支路的流动阻力,从而实现各支路的流量平衡。
3. 泵的调整通过调整泵的转速和工作状态,来改变各支路的流量分布,实现水力平衡。
三、供热系统水力平衡节能改造的应用与研究1. 应用水力平衡节能改造已经在一些供热系统中得到了应用。
通过改造供热系统,优化管道布局、调整泵的工作状态等措施,实现了供热系统的水力平衡,提高了系统的热效率,降低了能耗,受到了用户的好评。
2. 研究目前,国内外对供热系统水力平衡节能改造的研究也在不断进行。
通过建立数学模型、进行仿真计算等方法,研究人员可以优化供热系统的设计方案,实现系统的水力平衡,提高系统的热效率,降低系统的能耗。
四、供热系统水力平衡节能改造的意义1. 节能减排通过实施供热系统水力平衡节能改造,可以降低供热系统的能耗,减少供热过程中的能源消耗,减少二氧化碳等温室气体的排放,有利于环保和可持续发展。
水力平衡定义及其应用场景

水力平衡定义及其应用场景水力平衡是指在液体或气体流动的系统中,各个部分的压力、速度、高度和能量之间达成平衡的状态。
它是流体力学领域中的一个重要概念,广泛应用于水力工程、石油工程、化学工程和环境工程等领域。
在水力平衡中,流体的压力是最基本的属性之一。
压力是指单位面积上的力的作用,可以用来描述流体在流动过程中的压力变化。
水力平衡要求系统中各个部分的压力相等,这意味着在一个密闭的系统中,液体或气体会自动从高压区域流向低压区域,直到压力平衡。
除了压力,速度也是水力平衡中需要考虑的参数。
速度可以用来描述流体在流动过程中的运动状态。
在水力平衡中,速度也需要达到平衡,即流体在不同部分的速度应该相等。
如果在系统中存在速度差异,那么就会产生压力梯度,从而导致流体的压力变化。
因此,为了实现水力平衡,我们需要合理设计管道和通道的形状,以确保流体在各个部分的速度相等。
此外,高度和能量也是水力平衡中需要考虑的重要因素。
高度表示流体的位置,而能量则与高度和速度有关。
在一个系统中,不同部分的高度和能量应该保持平衡,以实现水力平衡。
如果在系统中存在高度差异或能量损失,那么就会有流体的流动和压力变化。
水力平衡在各种实际应用场景中都起着重要作用。
例如,在水力工程中,水力平衡是设计和运营水坝、水库和水渠等工程结构的基础。
通过保持水力平衡,可以有效地调节水的流量和压力,确保水资源的合理利用。
此外,在石油工程和化学工程中,水力平衡有助于优化流体的输送和处理过程,提高工业生产效率。
在环境工程中,水力平衡被用来研究水资源的分配和保护,以及减少污水处理和排放对环境造成的影响。
综上所述,水力平衡是流体力学中的重要概念,用来描述液体或气体流动系统中各个部分之间的压力、速度、高度和能量之间的平衡状态。
通过实现水力平衡,我们可以优化流体的流动和压力分布,提高工程和生产过程的效率。
对于水力工程、石油工程、化学工程和环境工程等领域的专业人士来说,理解和应用水力平衡是非常重要的。
供热管道系统的水力平衡分析与优化

供热管道系统的水力平衡分析与优化作为一名工程专家和国家专业的建造师,我将就供热管道系统的水力平衡分析与优化这一主题展开论述。
供热管道系统的水力平衡是保证供热系统高效运行和能源利用的关键环节,它涉及到供热系统的管道网络、泵站、阀门等设备的设计、调试和维护。
首先,水力平衡是指在供热系统中各个支路或节点的流量与压力合理分配的状态,包括主管道和支管道的流量平衡以及各个支路的压力平衡。
流量平衡是指在供热管道系统中,通过合理的调节泵的转速和阀门的开度,使各个支路的流量达到设计要求,避免出现流量过大或过小的情况。
压力平衡是指在供热管道系统中,通过控制泵站的压力、调节阀门的开度以及安装补偿措施,保证各个支路的压力维持在设计范围内,避免出现压力过高或过低的情况。
其次,供热管道系统的水力平衡分析与优化需要综合考虑各种因素,如管道长度、管径、支路数目、流体介质、水泵性能、阀门参数等。
在设计阶段,需要依据供热系统的规模、设备参数、供热负荷等因素,通过水力计算方法和模拟软件等进行水力平衡分析。
通过对管道系统中各个节点的流速、流量、压力等参数进行分析,可以确定各个支路的流量和压力,进而选择合适的泵站和阀门,确保系统达到预期的供热效果。
再次,供热管道系统的水力平衡优化可以通过多种方式实现。
一方面,可以通过合理选取管道材料和管径,减少管道阻力,提高流经管道的流量,从而降低能耗。
另一方面,可以采用分区控制、变频调速等措施,根据不同地区的供热需求,灵活调节各个支路的流量和压力,提高供热系统的运行效率。
此外,还可以通过优化泵站和阀门的布置方式,减少泵站能耗和阀门压力损失,提高系统的稳定性和可靠性。
最后,供热管道系统的水力平衡分析与优化需要在设计、安装和运行维护各个阶段进行全过程管理。
设计阶段需要充分考虑系统的水力特性和变化情况,合理选择设备和控制策略。
安装阶段需要注意管道的施工质量和防止漏水等问题。
运行维护阶段需要定期检查和维护泵站、阀门等设备,及时处理系统中出现的故障和异常情况。
水力失调和水力平衡分析

水力失调和水力平衡分析水力失调和水力平衡是涉及水文学和水力学领域的重要概念。
水力失调指的是在水力系统中,由于水流速度、流量或水头等因素的变化而导致系统中水力条件的不平衡。
水力平衡则指的是在水力系统中,各个部分之间水流速度、流量和水头等因素之间的平衡关系。
水力失调主要是由于系统中的水动力变化引起的。
在水流通过管道、河道或渠道等水力系统中,水流速度、流量和水头的变化会导致水力条件的失调。
例如,在管道中,由于管道的变窄或转弯,水流速度会增加,流量和水头可能会下降;相反,管道变宽或直行,水流速度会减小,流量和水头可能会增加。
这种失调可能会导致水力系统的稳定性受到影响,甚至会引发水力灾害。
水力平衡是指在水力系统中各个部分之间水流速度、流量和水头等因素的平衡关系。
在一个稳定的水力系统中,水从一个地方流向另一个地方,水流速度、流量和水头应该在各个部分之间保持平衡。
只有当系统中的水力条件达到平衡状态时,才能保证水力系统的正常运行。
对于水力失调进行分析,需要考虑各个因素的相互影响。
例如,在一个河道中,如果河道的宽度变窄,水流速度会增加,这可能会导致河道水位的下降,进而影响到系统中其他部分的水力条件;反之,如果河道的宽度变宽,水流速度会减小,水位可能会上升,也会对系统产生影响。
因此,对于水力失调进行分析需要考虑系统中各个部分之间的相互关系。
水力平衡的分析需要考虑系统中各个部分之间水流速度、流量和水头的关系。
对于一个流经系统的水流来说,根据质量守恒定律和能量守恒定律,流出的水量应该等于流入的水量,而且流入和流出的水头应该保持相等。
通过对水流速度、流量和水头等因素的测量和分析,可以判断系统中的水力平衡是否存在问题。
如果发现系统中存在水力失调,则需要采取相应的措施进行调整,以恢复水力平衡,保障水力系统的正常运行。
总之,水力失调和水力平衡分析是水文学和水力学领域中重要的研究内容。
通过对水流速度、流量和水头等因素的分析和测量,可以判断水力系统中是否存在失调,并采取相应的措施进行调整,以恢复水力平衡,保障水力系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暖通空调水力平衡的调节
摘要:在暖通空调水系统中,水力失调是最常见的问题。
由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。
因此,必须采用相应的调节阀门对系统流量分配进行调节。
关键词:静态;动态;水力平衡;定流量;变流量
Hydronic Balancing Analysis of Heating and Air Conditioning
Abstract:Introduces the conception and classify of hydronic maladjustment and hydronic balancing . Analyses the characteristic of hydronic maladjustment and step of realizing hydronic balancing in invariableness flowrate system and variableness flowrate system . Deeply analyses a few typical system forms .
Keywords:static: dynamic; hydronic balancing; invariableness flowrate; variableness flowrate
0.引言
在暖通空调工程中,水力平衡的研究是个很重要的课题。
本文提出了静态水力平衡和动态水力平衡的概念,并结合二种水力平衡的特点,分析了定流量系统和变流量系统中几种典型方式的水力平衡设备的选择及实现水力平衡的方式。
1 水力失调和水力平衡的分类
1.1 水力失调和水力平衡的概念
在热水供热系统以及空调冷冻水系统中,各热(或冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调,反之,称为水力平衡。
1.2 静态水力失调和静态水力平衡
由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。
静态水力失调是稳态的、根本性的,是系统本身所固有的。
通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量,各末端设备流量也均达到设计流量时,系统实现静态水力平衡。
1.3 动态水力失调和动态水力平衡
当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离要求流量,从而导致的水力失调,叫做动态水力失调。
动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。
通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,从而使得系统实现动态水力平衡。
2 定流量系统水力平衡分析
定流量水力平衡系统是暖通空调设计中常见的水系统,在运行过程中系统各处的流量基本保持不变。
常用的主要有以下三种形式:
2.1 完全定流量系统
完全定流量系统是指系统中不含任何动态调节阀门,系统在初调试完成后阀门开度无需作任何变动,系统各处流量始终保持恒定。
完全定流量系统主要适用于末端设备无需通过流
量来进行调节的系统,如末端风机盘管采用三速开关调节风速和采用变风量空气处理机组的空调系统,以及系统要求较低、只需气候补偿器调节供暖水温即可满足基本需要的供暖系统等。
完全定流量系统只存在静态水力失调,不存在动态水力失调,因此只需在相关部位安装静态水力平衡设备即可。
通常在系统机房集水器上安装水力平衡阀。
对于空调水系统,可以在建筑物各层水平回水管上安装水力平衡阀。
对于某些系统,虽然不包含任何动态阀门,但在实际运行中用户会因为房间过冷或过热而改变阀门开度从而改变系统流量,因此可以认为此系统介于定流量和变流量之间。
2.2 单管串联(带旁通管)供暖系统
单管串联供暖系统包括垂直双管水平单管串联系统以及垂直单管水平单管系统等。
这种系统主管的流量基本不变,因此是定流量系统,以前者为例,来说明实现系统水力平衡的方式。
这种系统主要存在静态水力失调,在水平分支管上由于三通或二通温控阀的调节作用而存在一定的动态水力失调。
因此只需在相关部位增设相关的水力平衡设备即可使系统保持水力平衡。
具体如下:
1)在系统机房集水器上安装水力平衡阀;
2)在立管回水管上设水力平衡阀;
3)在水平分支管上安装流量调节器以保证各分支环路流量恒定(既可在本分支环路内部管道特性变化时保持流量恒定,也可在其它环路流量变化时避免受其干扰)。
2.3 末端设备带三通调节阀的空调系统
该系统与单管串联(带旁通管)系统类似。
系统各分支环路的流量基本不变,是定流量系统。
这种系统主要存在静态水力失调,在末端管路上也存在一定的动态水力失调。
因此只需在相应部位增加相应的水力平衡设备即可使系统保持水力平衡。
具体措施与单管串联(带旁通管)系统相似,只需将流量调节器安装在末端设备(风机盘管或空气处理机组)水管道上即可。
3 变流量系统水力平衡分析
由于人们对系统品质的要求以及节能意识的不断提高,变流量水力系统在暖通空调工程中占据越来越重要的位置。
变流量系统在运行过程中各末端设备环路的流量是随着外界环境负荷的变化而变化的。
由于暖通空调工程在一年运行的大部分时间均处于部分负荷运行工况,因此变流量系统大部分时间系统流量都是低于设计流量的。
那么这种变流量系统就是实时、灵敏、高效、节能的。
变流量系统既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的水力平衡。
3.1 静态水力平衡的实现
通过在相应的部位安装静态水力平衡设备,使系统达到静态水力平衡。
实现静态水力平衡的判断依据是:当系统所有动态水力平衡设备均设定到设计参数位置(设计流量或压差),所有末端设备的温度控制阀门均处于全开位置时(这时系统是完全定流量系统,各处流量均不变),系统所有末端设备的流量均达到设计流量。
从上可以看出,实现静态水力平衡的目的是保证末端设备同时达到设计流量,即设备所需的最大流量。
避免了一般水力失调系统一部分设备还没有达到设计流量,而另一部分已远高于设计流量的问题。
因此它解决的是静态平衡和系统能力问题,即保证系统能均衡地输送足够的水量到各个末端设备。
变流量系统静态水力平衡设备的选择可参照定流量系统的描述来进行,在这里就不再赘述。
但是,末端设备在大部分时间并不处在设计流量状况下。
因此,系统不但要实现静态水力平衡,还要实现动态水力平衡。
3.2 动态水力平衡的实现
通过在相应部位安装动态水力平衡设备,使系统达到动态水力平衡。
它包含二方面内容:1)当系统其它环路发生变化时,自身环路关键点压差并不随之发生变化,当自身的动态阀
门(如温控阀、电动调节阀)开度不变时,流量保持不变;如图1 所示,当C、D 点压差变化时,通过动态水力平衡设备(压差调节器PV)的调节作用,使A、B二点压差并不发生变化,如果各支路电动二通阀VM1、VM2......开度保持不变,则流经风机盘管FP1、FP2.....的流量保持不变。
图1.风机盘管系统动态水力平衡的实现
2)当外界环境负荷变化导致系统自身某一支路变化时,通过动态水力平衡设备的调节作用,使关键点压差并不发生变化,从而使得其它并联支路的流量也不发生变化。
如图4,当风机盘管FP1 所在房间负荷变化导致电动二通阀VM1 由开启到关闭,由于压差调节器PV 的作用,A、B 二点的压差并不随之发生变化,这样,风机盘管FP2 的流量保持不变。
由上可知,变流量系统动态水力平衡一般是通过动态水力平衡设备将双管并联系统关键点压差恒定在设计压差来实现的,因此变流量动态水力平衡系统也可叫做变流量定压差系统。
压差调节是变流量系统的主要调节方式。
4.结论
在暖通空调水系统中,合理地安装水力平衡阀以及采用正确的方法进行系统联调,可极大地改善系统的水力特性,使系统接近或达到水力平衡,从而既为系统的正常运行提供了保证,又节省了能源,使系统经济高效运行。
水力平衡的调试是发现问题、完善系统、保证采暖空调系统节能运行的有效措施。
参考文献
[1]戴彬彬, 段雪松. 水力平衡调试在空调水系统中的应用[J]. 建筑技术, 2013, 44(3): 249-251.
[2]曹琦. 暖通空调水系统水力平衡的误区[J]. 暖通空调, 2009, 39(10): 74-78.
[3]王晓松. 暖通空调变流量水力系统的全面平衡[J]. 暖通空调, 2005, 35(7): 77-81.
[4]刘新民. 静态水力平衡阀工程应用分析[J]. 暖通空调, 2011, 41(8): 43-46.。