换算(开裂)截面惯性矩
结构设计原理-叶见曙版-课后习题第7-9(附答案)

第七章7-2试简述钢筋混凝土偏心受压构件的破坏形态和破坏类型。
答:破坏形态:(1)受拉破坏—大偏心受压破坏,当偏心距较大时,且受拉钢筋配筋率不高时,偏心受压构件的破坏是受拉钢筋先达到屈服强度,然后受压混凝土压坏,临近破坏时有明显的预兆,裂缝显著开展,构件的承载能力取决于受拉钢筋的强度和数量。
(2)受压破坏—小偏心受压破坏,小偏心受压构件的破坏一般是受压区边缘混凝土的应变达到极限压应变,受压区混凝土被压碎;同一侧的钢筋压应力达到屈服强度,破坏前钢筋的横向变形无明显急剧增长,正截面承载力取决于受压区混凝土的抗压强度和受拉钢筋强度。
破坏类型:1)短柱破坏;2)长柱破坏;3)细长柱破坏7-3由式(7-2)偏心距增大系数与哪些因素有关?由公式212000)/e 140011ζζη⎪⎭⎫⎝⎛+=h l h (可知,偏心距增大系数与构件的计算长度,偏心距,截面的有效高度,截面高度,荷载偏心率对截面曲率的影响系数,构件长细比对截面曲率的影响系数。
7-4钢筋混凝土矩形截面偏心受压构件的截面设计和截面复核中,如何判断是大偏心受压还是小偏心受压?答:截面设计时,当003.0h e ≤η时,按小偏心受压构件设计,003.0h e >η时,按大偏心受压构件设计。
截面复核时,当b ξξ≤时,为大偏心受压,b ξξ>时,为小偏心受压.7-5写出矩形截面偏心受压构件非对称配筋的计算流程图和截面复核的计算流程图注意是流程图7-6解: 查表得:.1,280',5.110====γMPa f f MPa f sd sd cd m kN M M kN N N d d •=⨯=•==⨯=•=6.3260.16.326,8.5420.18.54200γγ偏心距mm N M e 6028.5426.3260===,弯矩作用平面内的长细比51060060000>==h l ,故应考虑偏心距增大系数。
设mm a a s s 40'==,则mm a h h s 5600=-=0.1,15606027.22.07.22.01001=>⨯+=+=ζζ取h e 0.1,105.1600600001.015.101.015.1202=>=⨯-=-=ζζ取h l 所以偏心距增大系数07.11110560/602140011)(140011221200=⨯⨯⨯⨯+=+=ζζηh l h e (1)大小偏心受压的初步判断003.064460207.1h mm e >=⨯=η,故可先按照大偏心受压来进行配筋计算。
同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

第九章混凝土结构的使用性能—开裂和挠度一、概述二、裂缝的类型三、构件的开裂内力四、裂缝宽度的计算理论五、裂缝的控制六、受弯构件的变形与刚度结构构件的可靠性具有足够的承载力和变形能力安全性:适用性:耐久性:在使用荷载下不产生过大的裂缝和变形在一定时期内维持其安全性和适用性的能力极限状态设计理论承载能力极限状态:正常使用极限状态:混凝土结构的使用性能包括裂缝、挠度、振动、疲劳等裂缝控制、变形控制和振动控制混凝土结构的极限荷载下的强度产生裂缝的原因:在混凝土结构中裂缝通常是由拉应力引起的。
因混凝土的极限拉伸应变εt u 随混凝土品种、配合比、添加剂、养护条件、加载速度、截面上的应力梯度等不同会发生变化。
严格地说,只有当混凝土的拉伸应变εt 达到某处混凝土的极限拉应变εt u 时才会出现裂缝。
1. 受力裂缝:拉、弯、剪、扭、粘结等引起的裂缝斜裂缝!!垂直裂缝!目前,只有拉、弯状态下混凝土横向裂缝宽度的计算理论比较成熟钢筋混凝土轴心受拉构件,贯穿整个截面宽度的裂缝为“主裂缝”;用变形钢筋钢筋配筋的构件,在主裂缝之间还出现有位于钢筋附近的短的“次裂缝”,有人称之为“粘结裂缝”。
当钢筋应力接近屈服时,将出现沿钢筋的纵向裂缝。
在梁中,主裂缝首先从受拉区边缘开始向中和轴发展,同样在主裂缝之间可以看到短的次裂缝。
梁高较大的T形梁或工字形梁中,钢筋附近的次裂缝可发展成与主裂缝相交的“枝状裂缝”(图c)。
在厚度较大的单向板或墙中(图d所示为板底面的裂缝)同样会产生这种“枝状裂缝”。
枝状裂缝在梁腹或钢筋间距中间处的裂缝宽度要比钢筋处的裂缝宽度大得多。
承受剪力和扭矩的构件,将出现垂直于主拉应力方向的裂缝。
钢筋混凝土结构在轴压力或压应力作用下也可能产生裂缝,例如梁受压区顶部的水平裂缝、薄腹梁端部连接集中荷载和支座的斜向受压裂缝、螺旋箍筋柱沿箍筋外沿的纵向裂缝、局部承压和预应力筋锚固端的局部裂缝等。
发生受压裂缝时,混凝土的应变值一般都超过了单轴受压峰值应变,临近破坏,使用阶段中应予避免。
裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。
《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定:(8-20)式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式;w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。
表8-1 混凝土结构的使用环境类别表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值:一般环境0.20mm有气态、液态或固态侵蚀物质环境0.10mm这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。
从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。
因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。
粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。
但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。
8.2.6 小结两本规范的裂缝宽度计算公式相差较大(见表8-3)。
从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。
截面惯性矩计算

截面惯性矩截面惯性矩指截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。
截面惯性矩是衡量截面抗弯能力的一个几何参数。
任意截面图形内取微面积dA与其搭配z 轴的距离y的平方的乘积y²dA定义为微面积对z轴的惯性矩,在整个图形范围内的积分则称为此截面对z轴的惯性矩Iz。
截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。
惯性矩平移公式:这里,Iz是对于z-轴的面积惯性矩、Ix是对于平面质心轴的面积惯性矩、A是面积、d是z-轴与质心轴的垂直距离。
(单位:mm^4)常见截面的惯性矩公式:[1]矩形其中:b—宽;h—高三角形其中:b—底长;h—高圆形其中:d—直径圆环形其中:d—内环直径;D—外环直径2惯性矩编辑惯性矩(I=质量X垂直轴二次)静矩静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx= ydF。
截面惯性矩截面惯性矩(I=面积X面内轴二次)截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y↑2dF。
截面极惯性矩截面极惯性矩(Ip=面积X垂直轴二次)。
扭转惯性矩极惯性矩截面各微元面积与各微元至垂直于截面的某一指定轴线二次方乘积的积分Ip= P↑2dF。
相互关系截面惯性矩和极惯性矩的关系截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。
3截面系数编辑机械零件和构件的一种截面几何参量,旧称截面模量。
它用以计算零件、构件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件下截面上的最大应力。
根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。
σ和τ的数值为-0.032√(C+W)-0.21√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。
单元二 受弯构件正截面承载能力计算

单三 受弯构件正截面承载能力计算一.矩形截面单筋:计算公式ƒsd •As=ƒcd •b •xMu= ƒcd •b •ho 2•s α 其中s α=ξ(1-0.5ξ),ξ=1-s α21-=x/ho 使用条件(ξ≤ξb 避免超筋,ρ≥ρmin=max ﹛0.002,0.45sdtdf f ﹜避免少筋) 双筋:计算公式ƒsd •As=ƒcd •b •x+ƒsd ’•As ’Mu= ƒcd •b •ho 2•s α+ ƒsd ’•As ’•(ho-as) 其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 使受拉钢筋受拉屈服 x ≥2as ’使受压钢筋受压屈服)若x<2as ’(受压钢筋不屈服) 则: Mu= ƒsd •As •(ho-as)二.单筋T 形截面第一T 形截面:(x ≤hf ’)计算公式 ƒsd •As=ƒcd •bf ’•x Mu= ƒcd •bf ’•ho 2•s α其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋) 第二T 形截面:(x>hf ’)计算公式 ƒsd •As=ƒcd •b •x+ƒcd •(bf ’-b)•hf ’Mu= ƒcd •b •ho 2•s α+ƒcd •(bf ’-b)•hf '•(ho-hf ’/2)其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋)矩形截面梁配筋设计(As )已知(b*h ,ƒcd , ƒsd , ƒsd ’, Md , ro )步骤:设受拉区钢筋层数 即一般取as (一层as=40mm 二层as=70mm 三层as=90mm)求ho (ho=h-as) 求所需Mu=roMd计算roMd 与Mumin=ƒcd •b •ho 2•ξb(1-ξb)并判断其大小若 Mu<ƒcd •b •ho 2•ξb(1-ξb)配单筋 若Mu>ƒcd •b •ho 2•ξb(1-0.5ξb)配双筋一.单筋配筋:求s α=Mu /ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb • ho 求As=ƒcd •b •x/fsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As) 计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二.双筋配筋(As As ’)令ξ=ξb 求s α=ξb (1-0.5ξb) 求x=ξb • ho若x>2as ’ 求As ’=(Mu-ƒcd •b •ho 2•s α)/ƒsd ’(ho-as ’)求As=( ƒcd •b •x+ƒsd ’•As ’)/ƒsd依据求得As As ’查表选取As As ’ 计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)若x<2as ’不满足双筋配筋条件` 双筋配筋(As )求s α=[Mu-ƒsd ’•As ’(ho-as ’)]/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho若x>=2as ’ 求As=( ƒcd •b •x+ƒsd ’•As ’)/ ƒsd 若x<2as ’ 求As= Mu/ƒsd • (ho-as ’)依据求得As 查表选取As,计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)矩形截面梁设计复核一.单筋截面复核已知(b*h ,ƒcd , ƒsd , Md , ro ,as , 钢筋配筋As)步骤:由as求ho (ho=h-as) 根据钢筋配筋查表选取As ,计算ρ=As/b•ho 并判断ρ>=ρmin(若ρ<ρmin说明截面尺寸过小)求X=ƒsd•As/ƒcd•b 求ξ=x/ho 并判断ξ<=ξb(若ξ>ξb)求sα= ξ(1-0.5ξ)求 Mu= ƒcd•b•ho2•sα比较Mu与roMd,若Mu>roMd则满足二.双筋截面复核已知(b*h ƒcd ƒsd ƒsd’ Md ro as as’钢筋配筋As’As)步骤:由as求ho (ho=h-as)求x=(ƒsd•As- ƒsd’•As’)/ƒcd•b若x<2as’Mu=ƒsd•As•(hor-as)若x>=2as’求ξ=x/ho 并判断ξ<=ξ b若ξ<=ξb求sα=ξ(1-0.5ξ)求Mu=ƒcd•b•ho2•sα+ƒsd’•As’(ho-as) 比较Mu与roMd,若Mu>roMd则满足若ξ>ξb 令ξ=ξb求sα=ξb(1-0.5ξb)求Mu=ƒcd•b•ho2•sα+ƒsd’As’•(ho-as)比较Mu与roMd,若Mu>roMd则满足T 形截面梁配筋设计As已知(T 形截面尺寸b*h bf hf ƒcd ƒsd Md ro )步骤:设受拉区钢筋层数 取as(一层as=50二层as=80三层as=100) 由as 求ho (ho=h-as) 求所需Mu=roMd比较Mu 与ƒcd •b •ho 2•s α+ ƒcd •('b f-b)'h f •(ho-'h f /2)一若Mu<=ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第一种T 形截面 求s α=Mu/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb •ho 求As=ƒsd/ƒcd •b •x根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二若Mu>ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第二种T 形截面 求s α=[Mu-ƒcd •('b f-b)•hf ’•(ho- 'h f /2)]/ƒcd •b •ho 2 求ξ=1-s α21-并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho求As=[ƒcd •b •x+ƒcd •('b f-b)•'h f ]/ƒsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)T 形截面梁配筋复核已知(T 形截面尺寸b*h 'b f 'h f ƒcd ƒsd Md ro 钢筋配筋As as ) 步骤:由as 求ho(ho=h-as) 计算ƒsd •As 与ƒcd •'b f •'h f 并比较其大小 一若ƒsd •As<=ƒcd •'b f •'h f 为第一种T 形截面求x= ƒsd •As/ƒcd •'b f 求ξ=x/ho 并判断ξ<=ξ b 求s α=ξ(1-0.5ξ) 求 Mu= ƒcd •'b f •ho 2•s α 比较Mu 与roMd,若Mu>roMd 则满足 二若ƒsd •As>ƒcd •'b f •'h f 为第二种T 形截面求x=[ƒsd •As-ƒcd •('b f-b)•'h f ]/ƒcd •b 求ξ=x/ho 并判断ξ<=ξ b 求s α= ξ(1-0.5ξ) 求Mu= ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-hf ’/2) 比较Mu 与roMd,若Mu>roMd 则满足单元四 受弯构件斜截面承载力计算混凝土与箍筋的斜截面抗剪承载力Vcs=321ααα*0.45*sv sv k cu f f p bh ρ,03)6.02(10+- (KN )1α:1α=1.0 进中间支点1α=0.9//2α:钢筋混凝土受弯构件2α=1.0预应力钢筋混凝土2α=1.25//3α=1.1//P=100ρ当ρ>2.5时,取ρ=2.5//sv ρ箍筋配筋率sv ρ=sv A /(v s •b)//sv f 不宜大于280MPa弯起钢筋的斜截面抗剪承载力 :vsb =0.75*∑∙∙∙-s sb sd A f θsin 103 箍筋和弯起钢筋的斜截面抗剪承载力:d V 0γ<=321ααα*0.45*sv sv k cu f f p h b ρ,03)6.02(10+∙-+0.75*∑∙∙∙-s sb sd A f θsin 103 适用条件:(上限d V 0γ<=0.51*0,310h b f k cu ∙∙∙-/下限d V 0γ≤0.5*02310h b f td ∙∙∙∙-α(KN)/箍筋最小配筋率:[R235(Q235) sv ρ≥0.0018 ],[HRB335 sv ρ≥0.0012] )受弯构件斜截面抗剪配筋设计条件(d V 0γ>0.50*02310h b f td ∙∙∙∙-α(KN)) 一剪力取值规定箍筋设计计算 求箍筋配筋率sv ρ=kcu sv d f f p h b V '202622322212'0)6.02(1045.0)(+**-αααξγ(ξ>=0.6)预先选定箍筋种类与直径即(sv A ) / 求箍筋间距Sv=bA sv sv∙ρ 弯起钢筋设计计算:sbi A =)(sin 1075.0230mm f V ssd sbiθγ∙∙*-斜截面抗剪承载力复核步骤:一1复核钢筋混凝土梁是否满足公式d V 0γ<=0.51*0,310h b f k cu ∙∙∙-(KN)若不符合,应考虑加大截面尺寸或提高混凝土强度等2当钢筋混凝土中配箍筋和弯起钢筋时按公式d V 0γ<= Vcs+ vsb 。
换算截面力学参数求法

8.3.4 JTJ023方法1.换算截面换算截面是指将物理性能与混凝土明显不同的钢筋按力学等效的原则通过弹性模量比值的折换,将钢筋换算为同一混凝土材料而得到的截面。
图8-12所示为在受拉区裂缝出现前后不同的换算截面。
根据换算截面由材料力学方法可以求得其等效截面惯性矩I0和I cr。
图8-12 换算截面2.短期截面刚度将一根带裂缝的受弯构件视为一根不等刚度的构件(图8-13a),裂缝处刚度最小,两裂缝间刚度最大,图8-13b实线表示截面刚度变化规律。
为便于分析,取一个长度为l m的裂缝区段,近似地分解为整体截面区段和开裂截面区段。
根据试验分析,和与开裂弯矩M cr和截面上所受弯矩M s的比值有关,可按下列公式确定:(8-26)(8-27)把图8-13c变刚度构件等效为图8-13d的等刚度构件,采用结构力学方法,按在端部弯矩作用下构件转角相等的原则,可求得等刚度受弯构件的等效刚度B。
图8-13 受弯构件截面刚度等效示意图根据图8-13c所示变截面构件,求出裂缝区段两端截面的相对转角:(8-28)根据图8-13d所示等截面构件,求出裂缝区段两端截面的相对转角:(8-29)令=,可得:(8-30)将式(8-26)、(8-27)代入式(8-30),整理后得:(8-31)式中 B ——开裂构件等效截面的抗弯刚度;B0——全截面的抗弯刚度,B0=0.85E c I0;B cr——开裂截面的抗弯刚度,B cr=E c I cr;M cr——截面开裂弯矩;I0——全截面换算截面惯性矩;I cr——开裂截面换算截面惯性矩。
上式即为JTJ023中所给出的刚度计算公式。
8.3.5 长期荷载作用的影响以上介绍的是钢筋混凝土受弯构件的短期刚度的计算方法,由此计算的挠度为短期荷载作用下的挠度变形。
如前所述,当构件在持续荷载作用下,由于压区混凝土的徐变,钢筋和混凝土间的滑移徐变等因素,其挠度将随时间而不断缓慢增长。
这也可以理解为构件的抗弯刚度随时间而不断降低。
单元六钢筋混凝土受弯构件变形和裂缝宽度计算

单元六钢筋混凝土受弯构件变形和裂缝宽度计算《桥规》(JTG D62——2004)规定;钢筋混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用(或荷载)短期效应组合并考虑长期效应影响进行验算,钢筋混凝土受弯构件,在正常使用极限状态下挠度,可根据给定的构件刚度用结构力学的方法计算。
6-1受弯构件的变形计算1;承受作用的受弯构件,如果变形过大,将会影响结构的正常使用。
一、受弯构件在试用阶段按短期效应组合的挠度计算1;结构力学中的挠度计算公式前提;对于普通的匀质弹性梁在承受不同作用时的变形(挠度)计算,可用《结构力学》中的相应公式计算。
1;在均布荷载作用下,简支梁的最大挠度为f=5ML²/48EI或f=5qL⁴/384EI当集中荷载作用简支梁跨中时梁的最大挠度为f=1ML²/12EI 或f=PL³/48EI有公式得,不论作用的形式和大小如何,梁的挠度f总是与EI 值成反比。
EI值愈大,绕度f就愈小;反之。
EI值反映了梁的抵抗弯曲变形的能力,故EI又称为受弯构件的抗弯刚度。
2,钢筋混凝土受弯构件的挠度计算公式《1》混凝土是一种非匀质的弹塑形体,受力后除了弹性变形外还会产生塑性变形。
《2》钢筋混凝土受弯构件在承受作用时会产生裂缝,其受拉区成为非连续体,这就决定了钢筋混凝土受弯构件的变形(挠度)计算中涉及的抗弯刚度不能直接采用匀质弹性梁的抗弯刚度EI,钢筋混凝土受弯构件的抗弯刚度通常用B表示B=EIfs=5qL⁴/384B和fs=PL³/48B《桥规》(JTG D62——2004)规定;对于钢筋混凝土受弯构件的刚度按下式计算B=Bο/(M cr/M s)²+(1-(M cr/M s)²)×Bο/B crM cr=γ×f tk×Wογ=2Sο/Wο式中;B——开裂构件等效截面的抗弯刚度;Bο——全截面的抗弯刚度,Bο=0.95E c IοB cr——开裂截面的抗弯刚度,B cr=E c I crM s——按作用(或荷载)短期效应组合计算的弯矩值M cr——开裂弯矩γ——构件受拉区混凝土塑性影响系数Sο——全截面换算截面中心轴以上(或一下)部分面积对中心轴的面积矩;Wο——换算截面抗裂边缘的弹性抵抗矩Iο——全截面换算截面惯性矩;I cr——开裂截面换算截面惯性矩F tk——混凝土轴心抗拉强度标准值。
常用截面惯性矩与截面系数的计算

常用截面惯性矩与截面系数的计算截面的惯性矩是描述截面抗弯刚度大小的一个物理量,常用于结构力学和工程设计中。
截面系数是截面抗弯性能的一个重要参数,它表示截面抵抗外力作用下的变形能力。
下面将介绍一些常用的截面惯性矩和截面系数的计算方法。
1.矩形截面:矩形截面的惯性矩可以通过以下公式计算:I=(b*h^3)/12其中,I表示矩形截面的惯性矩,b表示矩形截面的宽度,h表示矩形截面的高度。
矩形截面的截面系数可以通过以下公式计算:W=(b*h^2)/6其中,W表示矩形截面的截面系数。
2.圆形截面:圆形截面的惯性矩可以通过以下公式计算:I=π*r^4/4其中,I表示圆形截面的惯性矩,r表示圆形截面的半径。
圆形截面的截面系数可以通过以下公式计算:W=π*r^3/3其中,W表示圆形截面的截面系数。
3.正三角形截面:正三角形截面的惯性矩可以通过以下公式计算:I=b*h^3/36其中,I表示正三角形截面的惯性矩,b表示正三角形截面的底边长度,h表示正三角形截面的高度。
正三角形截面的截面系数可以通过以下公式计算:W=b*h^2/24其中,W表示正三角形截面的截面系数。
4.T形截面:T形截面的惯性矩可以通过以下公式计算:I=(b1*h1^3+b2*h2^3)/12其中,I表示T形截面的惯性矩,b1和b2分别表示T形截面的上下翼缘的宽度,h1和h2分别表示T形截面的上下翼缘的高度。
T形截面的截面系数可以通过以下公式计算:W=(b1*h1^2+b2*h2^2)/6其中,W表示T形截面的截面系数。
需要注意的是,上述给出的公式仅适用于一些常见的截面形状,并且仅考虑了截面的几何特性。
在实际的工程设计中,还需要考虑材料的弹性模量等参数,并基于这些参数进行更精确的计算。
此外,还有一些其他复杂截面的惯性矩和截面系数的计算公式,如梯形截面、圆环截面等。
对于这些复杂截面的计算,可以借助数值方法或计算机辅助设计软件进行求解。
总之,截面的惯性矩和截面系数是结构力学和工程设计中常用的参数,通过计算这些参数可以评估截面的抗弯刚度和抗剪性能,为工程结构的设计提供依据。