开关电源分析
最详细的开关电源分析

最详细的开关电源分析开关电源是一种能将输入电源电能高效地转换成输出电源电能的电子装置,广泛应用于各种电子设备和系统中。
本文将详细介绍开关电源的工作原理、分类、特点以及常见故障分析。
开关电源的工作原理:开关电源通过使用开关器件(如MOS管、可控硅等)的开通和关断来对输入电源进行周期性切换,从而实现输入电源电能到输出电源电能的转换。
开关电源的主要工作原理可以分为四个阶段:整流、滤波、变压和稳压。
1.整流:开关电源的输入一般是交流电,首先需要将交流电转换为直流电。
整流电路可以使用整流桥或者整流二极管进行半波或全波整流,将交流电转换为脉冲电流。
2.滤波:在整流后,脉冲电流中还存在很多纹波,需要通过滤波电路将其滤除,使得输出电压更加平稳。
常见的滤波电路有电容滤波器和电感滤波器,它们通过对电流进行平滑处理来得到稳定的直流电压。
3.变压:在滤波后,输出电压一般较低,需要通过变压器将其升高或降低。
变压器的工作原理是利用磁性耦合将输入电压传递到输出端,通过变压器的变比关系调整输出电压。
4.稳压:得到了所需的输出电压后,还需要对输出电压进行稳定控制。
稳压电路通过反馈控制将输出电压与设定值进行比较,调整开关器件的开闭时间,使得输出电压稳定在设定值。
开关电源的分类:按照输入电源类型,开关电源可以分为交流输入开关电源(AC/DC)和直流输入开关电源(DC/DC)两种类型。
交流输入开关电源主要被应用于家用电器、工业设备等领域,直流输入开关电源则主要用于电子设备和通信设备等领域。
按照结构形式,开关电源可以分为离线式开关电源和在线式开关电源。
离线式开关电源将输入电流与输出电路通过电压变换器隔离,具有较好的安全性能。
在线式开关电源则可以将输入电流直接传导至输出电路,体积小巧,但对工作环境要求较高。
开关电源的特点:1.高效性:开关电源采用开关器件进行切换,可以实现高效率的能量转换,尤其在大功率和高频率应用中效果显著。
2.稳定性:开关电源采用稳压反馈控制,能够在输入电压范围和负载变化时保持稳定的输出电压。
开关电源电路组成及常见各模块电路分析

开关电源电路组成及常见各模块电路分析开关电源电路是一种将输入电流转换为高频脉冲的电路,通过变压器进行变换和滤波,最终将电源提供给负载。
它由多个模块组成,包括输入滤波器、整流器、功率变换器、输出滤波器和反馈控制器等。
下面我将对这些模块进行详细分析。
1.输入滤波器:开关电源电路的输入端通常会接入输入电源,因此需要一个输入滤波器来滤除输入电源中的高频噪声和电磁干扰。
输入滤波器通常由电容和电感构成,能够将输入电压平滑成纯直流信号,并提供稳定的电压给后续电路。
2.整流器:整流器的作用是将交流信号转换为直流信号,并提供稳定的电压给功率变换器。
常见的整流器有全波整流和半波整流两种方式。
全波整流使用四个二极管,能够将输入电压的正半周期和负半周期都转换为直流信号,效率更高。
而半波整流只使用两个二极管,仅将输入电压的正半周期转换为直流信号。
3.功率变换器:功率变换器是开关电源电路的核心部分,主要负责将直流信号转换为高频脉冲信号,通过变压器变换和带宽控制,将电源提供给负载。
常见的功率变换器有多种类型,包括单端交错式、反激式、降压升压式等。
这些变换器均具有高效率、可靠性和短路保护等特点。
4.输出滤波器:输出滤波器用于平滑功率变换器输出的高频脉冲信号,并将其转换为稳定的直流电压。
通常由电感和电容构成,能够滤除高频噪声和纹波,提供稳定的输出电压给负载。
5.反馈控制器:反馈控制器用于监测输出电压,并通过控制开关管的开关状态来实现自动调整电路的输出电压。
当输出电压低于设定值时,反馈控制器会调整开关管的开关状态,使电路输出电压回到设定值。
常见的控制方式有PID控制、PWM控制等。
以上是开关电源电路的常见模块。
这些模块通过相互协作,能够将输入电源转换为稳定的高频输出电压,并提供给负载。
开关电源电路具有高效率、小体积、轻量化等优点,在电子设备中得到广泛应用。
开关电源工作频率的原理分析

开关电源工作频率的原理分析开关电源是一种高效稳定的电源供应系统,在许多电子设备中得到广泛应用。
在开关电源的设计和使用过程中,工作频率是一个至关重要的参数。
本文将分析开关电源工作频率的原理,并探讨其对性能的影响。
一、开关电源的基本原理开关电源是通过快速开关管将输入电源切换成高频脉冲信号,然后经过滤波、调整和变换等环节,最终得到稳定的输出电压。
这种切换过程会产生开关频率的信号,即工作频率。
二、工作频率的选择原则1. 效率:开关电源的效率在很大程度上取决于工作频率。
较高的工作频率会导致较低的开关损耗,从而提高整个系统的效率。
2. 尺寸:开关频率高的电源可以采用较小的元件,减小整体体积。
尤其在微型电子设备中,对尺寸的要求较高。
3. 抗干扰能力:工作频率的选择还应考虑系统对外界干扰的抗性。
合适的工作频率可以减小电源对周围环境电磁波的敏感程度,提高系统的抗干扰能力。
三、开关电源工作频率的影响因素1. 电感元件:工作频率越高,电感元件的体积越小。
同时,高频信号会导致电感元件产生更大的功率损耗,因此需要选择工作频率适中的电感元件来平衡体积和损耗的关系。
2. 开关管:开关管具有较大的开关频率响应能力,但频率过高会产生更大的导通压降和开关损耗。
因此,在选择开关管时,需综合考虑频率响应和损耗的权衡。
3. 输出滤波:工作频率的选择还涉及输出滤波电容的大小。
频率过高会导致输出滤波电容变得更小,从而可能引起输出电压波动或噪声。
四、常见的工作频率范围开关电源的工作频率通常分为几个常见的范围,包括:1. 低频范围(20 kHz以下):适用于需要高功率输出和承受重载的应用,如电感加热、电动工具等。
2. 中频范围(20 kHz至100 kHz):适用于一般的电子设备,如计算机、通信设备等。
在这个频率范围内,可以实现较高的效率和尺寸优势。
3. 高频范围(100 kHz以上):适用于追求小型化和高效率的应用,如笔记本电脑、手机等微型电子设备。
开关电源电路分析

开关电源电路分析
开关管的工作原理是:当控制端的输入信号为高电平时,开关管导通,输入电源与传输装置连接,电流流过,输出电压稳定;当输入信号为低电
平时,开关管截断,输入电源与传输装置断开,电流停止流动,输出电压
为零。
输入滤波电路是用来对输入直流电进行滤波,使得输入电压稳定,减
小输入电压的纹波。
常见的输入滤波电路有电容滤波和电感滤波。
开关变换电路是开关电源电路的核心部分,其工作原理是通过一个开
关管来控制输入电源与传输装置的连接。
开关变换电路的核心是通过调整
开关管的导通和断开时间来改变输出电压。
常用的开关变换电路有单端开
关电源、双端开关电源和反激式开关电源等。
输出滤波电路是将输出的直流电进行滤波,减小输出电压的纹波。
输
出滤波电路通常采用电感滤波和电容滤波的组合,使输出电压更加稳定。
除了以上的基本部分外,开关电源电路还包括保护电路、反馈电路和
调整电路等。
保护电路主要用于检测和保护开关电源工作时的过电流、过
电压等异常情况,防止电路损坏;反馈电路用于对输出电压进行稳定控制,保证输出电压的稳定性;调整电路用于调整输出电压的大小,使得输出电
压能够达到期望值。
开关电源电路分析

开关电源电路工作原理分析通信设备中经常会使用到开关电源。
现就公司入职培训时,设备所柴富起师兄《通信电源技术》课件中开关电源的电路作简要分析。
一、开关电源组成开关电源电路主要由:输入电磁干扰滤波(EMI)电路、整流电路、软启动电路、DC-DC 变换电路和次级滤波电路构成。
电路图如图1.1所示:图1.1二、开关电源各部分电路的工作原理2.1EMI滤波电路的工作原理该电路中C116是一个高压滤波电容,当有电压过高的交流电通过时,能通过C116形成回路,从而对后级电路没有影响;L102电感的作用是滤掉频率过高的交流电;C117和C118是两个去耦电容,和外壳(大地)连接在一起,起着保护的作用。
经过EMI滤波电路后得到一个频率适中电压稳定的交流电。
如图2.1 图2.1 所示。
2.2整流电路的工作原理整流电路是由四个二极管组合而成的整流桥,整流桥工作原理是:交流电的正、负半周期分别通过整流桥上的两对二极管,无论是哪对二极管导通,输出的都是正半周的交流电,因此得到从整流桥输出的电压波形如图2.2所示。
图2.22.3软启动电路的工作原理软启动电路工作原理是:当开关K101闭合时,R129、N10和R126被短路,N10光耦中的发光二极管不亮,从而控制Soft start电路检测端为高电平,Soft start电路开始工作,为DC-DC提供控制电压;当K101断开时,电流流经光耦中发光二极管使可控硅开启,Soft start电图2.3路检测端为低电平,Soft start电路停止工作。
C113和C114是两个极性电容,起的作用是滤波,通过C113和C114是两个极性电容后电压变为如图2.3所示。
2.4DC-DC变换电路的工作原理该电路左半部分是由四个相同的组合电路构成,每个组合电路中都有一个N沟道增强型MOS管、一个二极管、一个电容和一个电阻,其中二极管起续流保护,电容和电阻串联构成一个防浪涌保护。
每个MOS管的栅极分别接了V1、V2、Q3、Q4 四个控制电压,当栅极控制电压为高电平时MOS管导通,因此要保证电流流过该组合电路就必须保图2.4证V1、Q3同时为高电平或者同时为低电平,V2、Q3也得同时为低电平或者同时为高电平,既是V1、Q3和V2、Q3是不一样的电平,通过调节V1、Q3和V2、Q3间高低电平转换频率,就调节了输出电压的占空比,从而调节其电压的大小,也就是PMW调制。
开关电源的楖念及分析方法

01
02
Vo/Vin =1/(1-D)
Boost电路的输入输出关系:
理想变压器的基本方程:
理想变压器模型: 变压器绕组完全耦合 变压器无气隙且磁芯的导磁率μ无穷大
I1
N1
N2
u1
u2
I2
电压基本方程:
电流基本方程:
理想变压器个绕组的电压与匝数成正比,且同名端具有相同极性;各绕组电流与匝数乘积之和为零,即电流的变比与匝比成反比,且极性相反(点进点出原则)。
根据转换的方法分类: 线性电源,相控电源,开关电源
根据调控的效果分类: 稳压, 恒流, 调频,调相
根据调控的方法分类: 传统反馈控制,矢量控制,数位控制
什么是Switching Mode Power Supply?
有源开关(Switch)
二极管(Diode)
电感器(Inductor)
电容器(Capacitor)
基本电子元件在开关电源中所起的作用
开关电源的基本元件:
+ u(t) -
i(t)
电容的基本方程
1. 当一电流流经电容, 电容两端的电压逐渐增加, 并且电容量越大电流增加越慢.
C
I
2. 在稳态工作的开关电源中流经电容的电流对时间的积分为零。
A
B
面积A=面积B
+ u(t) -
C:
L:
Buck电路工作原理分析:
UL
根据L的伏秒平衡原则:
(Vin-Vo)*DT=Vo*(1-D)T
Vo=Vin *D
L*ΔIo=Vo *(1-D)T
根据L在1-D时间的基本方程:
ΔIo=Vo *(1-D)T/L
Buck电路的输入输出关系:
开关电源的质量分析报告

开关电源的质量分析报告开关电源的质量分析报告一、引言开关电源作为一种常见的电子电源,广泛应用于各行各业。
开关电源的质量直接影响到设备的可靠性、耐用性以及安全性。
因此,对开关电源的质量进行分析是非常必要的。
二、质量分析1. 电气性能电气性能是开关电源的核心指标之一。
主要包括输出电压、输出电流、输出功率、效率、波动和噪声等参数。
高质量的开关电源应能稳定输出满足设备要求的电压、电流和功率,并且具有高效率、低波动和噪声。
2. 故障率故障率是评价开关电源质量的重要指标之一。
开关电源应具有较低的故障率,即在正常工作条件下长时间运行时,不易发生故障。
高质量的开关电源通常采用优质的元器件和结构设计,具有较高的可靠性和长寿命。
3. 安全性开关电源作为电力设备,安全性是至关重要的。
开关电源应具备过载保护、短路保护、过压保护和过温保护等功能。
此外,高质量的开关电源还应通过相关的安全认证,如CE认证、UL认证等,以确保产品质量和安全性。
4. 环境适应性开关电源通常会在各种环境条件下使用,包括不同的工作温度、湿度和高海拔环境等。
因此,开关电源的质量应具备适应各种环境的能力,确保在恶劣的环境条件下仍能正常工作。
5. 电磁兼容性高质量的开关电源应具备良好的电磁兼容性能,即在工作时不会对周围的电子设备和系统产生不良影响。
该指标通常通过电磁兼容性测试来评估。
三、质量控制措施为了确保开关电源的质量,以下是一些常见的质量控制措施:1. 选择优质的元器件优质的元器件是高质量开关电源的基础。
生产厂商应选择知名品牌的元器件,并严格控制供应商的质量管理。
2. 严格的生产流程管理生产过程中,应严格按照设定的生产流程进行操作,并设置相应的检测节点,确保每个环节的质量控制。
3. 检测和测试生产过程中需要对开关电源进行多次的检测和测试。
主要包括元器件的检测、成品的功能测试、环境适应性测试和电磁兼容性测试等。
4. 质量认证开关电源应通过相关的质量认证,如ISO9001认证、CE认证和UL认证等。
开关电源的技术现状及失效分析

开关电源的技术现状及失效分析开关电源是一种将输入电能转换为直流电能的电源装置,主要由开关管、变压器、电感器、电容器和控制电路等组成。
它具有体积小、效率高、可靠性好等优点,在现代电子设备中得到广泛应用。
本文将对开关电源的技术现状以及可能出现的故障进行分析。
一、开关电源的技术现状1.高频化:随着电子设备的发展,对开关电源的功率密度和效率提出了更高的要求。
为了满足这些需求,开关电源正朝着高频化方向发展。
高频开关电源可以减小变压器和电感器的体积,提高系统的功率密度和效率。
2.小型化:开关电源的体积越小越好,尤其对于便携式设备而言。
因此,研究人员在开关电源的设计中提出了很多小型化的技术,如采用表面贴装技术、集成电路技术等。
3.高效率:提高开关电源的效率可以减小功耗,提高使用寿命。
目前,很多高效率的开关电源方案被提出,如零电压开关(ZVS)和零电流开关(ZCS)技术等。
4.多功能集成:现代电子设备要求开关电源具备多种功能,如过压保护、过流保护、短路保护等。
因此,开关电源的设计需要考虑这些功能的集成,以提高系统的安全性和可靠性。
二、开关电源的失效分析1.元器件失效:在开关电源中,元器件的失效是常见的故障之一、主要包括开关管的损坏、变压器的短路、电容器的老化等。
这些故障可能导致开关电源无法正常工作或者导致输出电压波动。
2.过载、过压保护失效:开关电源的过载和过压保护是保证设备的安全运行的重要功能。
如果这些保护功能失效,开关电源就容易超负荷工作或者输出过高的电压,从而损坏设备或者威胁人身安全。
3.温度过高:开关电源在长时间高负载工作时,可能会产生较高的温度。
如果散热设计不良或者散热器失效,开关电源的温度可能会过高,导致元器件的老化、损坏或者短路。
4.控制电路故障:开关电源的工作需要控制电路的精确控制,如果控制电路失效,开关电源可能无法正常工作或者无法正确控制输出电压。
综上所述,开关电源作为一种重要的电源装置,在现代电子设备中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、开关电源定义 (2)二、开关电源优缺点 (2)1.开关稳压电源的优点 (2)2.开关稳压电源的缺点 (3)三、开关稳压电源的种类 (3)(1)按激励方式划分 (3)(2)按调制方式划分 (4)(4)按开关管电流的工作方式划分 (6)(5)按开关晶体管的类型划分 (6)(6)按晶体管的连接的连接方式划分 (7)(7)按输入与输出的电压大小划分 (8)(8)按工作方式划分 (8)(9)按电路结构划分 (9)四、开关电源组成及原理 (10)1.实际电路 (10)2.直流--直流变换原理 (11)五、耦合型自激调频式开关电源 (14)1.交流输入及整流滤波 (14)2.开关管导通回路 (15)3.启动电路 (16)4.形成自激振荡的正反馈电路 (16)5.脉宽调整电路 (17)6.开关脉冲电路中三极管的保护电路 (18)7.输入电源电压过压保护 (18)8.自动稳压电路 (19)9.多路直流电压输出 (20)一、开关电源定义开关电源是一种控制晶体管通断时间比率以维持电压稳定输出的电源。
实际上,开关稳压电源的核心部分是一个直流变压器二、开关电源优缺点1.开关稳压电源的优点功耗小,效率高。
在下图中的开关稳压电源电路中,晶体管V在激励信号的激励下,它交替地工作在导通—截止和截止—导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz。
这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%。
体积小,重量轻。
从开关稳压电源的原理框图可以清楚地看到这里没有采用笨重的工频变压器。
由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。
由于这两方面原因,所以开关稳压电源的体积小,重量轻。
稳压范围宽。
从开关稳压电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿,这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。
所以开关电源的稳压范围很宽,稳压效果很好。
此外,改变占空比的方法有脉宽调制型和频率调制型两种。
这样,开关稳压电源不仅具有稳压范围宽的优点,而且实现稳压的方法也较多,设计人员可以根据实际应用的要求,灵活地选用各种类型的开关稳压电源。
滤波的效率大为提高,使滤波电容的容量和体积大为减少。
开关稳压电源的工作频率目前基本上是工作在50kHz,是线性稳压电源的1000倍,这使整流后的滤波效率几乎也提高了1000倍。
就是采用半波整流后加电容滤波,效率也提高了500b倍。
在相同的纹波输出电压下,采用开关稳压电源时,滤波电容的容量只是线性稳压电源中滤波电容的1/500—1/1000。
电路形式灵活多样。
例如,有自激式和他激式,有调宽型和调频型,有单端式和双端式等等,设计者可以发挥各种类型电路的特长,设计出能满足不同应用场合的开关稳压电源。
2.开关稳压电源的缺点开关稳压电源的缺点是存在较为严重的开关干扰。
开关稳压电源中,功率调整开关晶体管V工作在状态,它产生的交流电压和电流通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采取一定的措施进行抑制、消除和屏蔽,就会严重地影响整机的正常工作。
此外由于开关稳压电源振荡器没有工频变压器的隔离,这些干扰就会串入工频电网,使附近的其他电子仪器、设备和家用电器受到严重的干扰。
目前,由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因而造价不能进一步降低,也影响到可靠性的进一步提高。
所以在我国的电子仪器以及机电一体化仪器中,开关稳压电源还不能得到十分广泛的普及及使用。
特别是对于无工频变压器开关稳压电源中的高压电解电容器、高反压大功率开关管、开关变压器的磁芯材料等器件,在我国还处于研究、开发阶段。
在一些技术先进国家,开关稳压电源虽然有了一定的发展,但在实际应用中也还存在一些问题,不能十分令人满意。
这暴露出开关稳压电源的又一个缺点,那就是电路结构复杂,故障率高,维修麻烦。
对此,如果设计者和制造者不予以充分重视,则它将直接影响到开关稳压电源的推广应用。
当今,开关稳压电源推广应用比较困难的主要原因就是它的制作技术难度大、维修麻烦和造价成本较高。
三、开关稳压电源的种类(1)按激励方式划分他激式电路中专设激励信号的振荡器,电路形式如下图所示。
●自激式开关管兼作振荡器中的振荡管,电路形式如下图所示。
(2)按调制方式划分●脉宽调制型振荡频率保持不变,通过改变脉冲宽度来改变和调节输出电压的大小,有时通过取样电路、耦合电路等构成反馈闭环回路,来稳定输出电压的幅度。
●频率调制型占空比保持不变,通过改变振荡器的振荡频率来调节和稳定输出电压的幅度。
混合调制型●通过调节导通时间的振荡频率来完成调节和稳定输出电压幅度的目的。
(3)按储能电感与负载的连接方式划分●串联型储能电感串联在输入与输出电压之间,电路形式如下图所示。
(三极管耐压高)(三极管耐压要低)并联型储能电感或开关管并联在输入与输出电压之间,电路形式如下图所示。
(三极管耐压低)(三极管耐压要高些)●变压器耦合型负载和另外两者无直接相连,而是通过变压器耦合输入输出分离开,比较安全,实际运用中使用居多(4)按开关管电流的工作方式划分●开关型用开关晶体管把直流变成高频标准方波,电路形式类似于他激式。
●谐振型开关晶体管与LC谐振回路将直流变成标准正弦波,电路形式类似于自激式。
(5)按开关晶体管的类型划分●晶体管型采用晶体管作为开关管,电路形式如图6所示。
●可控硅型采用可控硅作为开关管,这种电路的特点是直接输入交流电,不需要一次整流部分,其电路形式如图5。
(6)按晶体管的连接的连接方式划分●单端式仅使用一个晶体管作为电路中的开关管,这种电路的特点是价格低,电路结构简单,但输出功率不能提高,其电路形式如图3、图4和图6所示。
●推挽式使用两个晶体管,将其连接成推挽功率放大器形式。
这种电路的特点是开关变压器必须具有中心抽头,电路形式如图12。
●半桥式使用两个晶体管,将其连接成半桥形式。
它的特点是适应于输入电压较高的场合。
电路形式如图11。
●全桥式使用四个开关晶体管,将其连接成全桥形式。
它的特点是输出的功率比较大。
其电路形式如图13。
(7)按输入与输出的电压大小划分●升压式输出电压比输入电压高,实际就是并联型开关稳压电源。
●降压式输出电压比输入电压低,实际就是串联型开关稳压电源。
(8)按工作方式划分●可控整流型所谓可控整流型开关稳压电源,是指采用可控硅整流元件作为调整开关管,可由交流市电电网直接供电,也可用变压器变压后供电。
(这种供电方式在开关稳压电源刚兴起的初期常常采用,目前基本上不太采用。
)在可工作的半波内,截去正弦曲线的前一部分,这一部分所占角度称为截止角,导通的正弦曲线的后一部分称为导通角。
依靠调节导通角的大小,可达到调整输出电压和稳定电压的目的。
其电路如图10所式。
●斩波型斩波型开关稳压电源是指直流供电,输入直流电压加到开关电路上,在开关电路的输出端得到单向的脉动直流,经过滤波得到与输入电压不同的稳定的直流电压,电路还从输出电压取样,经过比较、放大、控制脉冲发生电路产生的脉冲信号,用以控制调整开关的导通时间和截止时间的长短或开关的工作频率,最后达到稳定输出电压的目的。
电路的过压保护电路也是依据这一部分提供的取样信号来进行工作的,斩波型电路形式如图9所示。
●隔离型这种形式的开关电源是在输入回路与逆变电路之间,经过高频变压器(也可称为开关变压器),利用磁场的变化实现能量的传递,没有电流间的直接流通,隔离型开关稳压电源采用直流供电,经过开关电路,将直流电变成频率很高的交流电,再经变压器隔离、变压(升压或降压),然后经整流器整流,最后就可以得到新的、极性和数值各不相同的多组直流输出电压。
电路从输出端取样,经放大后反馈至开关控制端,控制驱动电路的工作,最后达到稳定输出电压的目的。
这种形式的开关稳压电源在实际稳压电源中应用最为广泛。
(9)按电路结构划分●散件式整个开关稳压电源电路都是采用分立元器件组成的,它的电路结构较为复杂,可靠性较差。
●集成电路式整个开关稳压电源电路或电路的一部分是由集成电路组成的,这种集成电路通常为厚膜电路。
有的厚膜集成电路中包括开关晶体管,有的则不包括开关晶体管。
这种电源的特点是电路结构简单、调试方便、可靠性高。
彩色电视机中常采用这种开关电源。
四、开关电源组成及原理1.实际电路1.交流输入220V 50Hz的市电2.交流保险当电流过大时,保险丝烧毁,保护后续电路;3.电流互感滤波滤除交流电中高于50Hz的信号4.桥式整流电路将交流电整流成直流脉冲信号5.滤波电容将脉动的直流信号变成较平滑的直流信号6.开关管开关电源心脏7.开关变压器将开关管送出来的电压进行变压8.开关激励脉冲形成电路控制开关管开关时间9.激励变压器连接开关激励脉冲形成电路与开关管10.高频滤波感滤除高频信号11.高频滤波容使直流信号平滑12.直流电压输出输出稳定直流电压上图中右边,用红色框框将电路大致分成三部分:第一部分,将交流输入经过滤波整流变成直流电;第二部分,是开关电源的核心部分,直流—直流变换;第三部分,将直流电经过滤波整流后,作为稳定直流源使用;2.直流--直流变换原理(1)DC-DC变换原理假设输入的为直流电,如波形图(一)所示;电路图(一)中,控制开关K以一定的频率开和关,就以产生如波形图(2)的脉冲直流电流;电路图(二)中,比电路图(一)多了一个电解电容,使得输出的直流电较为平滑,其中电阻R保护电容C,防止开关导通的瞬间产生的高电压;上图中将电阻R替换为电感L,因为电阻会消耗能量,降低开关电源的效率,电感也能起到保护作用,但它是无功元件,不消耗能量;同时增加了二极管VD,在开关断开时,使得开关后面部分电路形成回路,释放电感中能量,同时起到续流作用;通过上面的电路,就能通过控制开关的导通和断开,产生如下图所示的波形开关电源能够在输入电压不变的情况下调节输出电压,以适应不同的电压应用,这个称为调压过程;开关电源也能在输入电压变化的情况下,保持输出电压的稳定,使得负载能正常工作,这个称为稳压过程;如下面两张图所示:在输入电压不变的情况下,通过调整占空比,即可调节输出电压;在输入电压变化的情况下,通过调整占空比,可调节电压稳定输出五、耦合型自激调频式开关电源开关电源电路形式有多种,下面以耦合型自激调频式开关电源为例,说明下开关电源各部分组成及其原理,耦合型自激调频式开关电源的一个缺点是对输入电压适应范围比较窄1.交流输入及整流滤波将交流电源变成300V左右比较稳定的直流电源,供下一级进行DC-DC变换L1、L2滤除交流电中高频成分C5、C6增加滤波效果D1~D4整流桥,将交流电转换成直流电C1、C2、C3、C4滤波由于整流桥二极管非线性产生的高次斜波,同时对整流桥二极管分流,保护整流桥二极管C7、C8对脉动直流电转换成变化幅度比较小的直流电,C7对高频滤波,C8对低频滤波2.开关管导通回路输入形成回路,通过三极管VT1,使得交流电变成脉冲式直流电开关管VT1,开关电源的心脏电感L1,变压器的初级,储存能量3.启动电路使开关管导通R1+R2+R3+R4=100K~300K三极管的电流放大系数为几倍到几十倍假设R1+R2+R3+R4=200K,三极管的电流放大系数为20,则三极管基极电流Ib =300V / 200K =1.5mA三极管集电极电流Ic =30×Ib =30mA4.形成自激振荡的正反馈电路通过上面的计算可知,如果单凭上面的电路,开关电源的功率太低,无法满足实际需要,因此,需增加开关管基极电流,使得集电极电流增加,进而功率增加;电感L2是和电感L1耦合的,在电感L1产生自感电动势上正下负时,电感L2也会产生自感电动势上正下负,通过图中粉红色路线,将电流加到开关管基极,使得集极电流增加;5.脉宽调整电路通过调整占空比,使输出电压稳定VD1光电耦合器,输出电压升高时,光电耦合器工作,VD1导通VD1导通,VT3也导通VT3导通,分流管VT2也导通,使得VT1基极电流减小,VT1导通程度减小,占空比减小,输出电压也减小同理输出电压降低时,分流管VT2导通程序减小,分流作用减小,VT1导通程序增加,占空比增加,输出电压也增加6.开关脉冲电路中三极管的保护电路保护电路中三极管被反向击穿R12、C12(尖峰脉冲吸收回路)释放L1下正上负时的能量,保护VT1C10对VT1的发射极进行保护C11对VT2的发射极进行保护1 释放L2下正上负时的能量,保护VT27.输入电源电压过压保护输入电压过大时,能调整开关管VT1的占空比减小,输出电压减小,保护负载以及开关电源本身电路输入电压过高时,稳压二极管反向击穿,分流VT2导通,VT1基极电流减小,占空比减小,输出电压减小,同时保护开关电源本身电路8.自动稳压电路输出电压变化时,能调整占空比增或减小,达到输出电压稳压输出电压升高时,VT4导通程度增加,光电耦合中的二极管导通发光,VD1导通,VT3导通,分流管VT2导通,VT1基极电流减小,占空比减小,输出电压减小;同理,输出电压降低时,占空比增加,输出电压增加;9.多路直流电压输出开关电源能提供多组电压输出通过在变压器次级绕线的不同,使输出电压不同,以适应不同电压应用场合。