opencv自己训练分类器进行物体识别
opencv球类物体识别基本原理

opencv球类物体识别基本原理OpenCV是一款广泛使用的计算机视觉库,它提供了许多图像处理和计算机视觉算法。
在球类物体识别中,OpenCV可以用于提取图像特征,进行球类物体的检测和识别。
本篇文章将介绍球类物体识别的基本原理,包括图像处理、特征提取和分类器等关键技术。
一、图像处理在球类物体识别中,图像处理是基础步骤之一。
它包括对图像进行预处理、增强和转换,以提高图像的质量和可处理性。
常用的图像处理技术包括灰度转换、噪声去除、对比度增强、边缘检测等。
这些技术可以帮助我们更好地识别图像中的球类物体。
二、特征提取特征提取是球类物体识别中的关键步骤。
它通过从图像中提取出有意义的特征,如形状、纹理和颜色等,来提高识别的准确性。
在OpenCV中,有许多用于特征提取的算法,如SIFT、SURF、HOG等。
这些算法可以从图像中提取出关键点、方向、梯度和对比度等信息,以建立球类物体的特征模型。
三、分类器分类器是用于识别球类物体的另一种关键技术。
它通过将图像的特征输入到预定义的分类模型中,来预测图像中是否为球类物体。
常用的分类器包括支持向量机(SVM)、神经网络、决策树等。
这些分类器可以根据不同的数据集和任务进行调整和优化,以提高识别的准确性和鲁棒性。
四、应用案例下面是一个简单的应用案例,演示如何使用OpenCV进行球类物体的识别。
1. 准备数据:收集一些带有球类物体的图像,并将其分为训练集和测试集。
2. 图像预处理:对图像进行灰度转换、噪声去除和对比度增强等处理。
3. 特征提取:使用OpenCV中的SIFT或SURF算法,从图像中提取关键点和方向等信息。
4. 训练分类器:使用训练集中的图像和特征,训练一个支持向量机分类器。
5. 测试分类器:将测试集中的图像输入到训练好的分类器中,进行预测。
6. 结果评估:根据分类器的预测结果,评估识别的准确性和鲁棒性。
五、总结通过以上介绍,我们可以看到OpenCV在球类物体识别中的应用价值。
python目标物体检测识别代码

python目标物体检测识别代码目标物体检测和识别是计算机视觉领域的一个重要问题,Python在这方面有很多优秀的库和工具可以用来实现。
其中最流行的库之一就是OpenCV,它提供了丰富的图像处理和计算机视觉算法。
下面是一个简单的目标物体检测和识别的Python代码示例,使用了OpenCV和其内置的目标检测模型:python.import cv2。
# 加载预训练的目标检测模型。
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")。
classes = []with open("s", "r") as f:classes = [line.strip() for line in f.readlines()]layer_names = net.getLayerNames()。
output_layers = [layer_names[i[0] 1] for i innet.getUnconnectedOutLayers()]# 读取输入图像。
img = cv2.imread("image.jpg")。
height, width, channels = img.shape.# 对输入图像进行预处理。
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)。
net.setInput(blob)。
outs = net.forward(output_layers)。
# 解析检测结果并绘制边界框。
class_ids = []confidences = []boxes = []for out in outs:for detection in out:scores = detection[5:]class_id = np.argmax(scores)。
opencv人脸识别原理

opencv人脸识别原理OpenCV(开源计算机视觉库)是一个广泛使用的计算机视觉库,其中包含了很多用于处理图像和视频的函数和算法。
在OpenCV中,人脸识别是一个重要的应用领域。
其原理主要包括以下几个步骤:1. 图像预处理:首先,将输入的图像转换为灰度图像,这是因为灰度图像只有一个通道,便于加速运算。
然后,可以对图像进行一些预处理操作,如直方图均衡化、高斯滤波等,以提高识别效果。
2. 面部检测:OpenCV使用级联分类器(Cascade Classifier)来进行面部检测。
这是一种基于机器学习的方法,通过训练一个分类器来识别面部特征。
级联分类器是由多个简单特征分类器级联而成,使用Haar特征提取器和Adaboost训练技术来实现。
3. 特征提取:一旦检测到面部区域,OpenCV会使用特征提取算法来提取面部的特征。
这些特征可以是面部区域的几何特征,如眼睛、鼻子、嘴巴的位置和形状等,也可以是纹理特征,如局部二值模式(LBP)、小波变换等。
4. 特征匹配:接下来,OpenCV将使用已知的特征模板与提取到的面部特征进行匹配。
这可以通过比较特征向量之间的距离或使用分类器来完成。
匹配过程将对输入的面部特征与已知的人脸特征进行比对,以确定识别结果。
5. 人脸识别:最后,OpenCV将根据匹配结果进行人脸识别。
如果匹配率达到预设的阈值,则认为是同一个人。
否则,将确定为其他人或无法识别。
总的来说,OpenCV的人脸识别原理是通过面部检测、特征提取和特征匹配等步骤来实现的。
通过这些步骤,OpenCV能够准确地识别并区分不同的人脸。
java-opencv-训练自己的物体分类器

java-opencv-训练⾃⼰的物体分类器收集正,负样本(刚开始可以先⽤50~100左右的样本量试试看,正,负样本数量最好⼤于1000,具体看个⼈感觉)。
正样本,需要做识别物体的图⽚(本⽂收集60张):正样本负样本,任意不包含正样本的图⽚(本⽂收集106张):第⼆步:调整样本,并⽣成样本描述⽂件调整样本----将正,负样本转换灰度(本⽂采⽤:IMREAD_GRAYSCALE),调整⼤⼩(本⽂采⽤:正20X20,负50X50)(据说,正20X20最佳)。
调整后正样本:调整后负样本:⽣成样本描述⽂件:cmd 进⼊posdata⽬录,执⾏ dir /b/s/p/w *.jpg > pos.txt同理进⼊negdata⽬录,执⾏ dir /b/s/p/w *.jpg > neg.txtpos.txt内容如下:neg.txt内容如下:修改pos.txt⽂件(neg.txt不⽤修改)如下:“1 0 0 20 20”,为固定格式,其中20指的是照⽚的像素⼤⼩。
第三步:⽣成.vec⽂件将\opencv\build\x64\vc14\bin 下的所有⽂件复制到posdata⽬录同级⽬录下;将上⼀步最后⽣成的pos.txt,neg.txt⽂件也放⼊该同级⽬录,如下:cmd 进⼊该⽬录,执⾏:opencv_createsamples.exe -vec pos.vec -info pos.txt -num 60 -w 20 -h 20其中-num 60,指的是图⽚的数量,-w 20 -h 20,指的是图⽚的规格。
创建traincascade.bat⽂件,添加内容:opencv_traincascade.exe -data xml -vec pos.vec -bg neg.txt -numPos 48 -numNeg 80 -numStages 10 -w 20 -h 20 -mode ALLpause其中-numPos 48为训练取的正样本的样本(取样本数量的0.8~0.9,本⽂取48),-numNeg 80为训练取的负样本的样本(取样本数量的0.8~0.9,本⽂取80),-numStages 10 表⽰训练的层数(建议15~20,本⽂取10),此时⽬录中⽂件如下;双击运⾏traincascade.bat,如下:在xml⽬录下⽣成的cascade.xml⽂件就是训练出来的分类器。
opencv级联分类器训练与使用

opencv级联分类器训练与使用什么是级联分类器?级联分类器是一种机器学习模型,用于目标检测和识别。
它是由多个分类器级联组成的模型,每个分类器都有不同的检测强度。
这种级联结构能够有效地筛选出具有较高置信度的正样本,从而加快目标检测速度,同时保持较高的检测准确性。
级联分类器的训练过程:1. 收集训练样本:首先需要收集一些正样本和负样本作为训练样本。
正样本是我们要识别的目标,而负样本则是与目标无关的背景图像。
这些样本应该尽可能覆盖实际应用中可能出现的情况。
2. 特征提取:对于每个训练样本,我们需要提取一些特征来描述图像中的目标。
OpenCV中常用的特征是Haar特征,它可以描述图像中的边缘和纹理等信息。
3. 训练分类器:利用提取的特征,我们可以使用AdaBoost算法训练分类器。
AdaBoost算法是一种迭代训练方法,它通过一系列弱分类器的加权组合来构建一个强分类器。
在每一轮迭代中,AdaBoost会根据分类错误的样本进行权重调整,以便更好地分类错误的样本。
4. 级联分类器的构建:通过训练得到的强分类器,我们可以将它们级联在一起,形成一个级联分类器。
级联分类器的结构通常是以层级的形式组织起来,每一层都包含若干个分类器。
级联分类器的使用过程:1. 加载分类器:首先需要加载训练好的级联分类器模型。
OpenCV提供了一个专门的类——CascadeClassifier来实现这个功能。
可以使用CascadeClassifier类的load方法来加载级联分类器的XML文件。
2. 图像预处理:在进行目标检测之前,我们需要对待检测图像进行一些预处理操作,以提高检测的准确性和速度。
这些预处理操作可以包括图像灰度化、直方图均衡化等。
3. 目标检测:通过调用CascadeClassifier类的detectMultiScale方法,传入待检测的图像,即可进行目标检测。
该方法会返回一组矩形框表示检测到的目标位置。
4. 结果展示:最后,我们可以在原始图像上绘制矩形框来标记检测到的目标位置,从而直观地展示检测结果。
opencv 项目案例

opencv 项目案例OpenCV是一个开源的计算机视觉库,它提供了丰富的函数和算法,用于处理和分析图像和视频数据。
下面是一些基于OpenCV的项目案例以及相关参考内容,希望对您有所帮助。
1. 人脸识别人脸识别是计算机视觉领域的一项重要任务,可以应用于安防监控、人机交互等领域。
参考内容可以包括:- 人脸检测:使用OpenCV的人脸检测器(如Haar级联分类器)对输入图像进行人脸检测。
- 特征提取:使用OpenCV的特征提取算法(如局部二值模式直方图)从人脸图像中提取特征向量。
- 训练分类器:使用OpenCV的机器学习算法(如支持向量机)来训练一个人脸分类器。
- 人脸识别:使用训练好的分类器对新的人脸图像进行识别。
2. 手势识别手势识别可以应用于人机交互、虚拟现实等领域。
参考内容可以包括:- 手势检测:使用OpenCV的背景减除算法和运动跟踪算法对输入视频中的手部进行检测和跟踪。
- 手势识别:根据手势的形状、轮廓、手指数量等特征,使用OpenCV的图像处理和机器学习算法对手势进行识别。
- 手势控制:根据识别出的手势,实现对计算机或设备的控制(如控制鼠标、游戏操作等)。
3. 目标检测与跟踪目标检测与跟踪可以应用于安防监控、自动驾驶等领域。
参考内容可以包括:- 目标检测:使用OpenCV的目标检测器(如级联分类器、深度学习模型)对输入图像或视频中的目标进行检测。
- 目标跟踪:根据检测到的目标,使用OpenCV的运动跟踪算法(如卡尔曼滤波、均值漂移)对目标进行跟踪。
- 多目标跟踪:对于多个目标,使用OpenCV的多目标跟踪算法(如多种滤波方法的组合)进行跟踪与管理。
4. 图像处理与增强图像处理与增强可以应用于图像编辑、美颜相机等领域。
参考内容可以包括:- 图像滤波:使用OpenCV的滤波算法(如均值滤波、高斯滤波)对图像进行平滑处理或边缘增强。
- 图像增强:使用OpenCV的直方图均衡化、自适应直方图均衡化等算法对图像进行增强。
OpenCV训练分类器制作xml

OpenCV训练分类器制作xml文档2009年12月19日星期六 21:032009-12-19考了CET英语,心情很差,估计又不过的,哎!英文差!于是看看书,看看自己感兴趣的书今天下午,研究了整个下午的小难题,在8点40分终于搞定了!肚子饿,还没吃饭,还没洗澡,克服了一个不懂的小难题,心理有点体会,想在这里留点纪念,方便别人以后学习。
于是乎,我写了:(那些开训练器的相关介绍我就不再详细谈了,进入正题)我的问题:有了opencv自带的那些xml人脸检测文档,我们就可以用cvLoad ()这个函数加载他们,让他们对我们的人脸进行检测,但是,现在生活中的计算机视觉并不远远是检测人脸,还有很多物品需要识别,所以,能不能自己做个xml的检测文档,用它来检测自己需要的东西呢?例如,检测一个可乐瓶!问题解决:首先了解下,目标检测分为三个步骤:1、样本的创建2、训练分类器3、利用训练好的分类器进行目标检测。
一,样本的创建:训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如可乐瓶,人脸等),反例样本指其它任意图片,所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。
1 负样本(反例样本)可以来自于任意的图片,但这些图片不能包含目标特征。
负样本由背景描述文件来描述。
背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。
该文件必须手工创建。
例如,假定目录下有 bg1.bmp bg2.bmp 这2个负样本的图片,这2个图片放在img 目录下,所以其背景描述文件 bg.txt 的内容为_img/bg1.bmp 1 0 0 24 28_ing/bg2.bmp 1 0 0 24 28_img/bg3.bmp 1 0 0 24 28_ing/bg4.bmp 1 0 0 24 28_img/bg5.bmp 1 0 0 24 28_ing/bg6.bmp 1 0 0 24 28_img/bg7.bmp 1 0 0 24 28_ing/bg8.bmp 1 0 0 24 28_img/bg9.bmp 1 0 0 24 28_ing/bg10.bmp 1 0 0 24 28这样负样本建立完毕,先保存!等会用!2,正样本现在,我们来看正样本的创建步骤:正样本由程序createsample 程序来创建。
OpenCV——级联分类器(CascadeClassifier)

OpenCV——级联分类器(CascadeClassifier)级联分类器的计算特征值的基础类FeatureEvaluator功能:读操作read、复制clone、获得特征类型getFeatureType,分配图⽚分配窗⼝的操作setImage、setWindow,计算有序特征calcOrd,计算绝对特征calcCat,创建分类器特征的结构create函数。
⽬标级联矩形的分组函数groupRectangles⽤load函数加载XML分类器⽂件具体步骤如下: { PS:⽬前提供的分类器包括Haar分类器和LBP分类器(数据较少)}1.加载级联分类器CascadeClassifier face_cascade;face_cascade.load("haarcascade_frontalface_alt.xml");2.读取视频流3.对每⼀帧使⽤该分类器先对图像进⾏预处理——变成灰度图,并将其直⽅图均衡化若检测⼈脸,调⽤detectMultiScale函数,函数详情如下:void detectMultiScale(const Mat& image, //待检测灰度图像CV_OUT vector<Rect>& objects, //被检测物体的矩形框向量double scaleFactor = 1.1, //前后两次相继的扫描中搜索窗⼝的⽐例系数,默认为1.1 即每次搜索窗⼝扩⼤10%int minNeighbors = 3, //构成检测⽬标的相邻矩形的最⼩个数如果组成检测⽬标的⼩矩形的个数和⼩于minneighbors - 1 都会被排除//如果minneighbors为0 则函数不做任何操作就返回所有被检候选矩形框int flags = 0, //若设置为CV_HAAR_DO_CANNY_PRUNING 函数将会使⽤Canny边缘检测来排除边缘过多或过少的区域Size minSize = Size(),Size maxSize = Size() //最后两个参数⽤来限制得到的⽬标区域的范围);PS:flags对于新的分类器没有⽤(但⽬前的haar分类器都是旧版的,CV_HAAR_DO_CANNY_PRUNING利⽤Canny边缘检测器来排除⼀些边缘很少或者很多的图像区域,CV_HAAR_SCALE_IMAGE就是按⽐例正常检测,CV_HAAR_FIND_BIGGEST_OBJECT只检测最⼤的物体,CV_HAAR_DO_ROUGH_SEARCH只做初略检测)实例代码:face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。
而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。
如何由两类分类器得到多类分类器,就是一个值得研究的问题。
还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样:
多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。
看起来很美对不对?只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步。
稍稍退一步,我们就会想到所谓“一类对其余”的方法,就是每次仍然解一个两类分类的问题。
比如我们有5个类别,第一次就把类别1的样本定为正样本,其余2,3,4,5的样本合起来定为负样本,这样得到一个两类分类器,它能够指出一篇文章是还是不是第1类的;第二次我们把类别2 的样本定为正样本,把1,3,4,5的样本合起来定为负样本,得到一个分类器,如此下去,我们可以得到5个这样的两类分类器(总是和类别的数目一致)。
到了有文章需要分类的时候,我们就拿着这篇文章挨个分类器的问:是属于你的么?是属于你的
么?哪个分类器点头说是了,文章的类别就确定了。
这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快(只需要调用5个分类器就知道了结果)。
但有时也会出现两种很尴尬的情况,例如拿一篇文章问了一圈,每一个分类器都说它是属于它那一类的,或者每一个分类器都说它不是它那一类的,前者叫分类重叠现象,后者叫不可分类现象。
分类重叠倒还好办,随便选一个结果都不至于太离谱,或者看看这篇文章到各个超平面的距离,哪个远就判给哪个。
不可分类现象就着实难办了,只能把它分给第6个类别了……更要命的是,本来各个类别的样本数目是差不多的,但“其余”的那一类样本数总是要数倍于正类(因为它是除正类以外其他类别的样本之和嘛),这就人为的造成了上一节所说的“数据集偏斜”问题。
因此我们还得再退一步,还是解两类分类问题,还是每次选一个类的样本作正类样本,而负类样本则变成只选一个类(称为“一对一单挑”的方法,哦,不对,没有单挑,就是“一对一”的方法,呵呵),这就避免了偏斜。
因此过程就是算出这样一些分类器,第一个只回答“是第1类还是第2类”,第二个只回答“是第1类还是第3类”,第三个只回答“是第1类还是第4类”,如此下去,你也可以马上得出,这样的分类器应该有5 X 4/2=10个(通式是,如果有k个类别,则总的两类分类器数目为k(k-1)/2)。
虽然分类器的数目多了,但是在训练阶段(也就是算出这些分类器的分类平面时)所用的总时间却比“一类对其余”方法少很多,在真正用来分类的时候,把一篇文章扔给所有分类器,第一个分类器会投票说它是“1”或者“2”,第二个会说它是“1”或者“3”,让每一个都投上自己的一票,最后统计票数,如果类别“1”得票最多,就判这篇文章属于第1类。
这种方法显然也会有分类重叠的现象,但不会有不可分类现象,因为总不可能所有类别的票数都是0。
看起来够好么?其实不然,想想分类一篇文章,我们调用了多少个分类器?10个,这还是类别数为5的时候,类别数如果是1000,要调用的分类器数目会上升至约500,000个(类别数的平方量级)。
这如何是好?
看来我们必须再退一步,在分类的时候下功夫,我们还是像一对一方法那样来训练,只是在对一篇文章进行分类之前,我们先按照下面图的样子来组织分类器(如你所见,这是一个有向无环图,因此这种方法也叫做DAG SVM)
这样在分类时,我们就可以先问分类器“1对5”(意思是它能够回答“是第1类还是第5类”),如果它回答5,我们就往左走,再问“2对5”这个分类器,如果它还说是“5”,我们就继续往左走,这样一直问下去,就可以得到分类结果。
好处在哪?我们其实只调用了4个分类器(如果类别数是k,则只调用k-1个),分类速度飞快,且没有分类重叠和不可分类现象!缺点在哪?假如最一开始的分类器回答错误(明明是类别1的文章,它说成了5),那么后面的分类器是无论如何也无法纠正它的错误的(因为后面的分类器压根没有出现“1”这个类别标签),其实对下面每一层的分类器都存在这种错误向下累积的现象。
不过不要被DAG方法的错误累积吓倒,错误累积在一对其余和一对一方法中也都存在,DAG方法好于它们的地方就在于,累积的上限,不管是大是小,总是有定论的,有理论证明。
而一对其余和一对一方法中,尽管每一个两类分类器的泛化误差限是知道的,但是合起来做多类分类的时候,误差上界是多少,没人知道,这意味着准确率低到0也是有可能的,这多让人郁闷。
而且现在DAG方法根节点的选取(也就是如何选第一个参与分类的分类器),也有一些方法可以改善整体效果,我们总希望根节点少犯错误为好,因此参与第一次分类的两个类别,最好是差别特别特别大,大到以至于不太可能把他们分错;或者我们就总取在两类分类中正确率最高的那个分类器作根节点,或者我们让两类分类器在分类的时候,不光输出类别的标签,还输出一个类似“置信度”的东东,当它对自己的结果不太自信的时候,我们就不光按照它的输出走,把它旁边的那条路也走一走,等等。
大Tips:SVM的计算复杂度
使用SVM进行分类的时候,实际上是训练和分类两个完全不同的过程,因而讨论复杂度就
不能一概而论,我们这里所说的主要是训练阶段的复杂度,即解那个二次规划问题的复杂度。
对这个问题的解,基本上要划分为两大块,解析解和数值解。
解析解就是理论上的解,它的形式是表达式,因此它是精确的,一个问题只要有解(无解的问题还跟着掺和什么呀,哈哈),那它的解析解是一定存在的。
当然存在是一回事,能够解出来,或者可以在可以承受的时间范围内解出来,就是另一回事了。
对SVM来说,求得解析解的时间复杂度最坏可以达到O(N sv3),其中N sv是支持向量的个数,而虽然没有固定的比例,但支持向量的个数多少也和训练集的大小有关。
数值解就是可以使用的解,是一个一个的数,往往都是近似解。
求数值解的过程非常像穷举法,从一个数开始,试一试它当解效果怎样,不满足一定条件(叫做停机条件,就是满足这个以后就认为解足够精确了,不需要继续算下去了)就试下一个,当然下一个数不是乱选的,也有一定章法可循。
有的算法,每次只尝试一个数,有的就尝试多个,而且找下一个数字(或下一组数)的方法也各不相同,停机条件也各不相同,最终得到的解精度也各不相同,可见对求数值解的复杂度的讨论不能脱开具体的算法。
一个具体的算法,Bunch-Kaufman训练算法,典型的时间复杂度在O(N sv3+LN sv2+dLN sv)
和O(dL2)之间,其中N sv是支持向量的个数,L是训练集样本的个数,d是每个样本的维数(原始的维数,没有经过向高维空间映射之前的维数)。
复杂度会有变化,是因为它不光跟输入问题的规模有关(不光和样本的数量,维数有关),也和问题最终的解有关(即支持向量有关),如果支持向量比较少,过程会快很多,如果支持向量很多,接近于样本的数量,就会产生O(dL2)这个十分糟糕的结果(给10,000个样本,每个样本1000维,基本就不用算了,算不出来,呵呵,而这种输入规模对文本分类来说太正常了)。
这样再回头看就会明白为什么一对一方法尽管要训练的两类分类器数量多,但总时间实际上比一对其余方法要少了,因为一对其余方法每次训练都考虑了所有样本(只是每次把不同的部分划分为正类或者负类而已),自然慢上很多。