列管式换热器的设计

合集下载

列管式换热器设计步骤

列管式换热器设计步骤

列管式换热器设计步骤1.确定换热要求:首先确定需要处理的流体类型、温度、流量和所需的换热效率。

这些参数将指导后续设计过程。

2.选择适当的管壳材料:根据流体的特性和工作温度范围,选择合适的材料来制造管壳,确保其耐腐蚀性和耐高温性。

3.确定热负荷和传热系数:计算需要传递的热负荷,并根据传热系数的公式计算出换热器所需的传热面积。

4.确定流体模式和换热方式:根据流体的性质和流量,确定流体在换热器中的流动模式(并行流、逆流或交叉流)。

此外,还需要确定热量传递的方式(对流、辐射或对流辐射耦合)。

5.确定管束布局:根据热负荷和流体流量,确定管束的布局和排列方式。

典型的布局包括单排管束、多排管束、螺旋管束等。

6.计算管壳侧传热系数:根据流体模式和管壳的几何形状,通过经验公式或计算方法计算出管壳侧的传热系数。

7.设计管束:根据换热器的尺寸和传热面积,设计合适的管束。

这涉及到确定管道的直径、长度和布局,以及管板的尺寸和孔眼的布置。

8.选择适当的传热介质:根据流体类型和工况要求,选择合适的传热介质,例如水、蒸汽、空气或其他流体。

根据传热介质的性质,确定其流速和温度范围。

9.设计支承和固定方式:确定适当的支承和固定方式,以确保换热器的稳定性和可靠性。

这包括支架的设计、支柱的安装和管束的固定方法。

10.进行热力学分析:通过进行热力学分析,确定换热过程中的压力损失和流体流速。

这将有助于确定流体的流动行为和整个热交换系统的性能。

11.进行结构强度分析:进行结构强度分析,确保换热器能够承受压力和温度的影响,并满足相关的安全标准和规范。

12.完善设计并制作图纸:根据上述步骤和计算结果,对列管式换热器的设计进行改进和完善,并制作相应的图纸和技术文件。

13.进行设备加工和制造:根据设计图纸,进行设备的加工和制造。

这包括制作管子、管板、支管、支撑件等组件,并对其进行加工和组装。

14.进行设备安装与调试:将制造好的换热器安装到系统中,并进行相关的调试和测试,以确保其正常运行。

列管式换热器的设计与计算

列管式换热器的设计与计算

列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。

这些参数将在后续的计算中使用。

第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。

常见的型号包括固定管板式、弹性管板式、钢套铜管式等。

第三步:计算表面积根据流体的热传导计算表面积。

换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。

根据这个公式,可以计算出所需的表面积。

第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。

根据流体的流速和换热需求,计算出每根管子的长度和直径。

第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。

管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。

第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。

常见的材质有不锈钢、碳钢、铜等。

通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。

第七步:校核换热器的强度对换热器的强度进行校核。

根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。

第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。

包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。

上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。

首先,需要计算流体的传热系数。

传热系数的计算包括对流传热系数和管内传热系数两部分。

对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。

对于管内传热系数,可以使用流体的性质和流速等参数进行计算。

其次,根据传热系数和管子的尺寸,计算管子的传热面积。

管子的传热面积可以根据管子的长度和直径进行计算。

然后,根据热传导定律,计算换热器的传热量。

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。

本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。

一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。

它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。

二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。

2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。

3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。

4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。

5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。

6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。

7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。

8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。

三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。

2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。

3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。

4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。

5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。

综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。

设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。

同时,还需要计算换热器的传热系数、压降和热力学参数等。

列管式换热器的设计

列管式换热器的设计
定性温度 ℃
物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;

列管式换热器设计

列管式换热器设计

列管式换热器设计化工学院化学工程与工艺专业1080720202孟冲二.确定设计方案1.选择换热器的类型热流体进口温度T1=90℃,出口温度T2=40℃;冷流体进口温度t1=20℃,估算出口温度t2=26℃;该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此选用浮头式换热器。

2.管程安排气体走管程,冷却水走壳程,壳程装有弓形折流板。

三.确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

故管程气体的定性温度为T=(90+40)/2=65℃壳程流体的定性温度为t=(20+26)/2 =23℃已知气体在65℃下的有关物性数据:密度ρ1=10.31㎏/m³定压比热容C p,1=1.009 kJ/(㎏·℃)导热系数λ1 =2.935×10﹣5KW/(m·℃)粘度 µ1=2.035×10-5 Pa ·s 循环水在25℃ 下的物性数据:密度 ρ0=997.81 ㎏/m ³定压比热容 C p,0=4.182 kJ/(㎏·℃)导热系数 λ0 =0.615W/(m ·℃)粘度 µ0=7.91×10-4 Pa ·s 四.估算传热面积1.热流量Q = q m,1 C p,1 (T1-T2) = 3×1.009 ×103 ×(90-40)=1.51×105 W2.冷却水的用量s kg t t c Q q p m /02.6)2026(10182.41051.1)(35120,0,=-⨯⨯⨯=-= 3.平均温度差 (先按照纯逆流计算)41.3620403090ln )2040()3090(ln 2121=-----=∆∆∆-∆=∆t t t t t m 逆℃ 520304090t -t T -T R 1221=--== 14.020902030t P 1112=--=--=t T t 查图4-25 温度校正系数 ψ=0.93 >0.8 可行。

列管式换热器的工艺设计

列管式换热器的工艺设计

列管式换热器的工艺设计1. 选择合适的管束布置方式。

常见的管束布置方式有并列布置、交叉布置、三角形布置等。

不同的布置方式会影响换热器的传热效率和压降。

在设计中需要根据具体的工艺要求和流体性质选择合适的管束布置方式。

2. 确定换热器的传热面积。

传热面积是影响换热器传热效果的重要参数。

在工艺设计中需要根据需要传热的热负荷和流体的性质确定合适的传热面积,从而实现换热效果的最优化。

3. 确定换热介质的流体参数。

在工艺设计中需要考虑换热介质的流体参数,包括流体的流速、流量、温度、压力等。

这些参数将影响换热器的设计工况和传热效果。

4. 确定换热器材质和结构。

对于换热介质具有腐蚀性的情况,需要选择耐腐蚀的材质,如不锈钢、合金钢等。

同时还需考虑换热器的结构设计,包括管束的支撑、固定、热胀冷缩等问题。

5. 考虑换热器的清洗和维护问题。

在工艺设计中需要考虑换热器的清洗和维护问题,包括布置清洗口、维护通道等,以便于日常的维护和保养。

综上所述,列管式换热器的工艺设计需要考虑多个方面的因素,涉及流体力学、传热学、材料科学等多个领域的知识。

只有综合考虑这些因素,才能实现换热器的高效、可靠和经济运行。

列管式换热器是一种重要的传热设备,其设计涉及多个方面的工程和科学原理。

在工艺设计中,除了考虑传热面积、布置方式、介质参数、材质和结构等方面,还需要考虑换热器的热损失、压降、噪声和振动等问题。

这些因素都对换热器的正常运行和性能有重要影响,因此在工艺设计中需要进行充分考虑。

首先,要合理设计换热器的传热面积。

传热面积是换热器的关键设计参数,直接影响着换热器的传热效果。

如果传热面积过小,会造成传热不足,影响换热效率;而如果传热面积过大,会增加设备成本和占地面积。

因此,在工艺设计中需要根据具体的工艺要求和传热性能,合理确定换热器的传热面积。

其次,布置方式的选择对换热器的传热效果和压降有重要影响。

不同的布置方式会影响介质在管束中的流动状态,从而影响换热器的传热效果和压降。

列管式换热器设计方案和选用

列管式换热器设计方案和选用

列管式换热器设计方案和选用设计方案和选用列管式换热器导论:设计方案:1.确定换热器的工作条件:在进行列管式换热器的设计时,首先需要确定换热器的工作条件,包括工作介质的流量、温度、压力等参数。

这些参数将对换热器的尺寸和换热效率等性能产生影响。

2.选择合适的管束类型:列管式换热器一般由多个管子组成的管束和螺纹固定在两个壳体上的结构组成,因此需要选择合适的管束类型。

常用的管束类型有单管、单排管束、多排管束、隔室管束等。

选择合适的管束类型可以提高换热效率,并满足不同的换热要求。

3.确定换热面积和管束长度:换热器的性能主要取决于换热面积和管束长度。

根据工作条件和换热要求,确定合适的换热面积和管束长度。

一般来说,换热面积越大,换热效果越好,但是也会增加成本和体积。

4.确定流体流动方式和传热方式:列管式换热器的流体流动方式包括顺流、逆流和交叉流等,传热方式包括对流传热和辐射传热等。

根据换热要求和经济性,选择合适的流动方式和传热方式。

5.确定壳程流动分配方式:壳程流动分配方式包括平行流动和逆流动等。

在设计中,需要根据换热要求和经济性选择合适的流动分配方式。

选用:1.根据工艺要求选择合适的材料:列管式换热器的材料对于其耐用性和可靠性有着重要影响。

根据介质的性质和工艺要求,选择合适的材料,如不锈钢、碳钢、铜等。

2.确定换热器的维护和清洗方式:列管式换热器由于结构复杂,清洗和维护较为困难。

因此,在选用时需要考虑清洗和维护的方便性,选择易于清洗和维护的设计。

3.考虑能量利用率和经济性:在选用列管式换热器时,还需要考虑能量利用率和经济性。

换热器的能量利用率越高,所需热交换面积就越小,经济性就越好。

因此,选择高效能量利用的换热器是非常重要的。

4.参考其他用户的反馈和评价:在选用列管式换热器时,可以参考其他用户对于不同品牌和型号的反馈和评价。

这些反馈和评价可以提供有关换热器性能和可靠性的宝贵信息。

总结:列管式换热器的设计方案和选用需要考虑多个因素,包括工作条件、管束类型、换热面积、管束长度、流体流动方式、传热方式、壳程流动分配方式、材料选择、维护和清洗方式以及能量利用率和经济性等。

列管式换热器设计总结

列管式换热器设计总结

列管式换热器设计总结
列管式换热器是一种常用于工业领域的换热设备,主要用于液体与气体或液体之间的热交换。

在列管式换热器的设计过程中,需要考虑以下几个方面:
1. 热负荷计算:根据换热器需要处理的流体量及其温度、压力等参数,确定热负荷,以此为基础进行换热器的设计。

2. 材料选择:根据液体和气体之间的化学反应和腐蚀性,选择合适的材料,如碳钢、不锈钢、铜等。

3. 管束布置与设计:根据热负荷算出的传热面积和传热系数,确定管束数量和直径,以及管间距和管子的排列方式等。

4. 精确的流体流动分析:通过CFD 等流体力学分析工具,对流体在管道中的流动进行模拟和分析,为换热器的设计提供精确的数据。

5. 热损失计算及防护设计:考虑到换热器的使用环境和工艺要求,对热损失进行计算,并设计合适的绝热措施,以确保整个换热系统的高效运行。

6. 设计方案优化和成本控制:在换热器设计过程中,需要不断对设计方案进行优化,以达到最佳性能和最小成本的目标。

综上所述,列管式换热器的设计需要考虑多个方面,并进行精细的计算和分析,以保证其高效、稳定和可靠的运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计学院: 化学化工学院班级:姓名学号:指导教师:目录§一.列管式换热器1.1.列管式换热器简介1.2设计任务1.3.列管式换热器设计内容1.4.操作条件1.5.主要设备结构图§二.概述及设计要求2.1.换热器概述2.2.设计要求§三.设计条件及主要物理参数3.1. 初选换热器的类型3.2. 确定物性参数3.3.计算热流量及平均温差3.4 壳程结构与相关计算公式3.5 管程安排(流动空间的选择)及流速确定 3.6计算传热系数k3.7计算传热面积§四.工艺设计计算§五.换热器核算§六.设计结果汇总§七.设计评述§八.工艺流程图§九.主要符号说明§十.参考资料§一 .列管式换热器1.1. 列管式换热器简介列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。

若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。

1.2设计任务1.任务处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行)设备形式:列管式换热器2.操作条件(1)煤油:入口温度150℃,出口温度50℃(2)冷却介质:循环水,入口温度20℃,出口温度30℃(3)允许压强降:不大于一个大气压。

备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。

延迟上交的同学将没有成绩。

1.3.列管式换热器设计内容1.3.1、确定设计方案(1)选择换热器的类型;(2)流程安排1.3.2、确定物性参数(1)定性温度;(2)定性温度下的物性参数1.3.3、估算传热面积(1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量1.3.4、工艺结构尺寸(1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)传热管排列和分程方法;(5)壳体内径;(6)折流板;(7)其它附件;(8)接管1.3.5、换热器核算(1)传热能力核算;(2)壁温核算;(3)换热器内流体的流动阻力1.4.操作条件某厂用井水冷却从反应器出来的循环使用的有机液。

欲将6000kg/h的植物油从140℃冷却到40℃,井水进、出口温度分别为20℃和40℃。

若要求换热器的管程和壳程压强降均不大于35kPa,试选择合适型号的列管式换热器。

定性温度下有机液的物性参数列于附表中。

附表项目密度,kg/m3比热,KJ/(k g·℃)粘度,P a·s热导率,kJ/(m·℃)植物油950 2.261 0.7420.1721.5.主要设备结构图(示例)根据设计结果,可选择其它形式的列管换热器。

1-挡板 2-补偿圈 3-放气嘴固定管板式换热器的示意图§二.概述及设计要求2.1.换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。

在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。

换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。

因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,(1)固定管板式换热器这类换热器如图1-1所示。

固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2) U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

(4)填料函式换热器填料函式换热器的结构如图1-4所示。

其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。

管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。

填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用。

2.2.设计要求完善的换热器在设计和选型时应满足以下各项基本要求:(1)合理地实现所规定的工艺条件:可以从:①增大传热系数②提高平均温差③妥善布置传热面等三个方面具体着手。

(2)安全可靠换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵循我国《钢制石油化工压力容器设计规定》和《钢制管壳式换热器设计规定》等有关规定与标准。

(3)有利于安装操作与维修直立设备的安装费往往低于水平或倾斜的设备。

设备与部件应便于运输与拆卸,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放口,检查孔与敷设保温层。

(4)经济合理评价换热器的最终指标是:在一定时间内(通常1年内的)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费)等的总和为最小。

在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一标准就尤为重要了。

§ 三.设计条件及主要物理参数3.1.初选换热器的类型两流体的温度变化情况如下:(1)植物油:入口温度140℃,出口温度40℃;(2)冷却介质:井水,入口温度20℃,出口温度40℃;该换热器用循环冷却井水进行冷却,由于=+-+=-22040240140m m t T 60℃>50℃,所需换热器的管壁温度和壳体温度之差较大,故从安全、方便、经济考虑可以采用带有补偿圈的管板式换热器。

3.2.确定物性参数定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

壳程流体(植物油)的定性温度为:T= (140+40)/2=90℃管程流体(水)的定性温度为:t=(40+20)/2=30℃在定性温度下,分别查取管程和壳程流体(冷却水和植物油)的物性参数,见下表3-1:3.3.计算热流量及平均温差3.3.1.热流量以热介质植物油为计算标准算它所需要被提走的热量:Q=m s1c p1(T 1-T 2)=6000x2.261x(140-40)=1356.6kJ/h=376.83kw3.3.2.平均传热温差计算两流体的平均传热温差暂时按单壳程、多管程计算。

逆流时,我们有植物油:140℃→40℃井 水: 40℃←20℃从而,69.4920100ln 20100'=-=∆m t而此时,我们有:00.52010020404014017.01202020140204012212112==--=--===--=--=t t T T R T T t t P式中: 21,T T ——热流体(植物油)的进出口温度,单位℃; 21t t ,——冷流体(井水)的进出口温度,单位℃;R 2+1R-1ln 1-PR 1-P ln 2-P(1+R-2-P(1+R+R 2+1R 2+1))ψ= 87.0)1551(16.02)1551(16.02ln 516.0116.01ln 1515222=+++⨯-+-+⨯-⨯---+=ψ>0.8符合要求则平均温差:△tm='m t ∆×ψ=0.87x49.69=43.23℃3.3.3.冷却水用量由以上的计算结果以及已知条件,很容易算得冷却水用量:Qc=)(12t t C Q pc -=1356600/[4.174x(40-20)]=16250.60㎏/h3.4壳程结构与相关计算公式介质流经传热管外面的通道部分称为壳程。

壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。

由于各种换热器的工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。

各元件在壳程的设置,按其不同的作用可分为两类:一类是为了壳侧介质对传热管最有效的流动,来提高换热设备的传热效果而设置的各种挡板,如折流板、纵向挡板。

旁路挡板等;另一类是为了管束的安装及保护列管而设置的支承板、管束的导轨以及缓冲板等。

壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进人和排出之用。

直径小于400mm 的壳体通常用钢管制成,大于400mrn 的可用钢板卷焊而成。

壳体材料根据工作温度选择,有防腐要求时,大多考虑使用复合金属板。

介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。

如壳侧传热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。

用两个换热器串联也可得到同样的效果。

为降低壳程压降,可采用分流或错流等型式。

壳体内径D 取决于传热管数N 、排列方式和管心距t 。

计算式如下:单管程D =t (n c -1)+(2~3)d 0式中 t ——管心距,mm ;d——换热管外径,mm;n——横过管束中心线的管数,该值与管子排列方式有关。

相关文档
最新文档