八年级数学下册19.2.2一次函数教案2(新版)新人教版
19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2 一次函数——待定系数法求一次函数解析式教案引言本教案旨在教授八年级下册数学课程中的一次函数待定系数法求解问题。
一次函数是初等数学中最基本的函数之一,待定系数法则是解决一次函数问题中常用的一种方法。
本教案将帮助学生掌握待定系数法的基本原理,并通过具体例题的讲解,引导学生能够独立解决一次函数问题,并运用所学知识解决实际生活中的问题。
目标•理解一次函数的概念及特征•掌握待定系数法求解一次函数的步骤和方法•能够独立解决一次函数相关问题•运用所学知识解决实际问题教学内容1.一次函数回顾2.待定系数法求一次函数解析式的步骤和方法3.实例分析与解题训练4.应用案例分析教学步骤一、一次函数回顾1.提问:什么是一次函数?2.引导学生回顾一次函数的定义和示例,并讨论函数的特征。
二、待定系数法求一次函数解析式的步骤和方法1.引入待定系数法的概念,解释其基本原理。
2.解释待定系数法的求解步骤:–步骤一:列方程–步骤二:解方程–步骤三:找到解析式3.用具体例子演示待定系数法的求解过程,并解释其中的关键步骤和技巧。
三、实例分析与解题训练1.展示一些具体的一次函数问题,并引导学生运用待定系数法解决这些问题。
2.让学生分组进行练习,相互交流并解答问题。
四、应用案例分析1.提供一些实际生活中的问题,要求学生运用所学知识解决这些问题。
2.引导学生思考如何用一次函数和待定系数法来建立模型和解决问题。
总结与反思通过本节课的学习,学生应该对一次函数的特点和待定系数法有较为全面的理解,并能够灵活运用待定系数法解决一次函数问题。
同时,学生应该能够将所学知识运用到实际生活中,解决与一次函数相关的问题。
希望学生们能够通过课后的复习和实践,进一步巩固所学内容,并提升自己的问题解决能力。
课后作业1.自选一个实际生活中的问题,并用一次函数和待定系数法解决。
2.阅读教材相关章节,复习一次函数的相关知识。
注意:以上内容仅供参考,老师可以根据班级实际情况和教学需要进行适当调整。
19.2.2一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)

19.2.2 一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)教学目标1.了解一次函数的定义和概念;2.学会绘制一次函数的图像;3.掌握一次函数的性质和使用方法。
教学准备1.教材:2022-2023学年人教版八年级数学下册;2.教具:白板、黑板、彩色粉笔、直尺、铅笔。
教学过程1. 导入新知•引出问题:我们在前几节课学过的函数都是二次函数或三次函数,那么一次函数是如何定义的呢?它和其他函数有什么不同之处?•学生思考并回答问题。
2. 学习新知•引导学生打开教材第19页,阅读19.2.2节的内容,了解一次函数的定义和概念。
•进行示范演示,并让学生一起完成例题。
3. 拓展应用•将学生分成小组,进行小组赛。
•每组从现实生活中选择一个具体问题,使用一次函数解决,并讲解解题步骤和思路。
•学生通过小组讨论,提出问题并解决问题,培养团队合作能力和问题解决能力。
4. 巩固练习•随堂练习:教师提供一些练习题,让学生进行课堂练习。
•将答案在黑板上进行公开讲解,指导学生进行自我纠错。
5. 归纳总结•总结本节课学习的要点,强调一次函数的特点和性质。
课后作业1.阅读教材第19页的相关内容,加深对一次函数的理解;2.完成课后习题第2、3题。
教学反思本节课通过引入问题的方式激发了学生的学习兴趣,使学生主动思考和回答问题,培养了他们的思维能力。
同时,采用了小组赛的形式,增强了学生的合作意识和团队精神。
在拓展应用环节中,学生通过解决具体问题的方式,将理论知识应用到实践中,提高了他们的问题解决能力。
通过课堂练习和归纳总结等环节,巩固了学生对一次函数的理解和掌握程度。
在以后的教学中,可以在导入新知环节引入更多的问题,加强学生的探究性学习。
人教版初二数学下册19.2.2一次函数的图像和性质教学设计

人教版八年级下第19章第二节________ 1922 —次函数(2)《一次函数的图像和性质》教学设计一、教学目标1.掌握一次函数图象及其画法,理解一次函数的性质;2.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用;3.体会从特殊到一般的研究问题的方法;4.提高学生动手实践的能力和与他人交流合作的意识.二、教学重点掌握一次函数的图象和性质。
三、教学难点理解一次函数的图象和性质,并能灵活应用.四、教学方法教师启发与学生自主探究相结合五、教学手段利用多媒体等教学手段六、过程设计的图象2•结合学过的函数y=x的图象,比较两个函数的解析式,你能说明函数y=x・2的图象为什么是直线吗?3.如何由函数y二x的图象得到函数y =x • 2的图象?4.一次函数y = kx • b的图象是什么形状,由直线y = kx可经过怎样的变换得到直线y 二kx b ?例画出函数y = x-2的图象5.画一次函数y = kx b的图象有哪些方法?活动3 :自主实践,深入研究在同一直角坐标系中画出以下函数的图象y=xT , y_-x-1 ,学生通过观察、比较得到函数y =x与y =x •2的图象之间的关系.学生讨论函数y = kx • b与y二kx图象的关系并发表自己的看法.教师利用《几何画板》进行演示.师生一起总结得到:(1) 一次函数y二kx • b的图象是一条直线;(2)由直线y =kx平移|b |个单位长度得到直线y = kx • b(当b 0时,向上平移;当b : 0时,向下平移).学生画图,交流画法,并总结画一次函数y = kx • b的图象的方法.在本次活动中教师应重点关注:(1)学生在描点画图的过程中,是否注意两个函数图象的关系;(2)学生能否通过函数解析式(数)对“平移”(形)作出解释;一位学生利用实物投影仪展示,并谈谈自己的画法.分析每条直线的变化趋势,观察k的正负对函数图象变化趋势的影响,让学生在动手操作的过程中从“形”的角度感知一次函数的图象的形状.让学生在描点的过程中感受正比例函数与一次函数图象之间的位置关系.(2)引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.(4)将以前学过的平移与现在讨论的函数图象联系起来,增强学生对函数y=kx,b与函数y = kx的认识,让学生体会数形结合思想的应用.(5)通过展示学生的不同画法,找到简便的画法,让学生感受到数学的简洁美.(1)通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的y随x 的变化而变化的情况以及k的正y =0.5x —1, y = —2x —1 ;观察上面四个一次函数的图象,探究一次函数y = kx +b中k 的正负对函数图象有什么影响,并在此基础上表述函数的性质. 进而总结函数性质.当k >0时,直线y =kx +b从左向右上升,y随x的增大而增大;当kcO时,直线y = kx+b从左向右下降,y随x的增大而减小.在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与k有关,且与正比例函数的性质相同(3)学生从“数”与“形”两个方面去理解和掌握一次函数的性质.负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.(2)通过类比正比例函数的性质,加深对一次函数的y随x 的变化而变化的情况的理解.(3)让学生经历画图类比一一归纳的数学活动过程.活动4:反馈练习,夯实基础1.直线y = 2x -3与x轴交点坐标为,与y轴交点坐标为,图象经过第象限,y随x的增大而2 .函数y = -3x - 2随x的增大而.它的图象可由直线y = -3x向平移个单位得到.学生独立完成,教师巡视,了解学生对知识的掌握情况.师生共评,及时纠正学生的错误.在本次活动中教师应重点关注:(1)学生在练习中反映出的问题,有针对性地讲解;(2)学生对数形结合思想和分类讨论思想的掌握与运用.通过一系列的练习,可以实现知识向能力的转化.学生在尝试运用一次函数的图象和性质解决问题的过程中,进一步加深了对一次函数的图象和性质的理解.同时训练学生运用数形结合思想解决问题的意识和能力.活动5 :小结评价,畅谈收获通过这节课的学习,你有什么收获?教师引导学生归纳总结本节课所学的知识.在本次活动中教师应重点关注:课堂小结不仅可以使学生从总体上把握知识,强化对知识的理解和记忆,还可以培养学生的数学语言表达能力.引导学生积。
人教版八年级数学下19.2.2一次函数公开课教学设计

3.导入新课:通过这个问题,我们可以发现费用与行驶公里数之间存在一种线性关系。这种关系就是我们今天要学习的一次函数。
(二)讲授新知
在讲授新知环节,我将通过以下步骤帮助学生掌握一次函数的定义、图像特点及其性质。
1.一次函数的定义:介绍一次函数的一般形式y=kx+b(k≠0),解释k、b的几何意义。
-学生在教师的指导下,运用教育软件辅助学习,提高学习效率。
3.注重学生个体差异,实施有针对性的教学策略。
-教师根据学生的认知水平、学习兴趣等个体差异,设计不同难度的练习题,满足不同层次学生的需求。
-教师关注学生在学习过程中的困惑,及时给予指导和鼓励,帮助学生克服困难,提高自信心。
(三)情感态度与价值观
五、作业布置
为了巩固学生对一次函数知识的掌握,提高学生的应用能力和解决问题的能力,特此布置以下作业:
1.必做题:
-根据教材第19.2.2节的内容,完成课后练习题1、2、3。
-利用描点法绘制y=3x-2的图像,并分析其性质。
-在生活中找到一个一次函数的实际例子,并说明其k值和b值的实际意义。
2.选做题(至少选做2题):
3.培养学生勇于探索、积极进取的精神品质。
-学生在面对数学问题时,敢于尝试,勇于探索,不怕困难,坚持不懈。
-学生在解决问题的过程中,体验成功的喜悦,激发积极进取的精神品质。
二、学情分析
八年级学生经过前期的数学学习,已经具备了一定的数学基础知识和技能,对函数的概念有了初步的认识。在此基础上,学生对一次函数的学习将面临以下挑战:
1.培养学生对数学的兴趣和热爱,树立正确的数学观念。
-学生在学习过程中,感受数学的简洁美、逻辑美,提高数学学习兴趣。
人教版八年级数学下册19.2.2一次函数的概念优秀教学案例

1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。
人教版数学八年级下册19.2.2一次函数(第2课时)优秀教学案例

在教学过程中,我会提出一系列问题,引导学生思考和探究。例如:“一次函数的表达式是什么?它有什么特点?”“一次函数的图像是什么样子的?它与一次函数的性质有什么关系?”通过这些问题,激发学生的思维,培养学生的解决问题能力。
(三)小组合作
在学生掌握一次函数的性质后,我会组织学生进行小组合作,共同探讨一次函数在实际生活中的应用。每个小组可以选择一个实际问题,运用一次函数的知识进行解决。通过小组合作,培养学生的团队协作能力和沟通能力。
3.小组合作的学习方式:在学生掌握一次函数的性质后,我组织了小组合作活动,让学生共同探讨一次函数在实际生活中的应用。这种小组合作的学习方式培养了学生的团队协作能力和沟通能力,使他们在讨论和解决问题中能够相互学习和共同进步。
4.反思与评价的环节:在课程的最后,我让学生进行反思和评价,回顾自己在这节课中学到了什么,有什么收获和感悟。这种反思与评价的环节使学生能够总结经验,提高学习能力。同时,我也对学生的学习情况进行评价,注重培养学生的思维能力、创新能力和合作能力。
人教版数学八年级下册19.2是“人教版数学八年级下册19.2.2一次函数(第2课时)”,在上一课时中,学生已经初步了解了什么是一次函数,以及一次函数的表达式。本课时,我将引导学生深入学习一次函数的性质,包括单调性、截距等,并通过实例让学生理解一次函数在实际生活中的应用。
(二)讲授新知
在讲授新知环节,我会结合教材和教学资源,系统地讲解一次函数的性质,包括单调性、截距等。在讲解过程中,我会运用生动的例子和动画演示,帮助学生直观地理解一次函数的性质。同时,我会鼓励学生积极参与,提问和解答疑问,确保学生对一次函数的知识有深入的理解。
(三)学生小组讨论
在学生掌握一次函数的性质后,我会组织学生进行小组讨论。每个小组会选择一个实际问题,运用一次函数的知识进行解决。我会提供一些实际问题作为参考,如:“某商品原价为100元,打8折后的价格是多少?”,“某运动员跑步的速度是每分钟80米,他跑完1000米需要多少时间?”等。通过小组讨论,培养学生的团队协作能力和沟通能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
人教版数学八年级下册19.2.2《一次函数》教案2

人教版数学八年级下册19.2.2《一次函数》教案2一. 教材分析人教版数学八年级下册19.2.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念、性质有了初步了解的基础上进行教学的。
本节内容主要让学生掌握一次函数的定义、性质和图像,进一步理解函数的概念,为后续学习其他类型的函数打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念,对函数的性质有了初步了解,具备一定的抽象思维能力。
但部分学生对函数图像的识别和理解还有待提高,因此,在教学过程中,需要关注这部分学生的学习情况,通过具体实例和实际问题,引导学生理解和掌握一次函数的性质和图像。
三. 教学目标1.了解一次函数的定义、性质和图像,掌握一次函数的解析式表示方法。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点和识别。
3.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结,掌握一次函数的知识。
2.利用多媒体课件和实物模型,直观展示一次函数的图像,帮助学生理解和记忆。
3.结合实际问题,让学生运用一次函数解决实际问题,提高学生的应用能力。
4.采用分组合作、讨论交流的教学方式,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体课件和教学素材。
2.实物模型和教学工具。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一次函数的图像,引导学生关注一次函数的斜率和截距,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质和图像,让学生通过观察、分析、总结,理解一次函数的基本特点。
3.操练(10分钟)让学生分组讨论,分析给定的一次函数实例,判断它们的性质和图像,培养学生的动手操作能力和团队协作精神。
4.巩固(10分钟)利用多媒体课件和实物模型,让学生直观地感受一次函数的图像,加深对一次函数性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章一次函数
19.2 一次函数
19.2.2 一次函数 (2)
【教学目标】
知识与技能
1.会用“两点法”画出一次函数的图象。
2.结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
过程与方法
1.通过对应描点来研究一次函数的图象,经历知识的归纳、探究过程。
2.通过一次函数的图象归纳函数的性质,体验数形结合的应用。
情感、态度与价值观
在探究函数的图象和性质的活动中,通过一系列的探究问题,渗透与人交流合作的意识和探究精神。
【教学重难点】
重点:会用“两点法”画出一次函数的图象。
难点:一次函数的图象及其性质。
【导学过程】
【知识回顾】
一次函数的概念
【情景导入】
你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。
【新知探究】
探究一、
例2、画出函数y=-6x,y=-6x+5的图象(在同一坐标系内).
1.请你比较上面三函数的图象的相同点与不同点,填出你的观察结果:
函数的图象形状都是,并且倾斜程度;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点,即它可以看作由直线y=-6x向平移个单位长度而得到的;函数y=-6x-5的图象与y轴交点是,即它可以看作由直线y=-6x向平移个单位长度而得到的;比较三个函数解析式,试解释这是为什么?
2.联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?
3. 归纳平移法则:
一次函数y=kx+b的图象是一条,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移个单位长度而得到(当b>0时,向平移;当b<0时,向平移).
对于一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法
探究二、例3 :分别画出下列函数的图像(在练习本中完成)
(1)(2)y=-0.5x+1
分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x 轴,y轴的交点。
(1)(2)y=-0.5x+1
观察上面2个图像,(1)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2)y=-0.5x+1经过_________象限;y随x的增大而_______,函数的图像从左到右________;
归纳:
1.由此可以得到直线中,k ,b的取值决定直线的位置:
(1)直线经过___________象限;
(2)直线经过___________象限;
(3)直线经过___________象限;
(4)直线经过___________象限;
2.一次函数的性质:
(1)当时,y随x的增大而_______,这时函数的图像从左到右_______;
(2)当时,y随x的增大而_______,这时函数的图像从左到右_______;
3.一次函数y=kx+b图象的画法:在y轴上取(0,b)在x轴上取点(- ,0),过这两点的直线即所求图象.
【知识梳理】
一次函数y=kx+b的性质.
【随堂练习】
1、画出函数y=x+1, y=-x+1, y=2x+1 y=-2x+1的图象,由它们联系,一次函数解析式y=kx+b (k、b是常数,k≠0)中,k的正负对函数图象有什么影响?
2、练习直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为______。
图象经过第_____象限,y随x增大而______。
3、在同一坐标函数中画出下列函数图象归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响。
1、y=x-1 y=x y=x+1
2、y=-2x+1 y=-2x y=-2x+1。