新疆2018年中考数学模拟试题必备必会
2018年新疆中考数学试卷(最新整理)

A.
B.
C.
D.
故选:B. 9.(5 分)如图,点 P 是边长为 1 的菱形 ABCD 对角线 AC 上的一个动点,点 M,N 分别是 AB,BC 边上的中点,则 MP+PN 的最小值是( )
A. B.1 C. D.2
故选:B. 二、填空题(本大题共 6 小题,每小题 5 分,共 30 分) 10.(5 分)点(﹣1,2)所在的象限是第 二 象限. 11.(5 分)如果代数式 有意义,那么实数 x 的取值范围是 x≥1 . 12.(5 分)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为 2,则图中阴影 部的面积是 .
(1)证明:连接 OB∵PO⊥AB, ∴AC=BC, ∴PA=PB 在△PAO 和△PBO 中
∴△PAO 和≌△PBO ∴∠OBP=∠OAP=90° ∴PB 是⊙O 的切线. (2)连接 BD,则 BD∥PO,且 BD=2OC=6 在 Rt△ACO 中,OC=3,AC=4 ∴AO=5 在 Rt△ACO 与 Rt△PAO 中, ∠APO=∠APO, ∠PAO=∠ACO=90° ∴△ACO∼△PAO
请根据统计图解答下列问题: (1)本次调查中,杨老师一共调查了 20 名学生,其中 C 类女生有 2 名,D 类男生有 1 名; (2)补全上面的条形统计图和扇形统计图; (3)在此次调查中,小平属于 D 类.为了进步,她请杨老师从被调查的 A 类学 生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学 恰好是一位女同学的概率. 解:(1)杨老师调查的学生总人数为(1+2)÷15%=20 人, C 类女生人数为 20×25%﹣3=2 人,D 类男生人数为 20×(1﹣15%﹣20%﹣25%)﹣1=1 人, 故答案为:20、2、1; (2)补全图形如下:
2018年中考数学考前押题预测模拟试题数学 (6)

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在数3,0,–4,|–2|中,最小的数是A.3 B.0 C.–4 D.|–2|2.如图是由四个相同的正方体搭成的几何体,其俯视图是A .B .C .D .3.生物学家发现一种病毒的直径约为0.000032 mm,用科学记数法表示这个数为A.0.32×104-B.0.32×105-C.3.2×104-D.3.2×105-4.如图是小明用量角器测量∠BOA的度数时的操作,则∠BOA的度数为A.35°B.55°C.105°D.135°5.计算–(x2y)2的结果是A.–x4y2B.x4y2C.x2y2D.–x2y26.下列图形中,既是中心对称图形又是轴对称图形的个数为A.1 B.2 C.3 D.47.已知△ABC∽△DEF且14ABDE=,记△ABC、△DEF的面积分别为S△ABC、DEFS△,则S△ABC∶DEFS△为A.1∶2 B.16∶1 C.1∶16 D.4∶18.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则△AOB的面积为A.5 cm2B.7 cm2C.14 cm2D.6 cm29.下列计算正确的是A=BCD.2110.如图,下列说法中错误的是A.OA的方向是北偏东45°B.OB的方向是北偏西30°C.OC的方向是西偏南30°D.OD的方向是东偏南60°11.化简2111xx x+--的结果是A.–x+1 B.–x–1 C.x2–1 D.x–112.如果方程组210x yx y-=⎧⎨+=⎩的解为4xy=⎧⎨=⎩,那么“ ”“ ”代表的数分别是A.10,4 B.4,10 C.3,1 D.1,313.在某校举行的投篮比赛上,甲班有6名同学参加了比赛,比赛结束后,统计了他们各自的投篮数,成绩如下:4,5,10,6,10,11,则这组数据的中位数是A.5 B.9 C.8 D.1014.如图是边长为4和5的两个正方形的重叠情况,点R在边AD上,则四边形RBCS的周长为A .13.5B .13C .12.5D .1015.如果二次函数的表达式为y =ax 2+bx +c (a ≠0),那么下列说法中正确的是A .若函数图象都在x 轴上方,则a >0,b >0B .若函数图象都在x 轴下方,则a <0,c >0C .若函数图象都在x 轴上方,则a >0,b <0D .若函数图象都在x 轴下方,则a <0,c <016.如图,在矩形ABCD 中,BC =8,M ,P 分别为AB 、BC 的中点,沿MP 将△MBP 折叠,若点B 恰好落在DP 上的点N 处,则AB 的长为A .B .C .8D .4第Ⅱ卷二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有两个空,每空2分) 17.若x 1,x 2为一元二次方程x 2+3 x –5=0的两个根,则2212x x +的值为__________. 18.若代数式214x -有意义,则实数x 的取值范围是__________.19.将Rt △ABC 和Rt △EBF 如图所示放置,其中∠B =90°,且EH ⊥AC ,若AB =2BC =2,CF =2AE ,则OE和OF 的数量关系为__________,OH =__________.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)已知点A 、B 、C 在一条数轴上,其中点A 、B 表示的数分别为1、–4,若AC =1,则BC 的长度为多少?21.(本小题满分9分)如图,∠A =∠ACD =∠E ,AC =DE ,若BC =3 cm ,求CD 的长.22.(本小题满分9分)体育老师为了解学生最喜爱哪一种体育运动项目,围绕“在A :足球、B :篮球、C :乒乓球、D :羽毛球四种体育运动项目中,你最喜欢哪一种项目(必选且只选一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查,并将调查整理的结果绘制成条形统计图,已知喜欢羽毛球的学生占抽取的学生的20%. 解答下列问题:(1)这次调查中一共抽取了多少名学生?(2)补全条形统计图;(3)若该校有2400名学生,试估计该校最喜欢篮球的学生有多少名?23.(本小题满分9分)已知△ABC 如图所示放置,若A (0,2),C (–3,0).24.(本小题满分10分)如图,在△ABC 中,∠ABC =∠C ,以AB 为直径作⊙O ,交BC 于点D ,过点D作DE ⊥AC 于点E .求证:(1)D 为BC 的中点; (2)DE 为⊙O 的切线.25.(本小题满分11分)已知一次函数y=kx+b(k≠0)的图象与坐标轴分别交于点C和点D,且与反比例函数y=8x(x>0)的图象分别交于点A(m,4)和点B(8,n),如图所示.(1)求一次函数的解析式;(2)求点O到直线AB的距离.26.(本小题满分12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、C,与y轴交于点B,且A(3,0),B(0,3),C(–1,0).(1)求抛物线的解析式;(2)若点M为抛物线上一动点,是否存在异于点B的点M,使△ACM与△ABC的面积相等?若存在,求出点M的坐标;若不存在,请说明理由;(3)在x轴上是否存在点N使△ADN为直角三角形?若存在,确定点N的坐标;若不存在,请说明理由.。
精品解析:新疆自治区2018年中考数学试题(原卷版)

2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1. 的相反数是()A. ﹣B. 2C. ﹣2D. 0.52. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A. 10℃B. 6℃C. ﹣6℃D. ﹣10℃3. 如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()学%科%网...A. B. C. D.4. 下列计算正确的是()A. a2•a3=a6B. (a+b)(a﹣2b)=a2﹣2b2C. (ab3)2=a2b6D. 5a﹣2a=35. 如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A. 85°B. 75°C. 60°D. 30°6. 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A. ①②B. ②③C. ①③D. ①②③7. 如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A. 6cmB. 4cmC. 3cmD. 2cm8. 某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.9. 如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B. 1 C. D. 2二、填空题(本大题共6小题,每小题5分,共30分)10. 点(﹣1,2)所在的象限是第_____象限.11. 如果代数式有意义,那么实数x的取值范围是_____.12. 如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是_____.13. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.14. 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.15. 如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16. 计算:﹣2sin45°+()﹣1﹣|2﹣|.17. 先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.18. 已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19. 如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20. 如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21. 杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22. 如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23. 如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.。
2018年新疆中考数学试卷及解析(真题卷)

2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)12的相反数是( )A .﹣12B .2C .﹣2D .0.52.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃B .6℃C .﹣6℃D .﹣10℃3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .4.(5分)(2018•新疆)下列计算正确的是( ) A .a 2•a 3=a 6 B .(a +b )(a ﹣2b )=a 2﹣2b 2 C .(ab 3)2=a 2b 6 D .5a ﹣2a=35.(5分)(2018•新疆)如图,AB ∥CD ,点E 在线段BC 上,CD=CE .若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); (3)甲班成绩的波动比乙班大. 上述结论中,正确的是( ) A .①②B .②③C .①③D .①②③7.(5分)(2018•新疆)如图,矩形纸片ABCD 中,AB=6cm ,BC=8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6cmB .4cmC .3cmD .2cm8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( ) A .{x −y =320x +10y =36 B .{x +y =320x +10y =36C .{y −x =320x +10y =36D .{x +y =310x +20y =369.(5分)(2018•新疆)如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .12B .1C .√2D .2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第 象限.11.(5分)(2018•新疆)如果代数式√x −1有意义,那么实数x 的取值范围是 .12.(5分)(2018•新疆)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为2,则图中阴影部的面积是 .13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .14.(5分)(2018•新疆)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 元. 15.(5分)(2018•新疆)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是 (填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:√16﹣2sin45°+(13)﹣1﹣|2﹣√2|.17.(8分)(2018•新疆)先化简,再求值:(1x−1+1)÷xx2−1,其中x是方程x2+3x=0的根.18.(8分)(2018•新疆)已知反比例函数y=kx的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=23x2﹣23x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.2018年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)12的相反数是( )A .﹣12B .2C .﹣2D .0.5【考点】14:相反数. 【专题】11 :计算题.【分析】只有符号不同的两个数互为相反数.【解答】解:12的相反数是﹣12.故选:A .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃B .6℃C .﹣6℃D .﹣10℃【考点】1A :有理数的减法. 【专题】511:实数.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【解答】解:2﹣(﹣8) =2+8 =10(℃). 故选:A .【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(5分)(2018•新疆)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③【考点】W7:方差;W1:算术平均数.【专题】542:统计的应用.【分析】两条平均数、中位数、方差的定义即可判断;【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据翻折的性质可得∠B=∠AB 1E=90°,AB=AB 1,然后求出四边形ABEB 1是正方形,再根据正方形的性质可得BE=AB ,然后根据CE=BC ﹣BE ,代入数据进行计算即可得解.【解答】解:∵沿AE 对折点B 落在边AD 上的点B 1处,∴∠B=∠AB 1E=90°,AB=AB 1,又∵∠BAD=90°,∴四边形ABEB 1是正方形,∴BE=AB=6cm ,∴CE=BC ﹣BE=8﹣6=2cm .故选:D .【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB 1是正方形是解题的关键.8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .{x −y =320x +10y =36B .{x +y =320x +10y =36C .{y −x =320x +10y =36D .{x +y =310x +20y =36【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】等量关系为:一本练习本和一支水笔的单价合计为3元;20本练习本的总价+10支水笔的总价=36,把相关数值代入即可.【解答】解:设练习本每本为x 元,水笔每支为y 元,根据单价的等量关系可得方程为x +y=3,根据总价36得到的方程为20x +10y=36,所以可列方程为:{x +y =320x +10y =36, 故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.9.(5分)(2018•新疆)如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .12B .1C .√2D .2【考点】PA :轴对称﹣最短路线问题;L8:菱形的性质.【专题】46 :几何变换.【分析】先作点M 关于AC 的对称点M′,连接M′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP +NP=M′N=AB=1.【解答】解:如图,作点M 关于AC 的对称点M′,连接M′N 交AC 于P ,此时MP +NP 有最小值,最小值为M′N 的长.∵菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴M′是AD 的中点,又∵N 是BC 边上的中点,∴AM′∥BN ,AM′=BN ,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP +NP=M′N=1,即MP +NP 的最小值为1,故选:B .【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第二象限.【考点】D1:点的坐标.【专题】1 :常规题型.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)(2018•新疆)如果代数式√x−1有意义,那么实数x的取值范围是x ≥1.【考点】72:二次根式有意义的条件.【专题】1 :常规题型.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式√x−1有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.12.(5分)(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是4π3.【考点】MA :三角形的外接圆与外心;KK :等边三角形的性质;MO :扇形面积的计算.【专题】55C :与圆有关的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC 是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是120π×22360=43π, 故答案为:4π3【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 12. 【考点】X6:列表法与树状图法.【专题】1 :常规题型.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答】解:用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下: Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是12.故答案为:12.【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.14.(5分)(2018•新疆)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元.【考点】B7:分式方程的应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支, 根据题意得:600x ﹣60054x =30, 解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(5分)(2018•新疆)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是②③(填写所有正确结论的序号).【考点】H3:二次函数的性质;F5:一次函数的性质.【专题】533:一次函数及其应用;535:二次函数图象及其性质.【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x 的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+√2,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣√2(舍去),x2=2+√2;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+√2,结论④错误.综上所述:正确的结论有②③.故答案为:②③.【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:√16﹣2sin45°+(13)﹣1﹣|2﹣√2|.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=4﹣2×√22+3﹣(2﹣√2)=4﹣√2+3﹣2+√2=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)(2018•新疆)先化简,再求值:(1x−1+1)÷xx2−1,其中x是方程x2+3x=0的根.【考点】6D:分式的化简求值;A3:一元二次方程的解.【专题】11 :计算题.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x2+3x=0可以求得x的值,注意代入的x的值必须使得原分式有意义.【解答】解:(1x−1+1)÷xx2−1=1+x−1x−1⋅(x+1)(x−1)x=x x−1⋅(x+1)(x−1)x =x +1,由x 2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.18.(8分)(2018•新疆)已知反比例函数y=k x的图象与一次函数y=kx +m 的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P (﹣1,﹣5)是否在一次函数y=kx +m 的图象上,并说明原因.【考点】G8:反比例函数与一次函数的交点问题.【专题】533:一次函数及其应用.【分析】(1)将点(2,1)代入y=k x ,求出k 的值,再将k 的值和点(2,1)代入解析式y=kx +m ,即可求出m 的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P (﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=k x经过(2,1), ∴2=k .∵y=kx +m 经过(2,1),∴1=2×2+m ,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=2x和y=2x ﹣3. (2)当x=﹣1时,y=2x ﹣3=2×(﹣1)﹣3=﹣5.∴点P (﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.19.(8分)(2018•新疆)如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接FB ,DF .判断四边形EBFD 的形状,并说明理由.【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,{OD =OB ∠DOE =∠BOF OE =OF∴△DOE ≌△BOF .(2)解:结论:四边形EBFD 是菱形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是菱形.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m ,请你帮她求出旗杆的高度(结果保留根号).【考点】TA :解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】根据在Rt △ACF 中,tan ∠ACF=AD CD ,求出AD 的值,再根据在Rt △BCD中,tan ∠BCD=BD CD,求出BD 的值,最后根据AB=AD +BD ,即可求出答案. 【解答】解:在Rt △ACF 中,∵tan ∠ACF=AF CF, ∴tan30°=AF 9, ∴AF 9=√33, ∴AF=3√3m ,在Rt △BCD 中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3√3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20名学生,其中C类女生有2名,D类男生有1名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为2 3.【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【专题】14 :证明题.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中{PA=PB AO=BO PO=PO∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAOAO CO = PO AO∴PO=253,PA=203∴PB=PA=203 在△EPO 与△EBD 中,BD ∥PO∴△EPO ∽△EBD∴BD PO =EB EP, 解得EB=1207, PE=50021, ∴sinE=PA EP =725【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=23x 2﹣23x ﹣4与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点P 从A 点出发,在线段AB 上以每秒2个单位长度的速度向B 点运动,同时,点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t 秒,求运动时间t 为多少秒时,△PBQ 的面积S 最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ 面积最大时,在BC 下方的抛物线上是否存在点M ,使△BMC 的面积是△PBQ 面积的1.6倍?若存在,求点M 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【专题】537:函数的综合应用.【分析】(1)代入x=0可求出点C 的纵坐标,代入y=0可求出点A 、B 的横坐标,此题得解;(2)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,过点Q 作QE ∥y 轴,交x 轴于点E ,当运动时间为t 秒时,点P 的坐标为(2t ﹣2,0),点Q 的坐标为(3﹣35t ,﹣45t ),进而可得出PB 、QE 的长度,利用三角形的面积公式可得出S △PBQ 关于t 的函数关系式,利用二次函数的性质即可解决最值问题;(3)根据(2)的结论找出点P 、Q 的坐标,假设存在,设点M 的坐标为(m ,23m 2﹣23m ﹣4),则点F 的坐标为(m ,43m ﹣4),进而可得出MF 的长度,利用三角形的面积结合△BMC 的面积是△PBQ 面积的1.6倍,可得出关于m 的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=23x 2﹣23x ﹣4=﹣4, ∴点C 的坐标为(0,﹣4);当y=0时,有23x 2﹣23x ﹣4=0, 解得:x 1=﹣2,x 2=3,∴点A 的坐标为(﹣2,0),点B 的坐标为(3,0).(2)设直线BC 的解析式为y=kx +b (k ≠0),将B (3,0)、C (0,﹣4)代入y=kx +b ,{3k +b =0b =−4,解得:{k =43b =−4, ∴直线BC 的解析式为y=43x ﹣4. 过点Q 作QE ∥y 轴,交x 轴于点E ,如图1所示,当运动时间为t 秒时,点P 的坐标为(2t ﹣2,0),点Q 的坐标为(3﹣35t ,﹣45t ), ∴PB=3﹣(2t ﹣2)=5﹣2t ,QE=45t , ∴S △PBQ =12PB•QE=﹣45t 2+2t=﹣45(t ﹣54)2+54. ∵﹣45<0, ∴当t=54时,△PBQ 的面积取最大值,最大值为54. (3)当△PBQ 面积最大时,t=54, 此时点P 的坐标为(12,0),点Q 的坐标为(94,﹣1). 假设存在,设点M 的坐标为(m ,23m 2﹣23m ﹣4),则点F 的坐标为(m ,43m ﹣4), ∴MF=43m ﹣4﹣(23m 2﹣23m ﹣4)=﹣23m 2+2m , ∴S △BMC =12MF•OB=﹣m 2+3m . ∵△BMC 的面积是△PBQ 面积的1.6倍,∴﹣m 2+3m=54×1.6,即m 2﹣3m +2=0, 解得:m 1=1,m 2=2.∵0<m <3,∴在BC 下方的抛物线上存在点M ,使△BMC 的面积是△PBQ 面积的1.6倍,点M 的坐标为(1,﹣4)或(2,﹣83).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用三角形的面积公式找出S关于t的函数关系式;(3)利用三角形的△PBQ面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.。
2018新疆中考数学试卷及解析

2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)12的相反数是( )A .﹣12B .2C .﹣2D .0.52.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃B .6℃C .﹣6℃D .﹣10℃3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .4.(5分)(2018•新疆)下列计算正确的是( ) A .a 2•a 3=a 6 B .(a +b )(a ﹣2b )=a 2﹣2b 2 C .(ab 3)2=a 2b 6 D .5a ﹣2a=35.(5分)(2018•新疆)如图,AB ∥CD ,点E 在线段BC 上,CD=CE .若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); (3)甲班成绩的波动比乙班大. 上述结论中,正确的是( ) A .①②B .②③C .①③D .①②③7.(5分)(2018•新疆)如图,矩形纸片ABCD 中,AB=6cm ,BC=8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6cmB .4cmC .3cmD .2cm8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( ) A .{x −y =320x +10y =36 B .{x +y =320x +10y =36C .{y −x =320x +10y =36D .{x +y =310x +20y =369.(5分)(2018•新疆)如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .12B .1C .√2D .2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第 象限.11.(5分)(2018•新疆)如果代数式√x −1有意义,那么实数x 的取值范围是 .12.(5分)(2018•新疆)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为2,则图中阴影部的面积是 .13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .14.(5分)(2018•新疆)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 元. 15.(5分)(2018•新疆)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是 (填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:√16﹣2sin45°+(13)﹣1﹣|2﹣√2|.17.(8分)(2018•新疆)先化简,再求值:(1x−1+1)÷xx2−1,其中x是方程x2+3x=0的根.18.(8分)(2018•新疆)已知反比例函数y=kx的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=23x2﹣23x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.2018年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)12的相反数是( )A .﹣12B .2C .﹣2D .0.5【考点】14:相反数. 【专题】11 :计算题.【分析】只有符号不同的两个数互为相反数.【解答】解:12的相反数是﹣12.故选:A .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃B .6℃C .﹣6℃D .﹣10℃【考点】1A :有理数的减法. 【专题】511:实数.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【解答】解:2﹣(﹣8) =2+8 =10(℃). 故选:A .【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(5分)(2018•新疆)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③【考点】W7:方差;W1:算术平均数.【专题】542:统计的应用.【分析】两条平均数、中位数、方差的定义即可判断;【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据翻折的性质可得∠B=∠AB 1E=90°,AB=AB 1,然后求出四边形ABEB 1是正方形,再根据正方形的性质可得BE=AB ,然后根据CE=BC ﹣BE ,代入数据进行计算即可得解.【解答】解:∵沿AE 对折点B 落在边AD 上的点B 1处, ∴∠B=∠AB 1E=90°,AB=AB 1, 又∵∠BAD=90°,∴四边形ABEB 1是正方形, ∴BE=AB=6cm ,∴CE=BC ﹣BE=8﹣6=2cm . 故选:D .【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB 1是正方形是解题的关键.8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( ) A .{x −y =320x +10y =36 B .{x +y =320x +10y =36C .{y −x =320x +10y =36D .{x +y =310x +20y =36【考点】99:由实际问题抽象出二元一次方程组. 【专题】1 :常规题型.【分析】等量关系为:一本练习本和一支水笔的单价合计为3元;20本练习本的总价+10支水笔的总价=36,把相关数值代入即可. 【解答】解:设练习本每本为x 元,水笔每支为y 元, 根据单价的等量关系可得方程为x +y=3, 根据总价36得到的方程为20x +10y=36, 所以可列方程为:{x +y =320x +10y =36,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.9.(5分)(2018•新疆)如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .12B .1C .√2D .2【考点】PA :轴对称﹣最短路线问题;L8:菱形的性质. 【专题】46 :几何变换.【分析】先作点M 关于AC 的对称点M′,连接M′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP +NP=M′N=AB=1.【解答】解:如图,作点M 关于AC 的对称点M′,连接M′N 交AC 于P ,此时MP +NP 有最小值,最小值为M′N 的长.∵菱形ABCD 关于AC 对称,M 是AB 边上的中点, ∴M′是AD 的中点, 又∵N 是BC 边上的中点, ∴AM′∥BN ,AM′=BN ,∴四边形ABNM′是平行四边形, ∴M′N=AB=1,∴MP +NP=M′N=1,即MP +NP 的最小值为1, 故选:B .【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第二象限.【考点】D1:点的坐标.【专题】1 :常规题型.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)(2018•新疆)如果代数式√x−1有意义,那么实数x的取值范围是x ≥1.【考点】72:二次根式有意义的条件.【专题】1 :常规题型.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式√x−1有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.12.(5分)(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是4π3.【考点】MA :三角形的外接圆与外心;KK :等边三角形的性质;MO :扇形面积的计算.【专题】55C :与圆有关的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC 是等边三角形, ∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是120π×22360=43π,故答案为:4π3【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是12. 【考点】X6:列表法与树状图法. 【专题】1 :常规题型.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答】解:用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下: Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是12.故答案为:12.【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.14.(5分)(2018•新疆)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元. 【考点】B7:分式方程的应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据题意得:600x ﹣60054x=30,解得:x=4,经检验,x=4是原方程的解,且符合题意. 答:该商店第一次购进铅笔的单价为4元/支. 故答案为:4.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(5分)(2018•新疆)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是②③(填写所有正确结论的序号).【考点】H3:二次函数的性质;F5:一次函数的性质.【专题】533:一次函数及其应用;535:二次函数图象及其性质.【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x 的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+√2,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣√2(舍去),x2=2+√2;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+√2,结论④错误.综上所述:正确的结论有②③.故答案为:②③.【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:√16﹣2sin45°+(13)﹣1﹣|2﹣√2|.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=4﹣2×√22+3﹣(2﹣√2)=4﹣√2+3﹣2+√2=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)(2018•新疆)先化简,再求值:(1x−1+1)÷xx2−1,其中x是方程x2+3x=0的根.【考点】6D:分式的化简求值;A3:一元二次方程的解.【专题】11 :计算题.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x2+3x=0可以求得x的值,注意代入的x的值必须使得原分式有意义.【解答】解:(1x−1+1)÷xx2−1=1+x−1x−1⋅(x+1)(x−1)x =x x−1⋅(x+1)(x−1)x=x +1,由x 2+3x=0可得,x=0或x=﹣3, 当x=0时,原来的分式无意义, ∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.18.(8分)(2018•新疆)已知反比例函数y=kx的图象与一次函数y=kx +m 的图象交于点(2,1). (1)分别求出这两个函数的解析式;(2)判断P (﹣1,﹣5)是否在一次函数y=kx +m 的图象上,并说明原因. 【考点】G8:反比例函数与一次函数的交点问题. 【专题】533:一次函数及其应用.【分析】(1)将点(2,1)代入y=k x,求出k 的值,再将k 的值和点(2,1)代入解析式y=kx +m ,即可求出m 的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P (﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=kx经过(2,1),∴2=k .∵y=kx +m 经过(2,1), ∴1=2×2+m , ∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=2x和y=2x ﹣3.(2)当x=﹣1时,y=2x ﹣3=2×(﹣1)﹣3=﹣5.∴点P (﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.19.(8分)(2018•新疆)如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF . (1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接FB ,DF .判断四边形EBFD 的形状,并说明理由.【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质. 【专题】555:多边形与平行四边形. 【分析】(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴OA=OC ,OB=OD , ∵AE=CF , ∴OE=OF ,在△DEO 和△BOF 中,{OD =OB∠DOE =∠BOF OE =OF∴△DOE ≌△BOF .(2)解:结论:四边形EBFD 是菱形. 理由:∵OD=OB ,OE=OF , ∴四边形EBFD 是平行四边形, ∵BD=EF ,∴四边形EBFD 是菱形.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m ,请你帮她求出旗杆的高度(结果保留根号).【考点】TA :解直角三角形的应用﹣仰角俯角问题. 【专题】552:三角形.【分析】根据在Rt △ACF 中,tan ∠ACF=AD CD,求出AD 的值,再根据在Rt △BCD中,tan ∠BCD=BDCD,求出BD 的值,最后根据AB=AD +BD ,即可求出答案.【解答】解:在Rt △ACF 中,∵tan ∠ACF=AFCF ,∴tan30°=AF9,∴AF 9=√33,∴AF=3√3m ,在Rt △BCD 中, ∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3√3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20名学生,其中C类女生有2名,D类男生有1名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为2 3.【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【专题】14 :证明题.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中{PA=PB AO=BO PO=PO∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAOAO CO = PO AO∴PO=253,PA=203∴PB=PA=203在△EPO 与△EBD 中, BD ∥PO∴△EPO ∽△EBD∴BD PO =EB EP, 解得EB=1207,PE=50021,∴sinE=PA EP =725【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=23x 2﹣23x ﹣4与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C . (1)求点A ,B ,C 的坐标;(2)点P 从A 点出发,在线段AB 上以每秒2个单位长度的速度向B 点运动,同时,点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t 秒,求运动时间t 为多少秒时,△PBQ 的面积S 最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ 面积最大时,在BC 下方的抛物线上是否存在点M ,使△BMC 的面积是△PBQ 面积的1.6倍?若存在,求点M 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题. 【专题】537:函数的综合应用.【分析】(1)代入x=0可求出点C 的纵坐标,代入y=0可求出点A 、B 的横坐标,此题得解;(2)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,过点Q 作QE ∥y 轴,交x 轴于点E ,当运动时间为t 秒时,点P 的坐标为(2t ﹣2,0),点Q 的坐标为(3﹣35t ,﹣45t ),进而可得出PB 、QE 的长度,利用三角形的面积公式可得出S △PBQ 关于t 的函数关系式,利用二次函数的性质即可解决最值问题; (3)根据(2)的结论找出点P 、Q 的坐标,假设存在,设点M 的坐标为(m ,23m 2﹣23m ﹣4),则点F 的坐标为(m ,43m ﹣4),进而可得出MF 的长度,利用三角形的面积结合△BMC 的面积是△PBQ 面积的1.6倍,可得出关于m 的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=23x 2﹣23x ﹣4=﹣4,∴点C 的坐标为(0,﹣4);当y=0时,有23x 2﹣23x ﹣4=0,解得:x 1=﹣2,x 2=3,∴点A 的坐标为(﹣2,0),点B 的坐标为(3,0).(2)设直线BC 的解析式为y=kx +b (k ≠0), 将B (3,0)、C (0,﹣4)代入y=kx +b ,{3k +b =0b =−4,解得:{k =43b =−4, ∴直线BC 的解析式为y=43x ﹣4.过点Q 作QE ∥y 轴,交x 轴于点E ,如图1所示,当运动时间为t 秒时,点P 的坐标为(2t ﹣2,0),点Q 的坐标为(3﹣35t ,﹣45t ),∴PB=3﹣(2t ﹣2)=5﹣2t ,QE=45t ,∴S △PBQ =12PB•QE=﹣45t 2+2t=﹣45(t ﹣54)2+54.∵﹣45<0,∴当t=54时,△PBQ 的面积取最大值,最大值为54.(3)当△PBQ 面积最大时,t=54,此时点P 的坐标为(12,0),点Q 的坐标为(94,﹣1).假设存在,设点M 的坐标为(m ,23m 2﹣23m ﹣4),则点F 的坐标为(m ,43m ﹣4),∴MF=43m ﹣4﹣(23m 2﹣23m ﹣4)=﹣23m 2+2m ,∴S △BMC =12MF•OB=﹣m 2+3m .∵△BMC 的面积是△PBQ 面积的1.6倍,∴﹣m 2+3m=54×1.6,即m 2﹣3m +2=0,解得:m 1=1,m 2=2.∵0<m <3,∴在BC 下方的抛物线上存在点M ,使△BMC 的面积是△PBQ 面积的1.6倍,点M 的坐标为(1,﹣4)或(2,﹣83).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用三角形的面积公式找出S关于t的函数关系式;(3)利用三角形的△PBQ面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.。
新疆维吾尔自治区新疆生产建设兵团2018年中考数学试题含答案有解析+〖五套中考模拟卷〗

新疆维吾尔自治区新疆生产建设兵团2018年中考数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)的相反数是()A.﹣ B.2 C.﹣2 D.0.52.(5分)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃ B.6℃C.﹣6℃D.﹣10℃3.(5分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.(5分)下列计算正确的是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=35.(5分)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°6.(5分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③7.(5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm8.(5分)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.9.(5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)点(﹣1,2)所在的象限是第象限.11.(5分)如果代数式有意义,那么实数x的取值范围是.12.(5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.13.(5分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.14.(5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.15.(5分)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x <0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)计算:﹣2sin45°+()﹣1﹣|2﹣|.17.(8分)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.18.(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)的相反数是()A.﹣ B.2 C.﹣2 D.0.5【分析】只有符号不同的两个数互为相反数.【解答】解:的相反数是﹣.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(5分)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃ B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.(5分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(5分)下列计算正确的是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=3【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.(5分)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.(5分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③【分析】两条平均数、中位数、方差的定义即可判断;【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.8.(5分)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.【分析】等量关系为:一本练习本和一支水笔的单价合计为3元;20本练习本的总价+10支水笔的总价=36,把相关数值代入即可.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.9.(5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)点(﹣1,2)所在的象限是第二象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)如果代数式有意义,那么实数x的取值范围是x≥1 .【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.12.(5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.13.(5分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元.【分析】设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(5分)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x <0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是②③(填写所有正确结论的序号).【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题(一)(本大题共4小题,共30分)16.(6分)计算:﹣2sin45°+()﹣1﹣|2﹣|.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x2+3x=0可以求得x的值,注意代入的x的值必须使得原分式有意义.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.18.(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【分析】(1)将点(2,1)代入y=,求出k的值,再将k的值和点(2,1)代入解析式y=kx+m,即可求出m的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P(﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=经过(2,1),∴2=k.[:Z|xx|k]∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.19.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD是平行班四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是菱形.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).【分析】根据在Rt△ACF中,tan∠ACF=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20 名学生,其中C类女生有 2 名,D类男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.23.(13分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)代入x=0可求出点C的纵坐标,代入y=0可求出点A、B的横坐标,此题得解;(2)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,过点Q作QE∥y轴,交x轴于点E,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),进而可得出PB、QE 的长度,利用三角形的面积公式可得出S△PBQ关于t的函数关系式,利用二次函数的性质即可解决最值问题;(3)根据(2)的结论找出点P、Q的坐标,假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),进而可得出MF的长度,利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB•QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF•OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用三角形的面积公式找出S△PBQ关于t的函数关系式;(3)利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.中考数学模拟试卷一、选择题(共12小题,每小题3分,共36分)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.(x﹣1)(x﹣3)=0 D. =22.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+3.方程x(x+3)=x+3的根为()A.x=﹣3 B.x=1 C.x1=1,x2=3 D.x1=1,x2=﹣34.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个6.一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法确定7.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+28.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A.﹣3 B.﹣1 C.2 D.39.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠010.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175 B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)2=17511.已知点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣5的图象上,则下列结论正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y112.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)13.抛物线y=x2﹣2x﹣1的顶点坐标是.14.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .15.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.16.抛物线y=a(x+1)2经过点(﹣2,1),则a= .17.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有支.18.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三、解答题(共8题,共72分)19.解方程:(1)x2+2x﹣7=0;(2)2(x﹣3)2=5(3﹣x).20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出对应的△A′B′C′图形;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.22.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?。
2018年新疆中考数学试卷
绝密★启用前 2018年新疆中考数学试卷试卷副标题考试范围:xxx ;考试时间:120分钟;命题人:xxx第I 卷(选择题)请点击修改第I 卷的文字说明 一、 选择题1.的相反数是 A.B. C. D. 2. 某市有一天的最高气温为 ,最低气温为 ,则这天的最高气温比最低气温高 A.B. C. D. 3. 如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是 A.B.C.D.4. 下列计算正确的是 A.B.C.D.5. 如图, ,点 在线段 上, 若 ,则 为 A. B. C.D.6. 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:甲、乙两班学生的成绩平均成绩相同;乙班优秀的人数多于甲班优秀的人数 每分钟输入汉字 个为优秀 ; 甲班成绩的波动比乙班大.上述结论中,正确的是 A. B. C. D.7. 如图,矩形纸片 中, , 现将其沿 对折,使得点 落在边 上的点 处,折痕与边 交于点 ,则 的长为A. B. C. D.8. 某文具店一本练习本和一支水笔的单价合计为 元,小妮在该店买了 本练习本和 支水笔,共花了元 如果设练习本每本为 元,水笔每支为 元,那么根据题意,下列方程组中,正确的是 A.B.C.D.9. 如图,点 是边长为 的菱形 对角线 上的一个动点,点 ,分别是 , 边上的中点,则 的最小值是 A.B. C. D.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、 填空题点所在的象限是第 ______ 象限.2. 如果代数式 有意义,那么实数 的取值范围是 ______ .3. 如图, 是 的内接正三角形, 的半径为 ,则图中阴影部的面积是 ______ .4. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 ______ . 5. 某商店第一次用 元购进 铅笔若干支,第二次又用 元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了 支 则该商店第一次购进的铅笔,每支的进价是 ______ 元 6. 如图,已知抛物线 和直线 我们规定:当取任意一个值时, 对应的函数值分别为 和 ,若 ,取 和 中较小值为 ;若 ,记当 > 时,; 当 < 时, 随 的增大而增大; 使得 大于的 的值不存在; 若 ,则 上述结论正确的是 ______ 填写所有正确结论的序号 .三、 解答题1. 计算:2. 已知反比例函数的图象与一次函数 的图象交于点 .分别求出这两个函数的解析式;判断 是否在一次函数 的图象上,并说明原因.3. 如图,▱ 的对角线 , 相交于点 , 是 上的两点,并且 ,连接 , .求证: ≌ ;若 ,连接 , 判断四边形 的形状,并说明理由.4. 如图,在数学活动课上,小丽为了测量校园内旗杆 的高度,站在教学楼的 处测得旗杆底端 的俯角为 ,测得旗杆顶端 的仰角为 已知旗杆与教学楼的距离 ,请你帮她求出旗杆的高度 结果保留根号 .5. 杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类: :优秀; :良好; :一般; :较差 并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:本次调查中,杨老师一共调查了 ______ 名学生,其中 类女生有 ______ 名, 类男生有 ______ 名;补全上面的条形统计图和扇形统计图;在此次调查中,小平属于类 为了进步,她请杨老师从被调查的 类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习 请求出所选的同学恰好是一位女同学的概率.6. 如图, 与 相切于点 ,过点 作 ,垂足为 ,交 于点 连接 , ,并延长 交 于点 ,与 的延长线交于点 .求证: 是 的切线;若 , ,求 的值.7. 如图,在平面直角坐标系中,抛物线与 轴交于 , 两点 点 在点 左侧 ,与轴交于点 .求点 , , 的坐标;点 从 点出发,在线段 上以每秒 个单位长度的速度向 点运动,同时,点 从 点出发,在线段 上以每秒 个单位长度的速度向 点运动,当其中一个点到达终点时,另一个点也停止运动 设运动时间为 秒,求运动时间 为多少秒时, 的面积 最大,并求出其最大面积;在 的条件下,当 面积最大时,在 下方的抛物线上是否存在点 ,使 的面积是 面积的 倍?若存在,求点 的坐标;若不存在,请说明理由.8. 先化简,再求值:,其中 是方程 的根.参考答案一、选择题1.【答案】A【解析】解:的相反数是.故选:.只有符号不同的两个数互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】A【解析】解:.故选:.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.【答案】C【解析】解:从左边看竖直叠放个正方形.故选:.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.【答案】C【解析】解:、,故此选项错误;B、故此选项错误;C、,故此选项正确;D、,故此选项错误.故选:.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】B【解析】解:,,又,,,即,.故选:.先由,得,,得,再根据三角形内角和定理得,,即,从而求出.此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出,再由得出,由三角形内角和定理求出.6.【答案】D【解析】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故正确,故选:.两条平均数、中位数、方差的定义即可判断;本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:沿对折点落在边上的点处,,,又,四边形是正方形,,.故选:.根据翻折的性质可得,,然后求出四边形是正方形,再根据正方形的性质可得,然后根据,代入数据进行计算即可得解.本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形是正方形是解题的关键.8.【答案】B【解析】解:设练习本每本为元,水笔每支为元,根据单价的等量关系可得方程为,根据总价得到的方程为,所以可列方程为:,故选:.等量关系为:一本练习本和一支水笔的单价合计为元;本练习本的总价支水笔的总价,把相关数值代入即可.此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的个等量关系是解决本题的关键.9.【答案】B【解析】解:如图,作点关于的对称点,连接交于,此时有最小值,最小值为的长.菱形关于对称,是边上的中点,是的中点,又是边上的中点,,,四边形是平行四边形,,,即的最小值为,故选:.先作点关于的对称点,连接交于,此时有最小值然后证明四边形为平行四边形,即可求出.本题考查的是轴对称最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题1.【答案】二【解析】解:点所在的象限是第二象限.故答案为:二.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.2.【答案】【解析】解:代数式有意义,实数的取值范围是:.故答案为:.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式的定义,正确把握定义是解题关键.3.【答案】【解析】解:是等边三角形,,根据圆周角定理可得,阴影部分的面积是,故答案为:根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.【答案】【解析】解:用和分别表示第一个有盖茶杯的杯盖和茶杯;用和分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:、、、.所以颜色搭配正确的概率是.故答案为:.根据概率的计算公式颜色搭配总共有种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.此题考查概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率.5.【答案】【解析】解:设该商店第一次购进铅笔的单价为元支,则第二次购进铅笔的单价为元支,根据题意得:,解得:,经检验,是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为元支.故答案为:.设该商店第一次购进铅笔的单价为元支,则第二次购进铅笔的单价为元支,根据单价总价数量结合第二次购进数量比第一次少了支,即可得出关于的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6.【答案】【解析】解:当>时,抛物线在直线的下方,当>时,,结论错误;当<时,抛物线在直线的下方,当<时,,随的增大而增大,结论正确;,使得大于的的值不存在,结论正确;当时,有,解得:舍去,;当时,有,解得:.若,则或,结论错误.综上所述:正确的结论有.故答案为:.观察函数图象,可知:当>时,抛物线在直线的下方,进而可得出当>时,,结论错误;观察函数图象,可知:当<时,抛物线在直线的下方,进而可得出当<时,,再利用二次函数的性质可得出随的增大而增大,结论正确;利用配方法可找出抛物线的最大值,由此可得出:使得大于的的值不存在,结论正确;利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当时的值,由此可得出:若,则或,结论错误.此题得解.本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题1.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.2.【答案】解:经过,.经过,,.反比例函数和一次函数的解析式分别是:和.当时,.点在一次函数图象上.【解析】将点代入,求出的值,再将的值和点代入解析式,即可求出的值,从而得到两个函数的解析式;将代入中所得解析式,若,则点在一次函数图象上,本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.3.【答案】证明:四边形是平行四边形,,,,,在和中,,≌.解:结论:四边形是菱形.理由:,,四边形是平行四边形,,四边形是菱形.【解析】根据即可证明;首先证明四边形是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.【答案】解:在中,,,,,在中,,,.【解析】根据在中,,求出的值,再根据在中,,求出的值,最后根据,即可求出答案.此题考查了解直角三角形的应用仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.5.【答案】;;【解析】解:杨老师调查的学生总人数为人,类女生人数为人,类男生人数为人,故答案为:、、;补全图形如下:因为类的人中,女生有人,所以所选的同学恰好是一位女同学的概率为.由类别人数及其所占百分比可得总人数,用总人数乘以类别百分比,再减去其中男生人数可得女生人数,同理求得类别男生人数;根据中所求结果可补全图形;根据概率公式计算可得.此题考查了概率公式的应用以及条形统计图与扇形统计图的知识用到的知识点为:概率所求情况数与总情况数之比.6.【答案】证明:连接,,在和中和≌是的切线.连接,则,且在中,,在与中,,,在与中,∽,解得,,【解析】要证明是圆的切线,须证明过切点的半径垂直,所以连接,证明即可.要求,首先应找出直角三角形,然后利用直角三角函数求解即可而既可放在直角三角形中,也可放在直角三角形中,所以利用相似三角形的性质求出或的长即可解决问题本题考查了切线的判定以及相似三角形的判定和性质能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.7.【答案】解:当时,,点的坐标为;当时,有,解得:,,点的坐标为,点的坐标为.设直线的解析式为,将、代入,,解得:,直线的解析式为.过点作轴,交轴于点,如图所示,当运动时间为秒时,点的坐标为,点的坐标为,,,.,当时,的面积取最大值,最大值为.当面积最大时,,此时点的坐标为,点的坐标为.假设存在,设点的坐标为,则点的坐标为,,.的面积是面积的倍,,即,解得:,.,在下方的抛物线上存在点,使的面积是面积的倍,点的坐标为或【解析】代入可求出点的纵坐标,代入可求出点、的横坐标,此题得解;根据点、的坐标,利用待定系数法可求出直线的解析式,过点作轴,交轴于点,当运动时间为秒时,点的坐标为,点的坐标为,进而可得出、的长度,利用三角形的面积公式可得出关于的函数关系式,利用二次函数的性质即可解决最值问题;根据的结论找出点、的坐标,假设存在,设点的坐标为,则点的坐标为,进而可得出的长度,利用三角形的面积结合的面积是面积的倍,可得出关于的一元二次方程,解之即可得出结论.本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:利用二次函数图象上点的坐标特征求出点、、的坐标;利用三角形的面积公式找出关于的函数关系式;利用三角形的面积结合的面积是面积的倍,找出关于的一元二次方程.8.【答案】解:,由可得,或,当时,原来的分式无意义,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,然后根据可以求得的值,注意代入的的值必须使得原分式有意义.本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.。
(最新整理)2018年新疆中考数学试卷
A. B.1 C. D.2 二、填空题(本大题共 6 小题,每小题 5 分,共 30 分) 10.(5 分)(2018•新疆)点(﹣1,2)所在的象限是第 象限. 11.(5 分)(2018•新疆)如果代数式 有意义,那么实数 x 的取值范围是 . 12.(5 分)(2018•新疆)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为 2,则图 中阴影部的面积是 .
2018 年新疆中考数学试卷
2018 年新疆中考数学试卷
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018 年新疆中考数学试卷) 的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步 的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2018 年新疆中考数学试卷的全部内容。
第 4考数学试卷
取任意一个值时,x 对应的函数值分别为 y1 和 y2,若 y1≠y2,取 y1 和 y2 中较小值为 M; 若 y1=y2,记 M=y1=y2.①当 x>2 时,M=y2;②当 x<0 时,M 随 x 的增大而增大;③使得 M 大于 4 的 x 的值不存在;④若 M=2,则 x=1.上述结论正确的是 (填写所有正确结论 的序号).
三、解答题(一)(本大题共 4 小题,共 30 分) 16.(6 分)(2018•新疆)计算: ﹣2sin45°+( )﹣1﹣|2﹣ |. 17.(8 分)(2018•新疆)先化简,再求值:( +1)÷ ,其中 x 是方程 x2+3x=0 的根. 18.(8 分)(2018•新疆)已知反比例函数 y= 的图象与一次函数 y=kx+m 的图象交于 点(2,1). (1)分别求出这两个函数的解析式; (2)判断 P(﹣1,﹣5)是否在一次函数 y=kx+m 的图象上,并说明原因. 19.(8 分)(2018•新疆)如图,▱ABCD 的对角线 AC,BD 相交于点 O.E,F 是 AC 上的 两点,并且 AE=CF,连接 DE,BF. (1)求证:△DOE≌△BOF; (2)若 BD=EF,连接 FB,DF.判断四边形 EBFD 的形状,并说明理由.
2018年新疆中考数学试卷(带解析)
14.(5 分)某商店第一次用 600 元购进 2B 铅笔若干支,第二次又用 600 元购进 该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了 30 支.则该商店第一次购进的铅笔,每支的进价是 4 元. 【解答】解:设该商店第一次购进铅笔的单价为 x 元/支,则第二次购进铅笔的 单价为 x 元/支, 根据题意得: ﹣ =30,
2018 年新疆中考数学试卷
参考答案与试题解析
一、选择题(本大题共 9 小题,每小题 5 分,共 45 分.在每题列出的四个选项中, 只有一项符合题目要求) 1.(5 分) 的相反数是( ) A.﹣ B.2 C.﹣2 D.0.5 【解答】解: 的相反数是﹣ . 故选:A.
2.(5 分)某市有一天的最高气温为 2℃,最低气温为﹣8℃,则这天的最高气温 比最低气温高( ) A.10℃ B.6℃ C.﹣6℃ D.﹣10℃ 【解答】解:2﹣(﹣8) =2+8 =10(℃). 故选:A.
8.(5 分)某文具店一本练习本和一支水笔的单价合计为 3 元,小妮在该店买了
20 本练习本和 10 支水笔,共花了 36 元.如果设练习本每本为 x 元,水笔每支
为 y 元,那么根据题意,下列方程组中,正确的是( )
A.
㭰ਗ਼䃰˟ ਗ਼䃰˟
B.
C.
ਗ਼㭰
䃰˟ ਗ਼䃰˟
D.
ਗ਼䃰˟ ਗ਼䃰˟
ਗ਼䃰˟ ਗ਼䃰˟
2018年新疆中考数学试卷(含答案解析版)
2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分、在每题列出得四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)得相反数就是()A.﹣B.2C.﹣2D.0、52.(5分)(2018•新疆)某市有一天得最高气温为2℃,最低气温为﹣8℃,则这天得最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃3.(5分)(2018•新疆)如图就是由三个相同得小正方体组成得几何体,则该几何体得左视图就是()A. B. C. D.4.(5分)(2018•新疆)下列计算正确得就是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=35.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数得统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生得成绩平均成绩相同;(2)乙班优秀得人数多于甲班优秀得人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩得波动比乙班大.上述结论中,正确得就是()A.①②B.②③C.①③D.①②③7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上得点B1处,折痕与边BC交于点E,则CE得长为()A.6cmB.4cmC.3cmD.2cm8.(5分)(2018•新疆)某文具店一本练习本与一支水笔得单价合计为3元,小妮在该店买了20本练习本与10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确得就是()A. B.C. D.9.(5分)(2018•新疆)如图,点P就是边长为1得菱形ABCD对角线AC上得一个动点,点M,N分别就是AB,BC边上得中点,则MP+PN得最小值就是()A. B.1 C. D.2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在得象限就是第象限.11.(5分)(2018•新疆)如果代数式有意义,那么实数x得取值范围就是.12.(5分)(2018•新疆)如图,△ABC就是⊙O得内接正三角形,⊙O得半径为2,则图中阴影部得面积就是.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同得有盖茶杯,突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则颜色搭配正确得概率就是.14.(5分)(2018•新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支得进价就是第一次进价得倍,购进数量比第一次少了30支.则该商店第一次购进得铅笔,每支得进价就是元.15.(5分)(2018•新疆)如图,已知抛物线y1=﹣x2+4x与直线y2=2x.我们规定:当x取任意一个值时,x对应得函数值分别为y1与y2,若y1≠y2,取y1与y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x得增大而增大;③使得M 大于4得x得值不存在;④若M=2,则x=1.上述结论正确得就是(填写所有正确结论得序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:﹣2sin45°+()﹣1﹣|2﹣|.17.(8分)(2018•新疆)先化简,再求值:(+1)÷,其中x就是方程x2+3x=0得根.18.(8分)(2018•新疆)已知反比例函数y=得图象与一次函数y=kx+m得图象交于点(2,1).(1)分别求出这两个函数得解析式;(2)判断P(﹣1,﹣5)就是否在一次函数y=kx+m得图象上,并说明原因.19.(8分)(2018•新疆)如图,▱ABCD得对角线AC,BD相交于点O.E,F就是AC上得两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD得形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB得高度,站在教学楼得C处测得旗杆底端B得俯角为45°,测得旗杆顶端A得仰角为30°.已知旗杆与教学楼得距离BD=9m,请您帮她求出旗杆得高度(结果保留根号).21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习得具体情况,对本班部分学生进行了一个月得跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整得统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面得条形统计图与扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查得A类学生中随机选取一位同学,与她进行“一帮一”得课后互助学习.请求出所选得同学恰好就是一位女同学得概率.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB得延长线交于点E.(1)求证:PB就是⊙O得切线;(2)若OC=3,AC=4,求sinE得值.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C得坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度得速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度得速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ得面积S最大,并求出其最大面积;(3)在(2)得条件下,当△PBQ面积最大时,在BC下方得抛物线上就是否存在点M,使△BMC得面积就是△PBQ面积得1、6倍?若存在,求点M得坐标;若不存在,请说明理由.2018年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分、在每题列出得四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)得相反数就是()A.﹣B.2C.﹣2D.0、5【考点】14:相反数.【专题】11 :计算题.【分析】只有符号不同得两个数互为相反数.【解答】解:得相反数就是﹣.故选:A.【点评】本题主要考查得就是相反数得定义,掌握相反数得定义就是解题得关键.2.(5分)(2018•新疆)某市有一天得最高气温为2℃,最低气温为﹣8℃,则这天得最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【考点】1A:有理数得减法.【专题】511:实数.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数得相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.【点评】本题考查了有理数得减法,就是基础题,熟记减去一个数等于加上这个数得相反数就是解题得关键.3.(5分)(2018•新疆)如图就是由三个相同得小正方体组成得几何体,则该几何体得左视图就是()A. B. C. D.【考点】U2:简单组合体得三视图.【专题】1 :常规题型.【分析】细心观察图中几何体中正方体摆放得位置,根据左视图就是从左面瞧到得图形判定则可.【解答】解:从左边瞧竖直叠放2个正方形.故选:C.【点评】此题考查了几何体得三种视图与学生得空间想象能力,左视图就是从物体左面瞧所得到得图形,解答时学生易将三种视图混淆而错误得选其它选项.4.(5分)(2018•新疆)下列计算正确得就是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂得乘法;47:幂得乘方与积得乘方.【分析】根据同底数幂得乘法法则:底数不变,指数相加;多项式乘以多项式得法则,可表示为(a+b)(m+n)=am+an+bm+bn;积得乘方:等于把积得每一个因式分别乘方再把所得得幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂得乘法,积得乘方,合并同类项得法则,注意正确把握每一种运算得法则,不要混淆.5.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【考点】JA:平行线得性质.【专题】551:线段、角、相交线与平行线.【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角与定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查得就是平行线得性质及三角形内角与定理,解题得关键就是先根据平行线得性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角与定理求出∠D.6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数得统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生得成绩平均成绩相同;(2)乙班优秀得人数多于甲班优秀得人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩得波动比乙班大.上述结论中,正确得就是()A.①②B.②③C.①③D.①②③【考点】W7:方差;W1:算术平均数.【专题】542:统计得应用.【分析】两条平均数、中位数、方差得定义即可判断;【解答】解:由表格可知,甲、乙两班学生得成绩平均成绩相同;根据中位数可以确定,乙班优秀得人数多于甲班优秀得人数;根据方差可知,甲班成绩得波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题得关键就是熟练掌握基本知识,属于中考常考题型.7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上得点B1处,折痕与边BC交于点E,则CE得长为()A.6cmB.4cmC.3cmD.2cm【考点】PB:翻折变换(折叠问题);LB:矩形得性质.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据翻折得性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1就是正方形,再根据正方形得性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上得点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1就是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形得性质,正方形得判定与性质,翻折变换得性质,判断出四边形ABEB1就是正方形就是解题得关键.8.(5分)(2018•新疆)某文具店一本练习本与一支水笔得单价合计为3元,小妮在该店买了20本练习本与10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确得就是()A. B.C. D.【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】等量关系为:一本练习本与一支水笔得单价合计为3元;20本练习本得总价+10支水笔得总价=36,把相关数值代入即可.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价得等量关系可得方程为x+y=3,根据总价36得到得方程为20x+10y=36,所以可列方程为:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价与总价得2个等量关系就是解决本题得关键.9.(5分)(2018•新疆)如图,点P就是边长为1得菱形ABCD对角线AC上得一个动点,点M,N分别就是AB,BC边上得中点,则MP+PN得最小值就是()A. B.1 C. D.2【考点】PA:轴对称﹣最短路线问题;L8:菱形得性质.【专题】46 :几何变换.【分析】先作点M关于AC得对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC得对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N得长.∵菱形ABCD关于AC对称,M就是AB边上得中点,∴M′就是AD得中点,又∵N就是BC边上得中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′就是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP得最小值为1,故选:B.【点评】本题考查得就是轴对称﹣最短路线问题及菱形得性质,熟知两点之间线段最短得知识就是解答此题得关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在得象限就是第二象限.【考点】D1:点得坐标.【专题】1 :常规题型.【分析】根据各象限内点得坐标特征解答.【解答】解:点(﹣1,2)所在得象限就是第二象限.故答案为:二.【点评】本题考查了各象限内点得坐标得符号特征,记住各象限内点得坐标得符号就是解决得关键,四个象限得符号特点分别就是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)(2018•新疆)如果代数式有意义,那么实数x得取值范围就是x≥1.【考点】72:二次根式有意义得条件.【专题】1 :常规题型.【分析】直接利用二次根式得定义分析得出答案.【解答】解:∵代数式有意义,∴实数x得取值范围就是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式得定义,正确把握定义就是解题关键.12.(5分)(2018•新疆)如图,△ABC就是⊙O得内接正三角形,⊙O得半径为2,则图中阴影部得面积就是.【考点】MA:三角形得外接圆与外心;KK:等边三角形得性质;MO:扇形面积得计算.【专题】55C:与圆有关得计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应得圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC就是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分得面积就是=π,故答案为:【点评】本题主要考查扇形面积得计算与圆周角定理,根据等边三角形性质与圆周角定理求得圆心角度数就是解题得关键.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同得有盖茶杯,突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则颜色搭配正确得概率就是.【考点】X6:列表法与树状图法.【专题】1 :常规题型.【分析】根据概率得计算公式.颜色搭配总共有4种可能,分别列出搭配正确与搭配错误得可能,进而求出各自得概率即可.【解答】解:用A与a分别表示第一个有盖茶杯得杯盖与茶杯;用B与b分别表示第二个有盖茶杯得杯盖与茶杯、经过搭配所能产生得结果如下: Aa、Ab、Ba、Bb.所以颜色搭配正确得概率就是.故答案为:.【点评】此题考查概率得求法:如果一个事件有n种可能,而且这些事件得可能性相同,其中事件A出现m种结果,那么事件A得概率P(A)=.14.(5分)(2018•新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支得进价就是第一次进价得倍,购进数量比第一次少了30支.则该商店第一次购进得铅笔,每支得进价就是4元.【考点】B7:分式方程得应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设该商店第一次购进铅笔得单价为x元/支,则第二次购进铅笔得单价为x元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x得分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔得单价为x元/支,则第二次购进铅笔得单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4就是原方程得解,且符合题意.答:该商店第一次购进铅笔得单价为4元/支.故答案为:4.【点评】本题考查了分式方程得应用,找准等量关系,正确列出分式方程就是解题得关键.15.(5分)(2018•新疆)如图,已知抛物线y1=﹣x2+4x与直线y2=2x.我们规定:当x取任意一个值时,x对应得函数值分别为y1与y2,若y1≠y2,取y1与y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x得增大而增大;③使得M 大于4得x得值不存在;④若M=2,则x=1.上述结论正确得就是②③(填写所有正确结论得序号).【考点】H3:二次函数得性质;F5:一次函数得性质.【专题】533:一次函数及其应用;535:二次函数图象及其性质.【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x得下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x得下方,进而可得出当x<0时,M=y1,再利用二次函数得性质可得出M随x得增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x得最大值,由此可得出:使得M大于4得x 得值不存在,结论③正确;④利用一次函数图象上点得坐标特征及二次函数图象上点得坐标特征求出当M=2时得x值,由此可得出:若M=2,则x=1或2+,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x得下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x得下方,∴当x<0时,M=y1,∴M随x得增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M得最大值为4,∴使得M大于4得x得值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确得结论有②③.故答案为:②③.【点评】本题考查了一次函数得性质、二次函数得性质、一次函数图象上点得坐标特征以及二次函数图象上点得坐标特征,逐一分析四条结论得正误就是解题得关键.三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:﹣2sin45°+()﹣1﹣|2﹣|.【考点】2C:实数得运算;6F:负整数指数幂;T5:特殊角得三角函数值.【专题】1 :常规题型.【分析】直接利用二次根式得性质以及特殊角得三角函数值、绝对值得性质、负指数幂得性质进而化简得出答案.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.【点评】此题主要考查了实数运算,正确化简各数就是解题关键.17.(8分)(2018•新疆)先化简,再求值:(+1)÷,其中x就是方程x2+3x=0得根.【考点】6D:分式得化简求值;A3:一元二次方程得解.【专题】11 :计算题.【分析】根据分式得加法与除法可以化简题目中得式子,然后根据x2+3x=0可以求得x得值,注意代入得x得值必须使得原分式有意义.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来得分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式得化简求值、一元二次方程得解,解答本题得关键就是明确分式得化简求值得计算方法.18.(8分)(2018•新疆)已知反比例函数y=得图象与一次函数y=kx+m得图象交于点(2,1).(1)分别求出这两个函数得解析式;(2)判断P(﹣1,﹣5)就是否在一次函数y=kx+m得图象上,并说明原因.【考点】G8:反比例函数与一次函数得交点问题.【专题】533:一次函数及其应用.【分析】(1)将点(2,1)代入y=,求出k得值,再将k得值与点(2,1)代入解析式y=kx+m,即可求出m得值,从而得到两个函数得解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P(﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数与一次函数得解析式分别就是:y=与y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数得交点问题,解题得关键就是知道函数图象得交点坐标符合两个函数得解析式.19.(8分)(2018•新疆)如图,▱ABCD得对角线AC,BD相交于点O.E,F就是AC上得两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD得形状,并说明理由.【考点】L5:平行四边形得性质;KD:全等三角形得判定与性质.【专题】555:多边形与平行四边形.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD就是平行四边形,再根据对角线相等得平行四边形就是菱形即可证明;【解答】(1)证明:∵四边形ABCD就是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO与△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD就是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD就是平行四边形,∵BD=EF,∴四边形EBFD就是菱形.【点评】本题考查平行四边形得性质,全等三角形得判定与性质等知识,解题得关键就是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB得高度,站在教学楼得C处测得旗杆底端B得俯角为45°,测得旗杆顶端A得仰角为30°.已知旗杆与教学楼得距离BD=9m,请您帮她求出旗杆得高度(结果保留根号).【考点】TA:解直角三角形得应用﹣仰角俯角问题.【专题】552:三角形.【分析】根据在Rt△ACF中,tan∠ACF=,求出AD得值,再根据在Rt△BCD中,tan∠BCD=,求出BD得值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).【点评】此题考查了解直角三角形得应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习得具体情况,对本班部分学生进行了一个月得跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整得统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20名学生,其中C类女生有2名,D类男生有1名;(2)补全上面得条形统计图与扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查得A类学生中随机选取一位同学,与她进行“一帮一”得课后互助学习.请求出所选得同学恰好就是一位女同学得概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查得学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类得3人中,女生有2人,所以所选得同学恰好就是一位女同学得概率为.【点评】此题考查了概率公式得应用以及条形统计图与扇形统计图得知识.用到得知识点为:概率=所求情况数与总情况数之比.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB得延长线交于点E.(1)求证:PB就是⊙O得切线;(2)若OC=3,AC=4,求sinE得值.【考点】ME:切线得判定与性质;M2:垂径定理;T7:解直角三角形.【专题】14 :证明题.【分析】(1)要证明就是圆得切线,须证明过切点得半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形得性质求出EP或EO得长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO与△PBO中∴△PAO与≌△PBO∴∠OBP=∠OAP=90°∴PB就是⊙O得切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==【点评】本题考查了切线得判定以及相似三角形得判定与性质.能够通过作辅助线将所求得角转移到相应得直角三角形中,就是解答此题得关键.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C得坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度得速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度得速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ得面积S最大,并求出其最大面积;(3)在(2)得条件下,当△PBQ面积最大时,在BC下方得抛物线上就是否存在点M,使△BMC得面积就是△PBQ面积得1、6倍?若存在,求点M得坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】537:函数得综合应用.【分析】(1)代入x=0可求出点C得纵坐标,代入y=0可求出点A、B得横坐标,此题得解;(2)根据点B、C得坐标,利用待定系数法可求出直线BC得解析式,过点Q作QE∥y 轴,交x轴于点E,当运动时间为t秒时,点P得坐标为(2t﹣2,0),点Q得坐标为(3﹣t,关于t得函﹣t),进而可得出PB、QE得长度,利用三角形得面积公式可得出S△PBQ数关系式,利用二次函数得性质即可解决最值问题;(3)根据(2)得结论找出点P、Q得坐标,假设存在,设点M得坐标为(m,m2﹣m﹣4),则点F得坐标为(m,m﹣4),进而可得出MF得长度,利用三角形得面积结合△BMC得面积就是△PBQ面积得1、6倍,可得出关于m得一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C得坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A得坐标为(﹣2,0),点B得坐标为(3,0).(2)设直线BC得解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC得解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P得坐标为(2t﹣2,0),点Q得坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,=PB•QE=﹣t2+2t=﹣(t﹣)2+.∴S△PBQ∵﹣<0,∴当t=时,△PBQ得面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P得坐标为(,0),点Q得坐标为(,﹣1).假设存在,设点M得坐标为(m,m2﹣m﹣4),则点F得坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,=MF•OB=﹣m2+3m.∴S△BMC∵△BMC得面积就是△PBQ面积得1、6倍,∴﹣m2+3m=×1、6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方得抛物线上存在点M,使△BMC得面积就是△PBQ面积得1、6倍,点M得坐标为(1,﹣4)或(2,﹣).【点评】本题考查了二次函数图象上点得坐标特征、二次函数得性质、二次(一次)函数图象上点得坐标特征、待定系数法求一次函数解析式以及三角形得面积,解题得关键就是:(1)利用二次函数图象上点得坐标特征求出点A、B、C得坐标;(2)利用三角形得面积公式找出S关于t得函数关系式;(3)利用三角形得面积结合△PBQ△BMC得面积就是△PBQ面积得1、6倍,找出关于m得一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密
学校 班级
姓名 考号
密 封 线 内 不 得 答 题
2017-2018学年第二学期九年级第一次模拟考试数学试卷(问卷) (说明:本试卷共三道大题,24个小题,共计150分,考试时间120分钟,
可以使用科学计算器)。
一、 选择题(本大题8个小题,每小题4
分,共32分)
1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作(
)
A .
+50元 B .﹣50元 C
.+150元 D .﹣150元 2.使二次根式有意义的x 的取值范围是 ( ) A .
B .
C .
D .
3.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )
A 、
B 、
C
、
D 、
4.设a ,b 是常数,不等式+>0的解集为x <,则关于x 的不等式bx ﹣a <0的解集是 ( )
A 、x >
B 、x <﹣
C 、x >﹣
D 、x <
5.将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为 ( )
A.
cm 2 B.
cm 2 C.
cm
2 D.
cm 2
6.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%
,则这种电子产品的标价为 ( )
A. 26元
B. 27元
C. 28元
D. 29元
7.如图,AC 、BD 是⊙O 直径,且AC ⊥BD ,动点P 从圆心O 出发,沿O →C
→
D
→O 路线作匀速运动,设运动时间t (秒),∠APB =y (度).则下列图象中表
示y 与t 之间的函数关系最恰当的是 ( )
8.二次函数的图象如图所示,那么关于此二次函数的下列四个结论: ①; ②
;③
; ④
,其中正确的结论有
( )
A .1个
B .2个
C .3个
D .4个
二、 填空题(本大题6个小题,每小题4分,共24分)
9、一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .
10、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为 .
11.计算:
_____________.
12. 如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形
OB 2B 3C 2,……,依次下去.则
点B 6的坐标 .
13.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为__________.
14.如图,△ABC 是⊙O 的内接锐角三角形,连接AO ,设∠OAB=α,∠C=β,则α+β=______°。
三、解答题(本大题10个小题,共94分) 15、(6分)先化简,再求值:,其中
16.(6分)计算:()﹣2
+|﹣2|﹣
2cos30+.
17、(8分)如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.
18、(10分)某商场用24000元购入一批空调,然后以每台3000元的
价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入
该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,
每台的售价也上调了200元.
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的
利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,将多少台空调打折出售?
19、(10分)在平面直角坐标系中,直线分别交轴、轴于点
将
绕点顺时针旋转90后得到
.
(1)求直线的解析式;
(2)若直线与直线相交于点,求
的面积.
20.(10分)如图,建筑物AB 的高为6cm ,在其正东方向有一个通信塔CD 在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 塔顶C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(精确到0.01m )
21.(9分)某块实验田里的农作物每天的需水量y (千克)与生长时间x 之间的关系如折线图所示.这些农作物在第10天、第302000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;
(2)如果这些农作物每天的需水量大于或等于4000灌溉,那么应从第几天开始进行人工灌溉?
密
学校 班级
姓名 考号
密 封 线
内 不 得 答 题
22. (10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,
采取随机抽样的方式进行问卷调查,调查结果分为“A .非常了解”、“B .了解”、
“C .基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为________人,m =________,n =________
;
(2)补全条形统计图;
(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大
约有多少人对“社会主义核心价值观”达到“A .非常了解”的程度.
23、(10分)如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .
(1)判断直线PC 与⊙O 的位置关系,并说明理由; (2)若tan ∠P=,AD=6,求线段AE 的长.
24、(14分)如图,抛物线
经过A (-3,0),C (5,0)两点,
点B 为抛物线顶点,抛物线的对称轴与x 轴交于点D .(1)求抛物线的解析式;
(2)动点P 从点B 出发,沿线段BD 向终点D 作匀速运动,速度为每秒1个单位长度,运动时间为t ,过点P 作PM ⊥BD ,交BC 于点M ,以PM 为正方形
的一边,向上作正方形PMNQ ,边QN 交BC 于点R ,延长
NM 交AC 于点E .
①当t 为何值时,点N 落在抛物线上;
②在点P 运动过程中,是否存在某一时刻,使得四
边形ECRQ 为平行四边形?若存在,求出此时刻的t 值;若不存在,请说明理
由.。