应用回归分析-课后习题参考复习资料

合集下载

应用回归分析第章课后习题参考复习资料

应用回归分析第章课后习题参考复习资料

2.1 一元线性回归模型有哪些基本假定?答:1. 解释变量 1x ,Λ,2x ,p x 是非随机变量,观测值,1i x ,,2Λi x ip x 是常数。

2. 等方差及不相关的假定条件为⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1,0)(2ΛΛσεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。

在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。

3. 正态分布的假定条件为⎩⎨⎧=相互独立n i n i N εεεσε,,,,,2,1),,0(~212ΛΛ 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。

4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。

在整个回归分析中,线性回归的统计模型最为重要。

一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。

因此,线性回归模型的理论和应用是本书研究的重点。

1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i ΛΛ=求出p ββββ,,,,210Λ及方差2σ的估计;2. 对回归方程及回归系数的种种假设进行检验;3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。

2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1Λ=+=εβ误差n εεε,,,21Λ仍满足基本假定。

求1β的最小二乘估计。

答:∑∑==-=-=ni ni i i i x y y E y Q 1121121)())(()(ββ∑∑∑===+-=--=∂∂n i n i ni i i i i i i x y x x x y Q111211122)(2βββ 令,01=∂∂βQ即∑∑===-n i ni i i i x y x 11210β 解得,ˆ1211∑∑===ni ini i i xyx β即1ˆβ的最小二乘估计为.ˆ1211∑∑===ni ini ii xyx β2.3 证明: Q (β,β1)= ∑(y i-β0-β1x i)2因为Q (∧β0,∧β1)=min Q (β0,β1 )而Q (β0,β1) 非负且在R2上可导,当Q 取得最小值时,有 即-2∑(y i -∧β0-∧β1x i )=0 -2∑(y i-∧β0-∧β1x i ) x i=0又∵e i =yi -( ∧β0+∧β1x i )= yi -∧β0-∧β1x i ∴∑e i =0,∑e i x i =0(即残差的期望为0,残差以变量x 的加权平均值为零)2.4 解:参数β0,β1的最小二乘估计与最大似然估计在εi~N(0, 2 ) i=1,2,……n 的条件下等价。

《应用回归分析》课后题答案

《应用回归分析》课后题答案
.168
.027
.885
接受原假设认为显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
(9)相关系数
=
小于表中的相应值同时大于表中的相应值,x 与 y 有显著的线性关系.
(10)
序号
1
825
3.5
3.0768
0.4232
2
215
1
0.8808
0.1192
3
1070
4
3.9588
0.0412
从图上可看出,检验误差项服从正态分布。
6h
GB6017.1-20 起重机械安全规程-第 1 部分
第三章 多元线性回归
3.11 解:(1)用 SPSS 算出 y,x1,x2,x3 相关系数矩阵:
Pearson 相关
y

x1
x2
x3
y
x1
x2
x3
N
y
x1
x2
x3
相关性
y 1.000
.556 .731 .724
系数a 模 型
非标准化系数
标准 系数
Si
B 的 95.0% 置信
t g.
区间
相关性
共线性 统计量
9h
GB6017.1-20 起重机械安全规程-第 1 部分
标准误
试用
B


下限
零 上限 阶

容V
偏分
差 IF
1(常
-459.6
量)
24
8
153.05
-3.
.0
-821.5
003
20
47
0
-97.70
x1

《应用回归分析》课后题答案

《应用回归分析》课后题答案

《使用回归分析》部分课后习题答案第一章回归分析概述变量间统计关系和函数关系的区别是什么答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

回归分析和相关分析的联系和区别是什么答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y和变量x的密切程度和研究变量x 和变量y的密切程度是一回事。

b.相关分析中所涉及的变量y和变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

回归模型中随机误差项ε的意义是什么答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y和x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

线性回归模型的基本假设是什么答:线性回归模型的基本假设有:1.解释变量….xp是非随机的,观测值…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^2《3.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.回归变量的设置理论根据是什么在回归变量设置时应注意哪些问题答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

《应用回归分析》课后习题部分答案-何晓群版

《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析

《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

《应用回归分析》课后题标准答案

《应用回归分析》课后题标准答案

3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)

《应用回归分析》课后题答案

《应用回归分析》课后题答案

《使用回归分析》部分课后习题答案第一章回归分析概述变量间统计关系和函数关系的区别是什么答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

回归分析和相关分析的联系和区别是什么答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y和变量x的密切程度和研究变量x和变量y的密切程度是一回事。

b.相关分析中所涉及的变量y和变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

回归模型中随机误差项ε的意义是什么答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y和x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

—线性回归模型的基本假设是什么答:线性回归模型的基本假设有:1.解释变量….xp是非随机的,观测值…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.回归变量的设置理论根据是什么在回归变量设置时应注意哪些问题答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

《应用回归分析》课后习题部分答案何晓群版

《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自变量选择与逐步回归 5章第思考与练习参考答案
5.1 自变量选择对回归参数的估计有何影响?
答:回归自变量的选择是建立回归模型得一个极为重要的问题。

如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使
得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。

5.2自变量选择对回归预测有何影响?
答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。

当选模型(p元)正确采用全模型(m元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。

5.3 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣?
则应使用如果所建模型主要用于预测,答:统计量达到最小的1 / 8
准则来衡量回归方程的优劣。

5.4 试述前进法的思想方法。

答:前进法的基本思想方法是:首先因变量Y对全部的自变量
x12建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。

每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。

在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量(F值最大)进入回归方程。

不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值F α(11),回归过程结束。

5.5 试述后退法的思想方法。

答:后退法的基本思想是:首先因变量Y对全部的自变量x12建立一个m元线性回归方程, 并计算t检验值和F检验值,选择最不显著(P值最大且大于临界值)的偏回归系数的自变量剔除出回归方程。

每一步只剔除一个变量,再建立m-1元线性回归方程,计算t检验值和F检验值,剔除偏回归系数的t检验值最小(P值最大)的自变量,再建立新的回归方程。

不断重复这一过
程,直到无法剔除自变量时,即所有剩余p个自变量的F检验值均大于F检验临界值Fα(11),回归过程结束。

2 / 8
5.6前进法、后退法各有哪些优缺点?
答:前进法的优点是能够将对因变量有影响的自变量按显著性一一选入,计算量小。

前进法的缺点是不能反映引进新变量后的变化,而且选入的变量就算不显著也不能删除。

后退法的优点是是能够将对因变量没有显著影响的自变量按不显著性一一剔除,保留的自变量都是显著的。

后退法的缺点是开始计算量大,当减少一个自变量时,它再也没机会进入了。

如果碰到自变量间有相关关系时,前进法和后退法所作的回归方程均会出现不同程度的问题。

5.7 试述逐步回归法的思想方法。

答:逐步回归的基本思想是有进有出。

具体做法是将变量一个一个的引入,当每引入一个自变量后,对已选入的变量要进行逐个检验,当原引入变量由于后面变量的应纳入而变得不再显著时,要将其剔除。

引入一个变量或从回归防方程中剔除一个变量,为逐步回归的一步,每一步都要进行F检验,以确保每次引入新的变量之前回归方程中只包含显著的变量。

这个过程反复进行,直到无显著变量引入回归方程,也无不显著变量从回归方程中剔除为止。

这样就避免了前进法和后退法各自的缺陷,保证了最后得到的回归子集是最优回归子集。

5.8 在运用逐步回归法时,α和α的赋值原则是什么?如果希出进望回归方程中多保留一些自变量,α应如何赋值?进答:原则是要求引入自变量的显著水平α小于剔除自变量的显进3 / 8
著性水平α,否则可能出现死循环;若想回归方程多保留自变出量,可以增大α的值,使得更多自变量的P值在α的范围内,进进但要注意,α的值不得超过α的值。

出进5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入y(亿元)为了建立国家财政收入回归模型,我们以财政收入等。

xx为工业增为因变量,自变量如下:,为农业增加值(亿元)21xx为人口数(万人),为建筑业增加值(亿元)加值(亿元),,43xx为受灾面积(万公顷),。

据《中国为社会消费总额(亿元)65统计年鉴》获得1978—1998年共21个年份的统计数据,见表5.4(P167)。

由定性分析知,所有自变量都与y有较强的相关性,分别用后退法和逐步回归法作自变量选元。

解:后退法输出结果:
4 / 8
a fficientsCoeStandardizedUnstandardizedCoefficientsCoefficientsSig.Std.
ErrorBetatModelB(Constant)1.4722201.9351627.578.739x1.002-3.708-1.064-.604.163x2.082-1.565.202 -1.872-.379x3.718-.199.539-.368-.130x4.824-.005-.019.024-.227x5.000.681.1263.7755.394x6.436.008-.006-.017-.801(Constant)2.0023.6831133.739307.853x1.000-1.103.125-.626-4.998x2.017-1.422.128-.3 44-2.695x3.669.511-.223-.146-.435x5.0007.219.662.0923.670x6.341.007-.007-.019-.984(Constant)3.00 21134.615299.9493.783x1.000-.617-1.087.120-5.128x2.001-.383-1.582-4.310.089x5.0003.668.089.662 7.405x6.354-.955-.018.007-.007(Constant)4.0008.348103.725865.929x1.000.119-.601-5.057-1.059x2.0 01-1.493-4.216.086-.361x5.0003.5417.439.086.639a. Dependent Variable: y
逐步回归法
二者结果相同,回归方程为:
0.639x50.361x20.601x1865.929—-+
5 / 8
但是回归系数的解释不合理。

表5.5的数据是1968-5.101983年期间与电话线制造有关的数据,各变量的含义如下:
x1——年份;
x2——国民生产总值(10亿美元);
x3——新房动工数(单位:1000);
x4——失业率(%);
x5——滞后6个月的最惠利率;
x6——用户用线增量(%);
y——年电话销量(百万尺双线)。

(1)建立y对x26的线性回归方程。

输出结果如下:
回归方程为:
=5922.827+4.864-846.867+2.374+14.539-817.901
x x5、2的系数未通过检验。

其中
(2)用后退法选择自变量。

6 / 8
后退法剔除P值最大的剔除x5,模型的参数均通过显著性检验。

(显著性水平α=0.05),得回归方程为:
-862.699=6007.320+5.068-824.261+2.308
模型表明年电话销量(y)与国民生产总值、新房动工数、失业率、用户用线增量有显著的线性关系。

(3)用逐步回归法选择自变量
逐步回归法引入x354进入回归模型,没有剔除变量,保留x354作为最终模型。

回归方程为:
7 / 8
1412.807+3.440x3—415.136x4+348.729x5
模型表明年电话销量(y)与新房动工费、失业率、滞后6个月
的最惠利率有显著的线性关系。

(4)根据以上计算结果分析后退法和逐步回归法的差异
答:两个方法得到的最终模型是不同的,后退法首先剔除了x5,而逐步回归法在第二步引入了x5,说明两种方法对自变量选取
的方法是不同的,这与自变量之间的相关性有关。

相比之下,后退法首先做全模型的回归,每个自变量都有机会展示自己的作用,
所得结果更值得信服。

从本例看,x5是滞后6个月的最惠利率,对因变量的影响似乎不大。

8 / 8。

相关文档
最新文档