光电传感器实验指导书
传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
光电传感器转速测量实验指导书一.实验目的1.通过本实验了解和掌握...

光电传感器转速测量实验指导书一. 实验目的1. 通过本实验了解和掌握采用光电传感器测量的原理和方法。
2. 通过本实验了解和掌握转速测量的基本方法。
二. 实验原理直接测量电机转速的方法很多,可以采用各种光电传感器,也可以采用霍尔元件。
本实验采用光电传感器来测量电机的转速。
由于光电测量方法灵活多样,可测参数众多,一般情况下又具有非接触、高精度、高分辨率、高可靠性和相应快等优点,加之激光光源、光栅、光学码盘、CCD器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。
光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。
图1说明了这四种形式的工作方式。
图1 光电传感器的工作方式直射式光电转速传感器的结构见图2。
它由开孔圆盘、光源、光敏元件及缝隙板等组成。
开孔圆盘的输入轴与被测轴相连接,光源发出的光,通过开孔圆盘和缝隙板照射到光敏元件上被光敏元件所接收,将光信号转为电信号输出。
开孔圆盘上有许多小孔,开孔圆盘旋转一周,光敏元件输出的电脉冲个数等于圆盘的开孔数,因此,可通过测量光敏元件输出的脉冲频率,得知被测转速,即n= f/N式中:n - 转速f - 脉冲频率N - 圆盘开孔数。
图2 直射式光电转速传感器的结构图反射式光电传感器的工作原理见图3,主要由被测旋转部件、反光片(或反光贴纸)、反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。
在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。
通过测出这个跳变频率f,就可知道转速n。
n=f如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。
N-反光片或反光贴纸的数量。
图3 反射式光电转速传感器的结构图三. 实验仪器和设备1. 计算机n台2. DRVI快速可重组虚拟仪器平台1套3. 并口数据采集仪(LDAQ-EPP2)1台4. 开关电源(LDY-A)1台5. 光电转速传感器(LHYF-12-A)1套6. 转子/振动实验台(LZS-A)/(LZD-A) 1 台四. 实验步骤及内容1. 光电传感器转速测量实验结构示意图如图4所示,按图示结构连接实验设备,其中光电转速传感器接入数据采集仪5通道。
光电传感器实验指导书

《光电子技术综合实验》实验指导书广州大学物理与电子工程学院前言激光器的出现,解释了光频载波的产生问题,从此电子技术的各种基本概念(如放大与调制、调制与解调、直接探测与外差探测、信频、和频与差频等等)几乎都移到了光频段。
电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术。
习惯称为光电子技术。
光电子技术是一门发展迅速的新学科,已在国防空间技术、工农业生产和医疗等领域得到愈来愈广泛的应用。
在这些领域中,几乎都涉及到把光信号转换成电信号的问题,即光辐射的探测问题。
光电子技术所包含的内容十分广泛的,本实验课程紧密结合光电子的发展趋势和我学院的专业特点,注重光电基础实验,重点分析光敏器件和光电传感器的特性和应用场合,同时对光电子探测器的基本原理和外特性也进行了相应的研究。
通过光电子综合实验使学生对课程中的基本概念、基本原理、基本方法、能够有比较全面和系统的认识和正确理解,并掌握实验的方法、手段和技能。
在本课程的各教学环节中都必须注意,在传授知识的同时,着重培养学生分析问题和解决问题的能力,努力实现知识、能力、素质的协调发展。
实验报告填写要求1、严格按照实验表格认真仔细填写,要求字迹工整,切忌潦草。
2、实验报告中各项内容必须是根据实验结果填写,严格抄书或抄袭。
3、实验报告中的原始记录必须真实有效,严禁杜撰。
4、实验报告必须在规定的时间内交给指导老师,而且指导老师必须在实验过程原始记录和教师评语栏中签字才算本次实验有效5、实验目的:即做此实验的目的,要求分条列写。
6、实验内容:即做了那些实验,要求据实填写,分条列写。
7、实验器材:即做此实验中用到了那些器材,要求据实填写,分条列写。
8、实验原理:可用框图或示意图表示,然后进行相识相识详细的原理分析。
9、实验步骤:即做此实验是按什么先后循序进行的,要求分条列写。
10、实验过程原始记录:即在实验过程中记录的原始信息,可以是数据、波形、图表等。
11、实验思考题解答:对《实验指导书》中的实验思考题进行认真详细的解答,要求一一对应。
传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。
11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。
图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
实验5-光电传感器

实验5 光电传感器(反射型)测转速实验实验目的:1.了解光电传感器测转速的原理及运用;2.了解光电池的光照特性,熟悉其应用。
3. 了解光敏电阻的光照特性和伏安特性。
基本原理:1.光电传感器由红外发射二极管、红外接收管、达林顿输出管及波形整形组成。
发射管发射红外光经电机反射面反射,接收管接收到反射信号,经放大,波形整形输出方波,再经F/V 转换测出频率。
2. 在光照作用下,由于元件内部产生的势垒作用,在结合部使光激发的电子空穴分离,电子与空穴分别向相反方向移动而产生电势的现象称为光伏效应。
硅光电池就是利用这一效应制成的光电探测器件。
3. 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
光电导效应是半导体材料的一种体效应。
光照愈强,器件自身的电阻愈小。
基于这种效应的光电器件称光敏电阻。
光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。
所需单元及部件:电机控制单元、小电机、F/V 表、光电传感器、+5V 电源、可调±2V -±10V 直流稳压电源、主副电源、示波器;硅光电池、直流稳压电源、数字电压表;光敏电阻、直流稳压电源、电桥平衡网络中W1电位器、F/V 表。
实验步骤(一):光电传感器测转速实验图1 测速电路图1.在传感器的安装顶板上,拧松小电机前面的轴套的调节螺钉,连轴拆去电涡流传感器,换上光电传感器。
将光电传感器控头对准小电机上小的白圆圈(反射面),调节传感器高度,离反射面2mm —3mm 为宜。
2.传感器的三根引线分别接入传感器安装顶板上的三个插孔中(红色接+2V ,黑色接地,兰色接Vo )。
再把Vo 和地接入数显表(F/V 表)的Vi 和地口。
3.合上主、副电源,将可调整±2V -±10V 的直流稳压电源的切换开关切换到±4V ,在电机控制单元的V +处接入+4V 电压,调节转速旋钮使电机转动。
实验一.光电传感器实验

实验一光电传感器实验1-1 PSD光电位置传感器——位移测量一.实验目的:1.了解PSD光电位置传感器的结构。
2.掌握PSD光电位置传感器的工作原理。
二.实验原理:光电位置敏感器件(PSD)是基于光伏器件的横向效应的器件,是一种对入射到光敏面上的光电位置敏感的光电器件。
因此,称其为光电位置敏感器件(Position Sensitive Detector,简称为PSD),如图1所示为PIN型PSD器件的结构示意图,它由三层构成,上面为P型层,中间位I型层,下面为N型层。
在上面的P型层上设置有两个电极,两电极间的P型层除具有接受入射光的功能外还具有横向分布电阻的特性。
即P型层不但为光敏层,而且还是一个均匀的电阻层。
当光束入射到PSD器件光敏层上距中心点得距离为xA时,在入射位置上产生与入射辐射成正比的信号电荷,此电荷形成的光电流通过电阻P型层分别由电极1和2输出,设P型层的电阻是均匀的,两电极间的距离为2L,流过两电极的电流分别为I1和I2,则流过N 型层上电极的电流I0为I1和I2之和,即I0=I1+I2。
若以PSD器件的几何中心点O为原点,光斑中心距原点O的距离为xA,则利用上式即可测出光斑能量中心对于器件中心的位置xA,它只与电流I1和I2的和、差及其比值有关,而与总电流无关。
图1 图2PSD器件已被广泛地应用于激光自准直、光点位移量和振动的测量、平板平行度的检测和二维位置测量等领域。
目前,PSD器件已有一维和二维两种PSD器件。
本仪器用的是一维PSD器件,主要用来测量光斑在一维方向上的位置或移动量的装置,图2为一维PSD器件的原理图,其中①和②为信号电极,③为公共电极。
它的光敏面为细长的矩形条。
图3为其等效电路,它由电流源Ip、理想二极管VD、结电容Cj、横向分布电阻RD和并联电阻Rsh组成, PSD器件属于特种光伏器件,它的基本特性与一般硅光伏器件基本相同,如光谱响应、时间响应和温度响应等与前面讲述的PN结光伏器件相同。
光电仪器实验指导书

实验一简单光控电路的设计及光电传感器技术参数的测定(设计性实验)[实验目的]1.掌握常规光功率计,光电探测器等光电仪器的使用。
2.了解光敏电阻、光敏二极管、光敏三极管、光耦的光电特性。
3.掌握简单的光电控制电路的设计。
[实验原理]光敏电阻:是一种当光照射到材料表面上被吸收后,在其中激发载流子,使材料导电性能发生变化的内光电效应器件,受光照后其阻值会减少。
光敏二极管:是一种光生伏特器件,用高阻P型硅作为基片,然后在基片表面进行掺杂形成PN结。
N区扩散得很浅为1um左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗层内。
光子入射到耗层内被吸收而激发电子-空穴对,电子-空穴对在外加反向偏压V BB的作用下,空穴流向正极,形成了二极管的反向电流即光电流。
光电流通过外加负载电阻后产生电压信号输出,在使用时一般加反向偏置,可以当光控开关管来使用。
光敏三极管:是一种光生伏特器件,用高阻P性硅作为基片,然后在基片表面进行掺杂形成PN结。
N区扩散得很浅为1um左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗层内。
光子入射到耗层内被吸收而激发电子-空穴对,电子-空穴对在外加反向偏压V CB的作用下,空穴流向正极,形成了三极管的反向电流即光电流。
光电流通过外加负载电阻后产生电压信号输出,可以当光控开关管来使用。
光电耦合器:常用的三极管型光电耦合器原理图如图1.1所示,当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
图1.1 三极管型光电耦合器原理图1 / 13[实验仪器及配件]光敏电阻、面包板、光电二极管、光电三极管、普通电阻、发光二极管、普通三极管、开关、直流稳压电源、万用表、光功率计、光探头、光源、导线。
传感器实验仪实验指导书(应变 电容 霍尔 光电_光纤)2020.10.15

目录实验一金属箔式应变计三种桥路性能比较 (2)实验二电容传感器性能实验 (5)实验三霍尔式传感器—直流激励特性 (7)实验四光电开关传感器转速测量 (9)实验五光纤位移传感器静态实验 (11)实验一 金属箔式应变计三种桥路性能比较一、实验目的1、掌握应变传感器的基本工作原理;2、掌握应变传感器的测量电路(电桥电路);3、学习传感器与计算机进行通信的方法;4、掌握利用虚拟仪器技术进行数据采集;5、掌握对测试数据进行静态特性分析的方法;6、验证单臂、半桥、全桥的性能及相互之间关系。
二、预习要求1、认真阅读实验指导书,明确本次实验的目的,首先从理论上明白三种桥式电路的工作原理以及在本次实验中作用。
2、按照实验指导书的实验内容及步骤写出详细的实验步骤。
3、绘制与之对应的实验线路图,并说明详细的接线方法。
三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:/R R K ε∆=。
式中/R R ∆为电阻丝电阻的相对变化,K 为应变灵敏系数,/l l ε=∆为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压/4o U EK ε=,只有一个桥臂电阻是应变片,其余为固定电阻。
半桥测量电路中,将受力性质相反的两应变片接入电桥邻边,其余两个临边接固定电阻,输出电压/2o U EK ε=,其输出灵敏度比单臂桥提高了一倍;全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R1= R2= R3= R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压o U KE ε=。
其输出灵敏度比半桥提高了一倍,非线性误差和温度误差均得到改善。
四、实验仪器(所需单元及部件)直流稳压电源、差动变换器I 、电桥、电压表、砝码、应变片传感器、电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电传感器技术实验指导太原理工大学物理与光电工程学院太原理工大学测控技术研究所2014年10月21日实验一光敏电阻特性参数及其测量1、光敏电阻伏安特性实验1.1、实验目的通过本实验,认识并学习光敏电阻,掌握光敏电阻的基本工作原理,变换电路和它的光照特性和伏安特性等基本参数及其测量方法。
达到会用光敏电阻器件进行光电检测方面应用课题的设计。
1.2、实验仪器① GDS-Ⅲ(或Ⅳ)型光电综合实验平台1 台;② LED 光源1 个;③光敏电阻 1 个;④通用光电器件实验装置 2 只⑤光电器件支杆 2 只;⑥连接线 20 条;⑦示波器探头2 条;☆注意事项:LED发光二极管正负极性问题(从侧面观察两条引出线在管体内的形状,较小的是正极),与之对应的通用光电器件实验装置中,白螺钉一端为正极,黑螺钉一端为负极。
通用光电器件引线红色为正,黑色为负。
1.3、实验原理某些物质吸收了光子的能量后,产生本征吸收或杂质吸收,从而改变了物质电导率的现象称为物质的光电导效应。
利用具有光电导效应的材料(如硅、锗等本征半导体与杂质半导体,硫化镉、硒化镉、氧化铅等)可以制成电导(或电阻)随入射光度量变化器件,称为光电导器件或光敏电阻。
当光敏电阻受到光的照射时,其材料的电导率发生变化,表现出阻值的变化。
光照越强,它的电阻值越低。
因此,可以通过一定的电路得到输出信号随光的变化而改变的电压或电流信号。
测量信号电压或电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)将急剧变化,因此电路中电流将迅速增加。
便可获得光敏电阻随光或时间变化的特性,即光敏电阻的特性参数。
1.4、实验步骤利用图1实验装置可以测量出光敏电阻的伏安特性,并能够画出其伏安特性曲线。
实验过程可以采用如下步骤:下面利用光电综合实验平台提供的硬件资源,模拟示波、模拟伏安特性以及其功能软件,直接对光敏电阻进行伏安特性的测量实验,在计算机界面上直接得到光敏电阻的伏安特性曲线。
具体实验步骤如下:a. 电路接通无误后将LED与光敏电阻闭合、固定,接通平台电源,进入如平台软件的主界面,在主界面中点击“伏安特性实验”选项。
在参数设置框中对伏安特性实验的参数进行设置,主要有两项,分别是采样频率(250Hz)——阶梯波与扫描锯齿波的工作频率,和发出锯齿波的级数选择(4级)。
点击示波器进行观测。
b. 执行“返回”,更换采集方式。
返回到主界面后,单击“数据采集”菜单,显示屏将显示出光敏电阻的伏安特性曲线,保存数据。
1.5、实验结果及分析测量光敏电阻伏安特性。
思考:图1中R2、R3的作用。
2、光敏电阻时间响应特性实验2.1、实验目的通过本实验,认识并学习光敏电阻,掌握光敏电阻的基本工作原理,变换电路和它的光照特性和伏安特性等基本参数及其测量方法。
达到会用光敏电阻器件进行光电检测方面应用课题的设计。
2.2、实验仪器① GDS-Ⅲ(或Ⅳ)型光电综合实验平台1 台;② LED 光源1 个;③光敏电阻 1 个;④通用光电器件实验装置 2 只⑤光电器件支杆 2 只;⑥连接线 20 条;⑦示波器探头2 条;2.3、实验原理(1) 弱辐射条件下的时间响应设入射辐射如右图上方的方波所示光脉冲,其辐射通量Φe 表示为:光敏电阻的光电导率Δσ和光电流I e 随时间变化的规律为如上图下方所示的输出波形,其变化规律为:与I e0分别为弱辐射作用下的光电导率和光电流的稳态值。
式中Δσ显然,当t >> r 时,Δσ=Δσ0,Ie =I e0;当t = τr时,Δσ =0.63Δσ0,I =0.63I e0;τ定义为光敏电阻的上升时间常数,即光敏电阻的光电流上升到稳态值IΦe0的63%所需要的时间。
r停止辐射时,入射辐射通量Φe 与时间的关系为:同样,可以推导出停止辐射情况下的光电导率和光电流随时间的变化规律当t =τ f 时,Δσ0下降到Δσ=0.37Δσ0,I e0 下降到I =0.37I e0;当t >>τ f 时,Δσ0与I e0 均下降到0;可见,在辐射停止后,光敏电阻的光电流下降到稳态值的37%所需要的时间称为光。
敏电阻的下降时间常数,记为τf显然,光敏电阻在弱辐射作用下的上升时间常数τr 与下降时间常数τ f 近似相等。
(2)强辐射条件下的时间响应如右图所示为较强的辐射通量Φe(图的上方)脉冲作用于光敏电阻时的输出波形(图的下方波形),无论对本征型还是杂质型的光敏电阻,光激发载流子的变化规律由下式表示,其中,设入射辐射为方波脉冲光敏电阻电导率σ的变化规律为:其光电流的变化规律为:显然,当t>>τ时,Δσ=Δσ0,I e=I e0;当t=τ时,Δσ=0.76Δσ0,I e=0. 76 I e0。
在强辐射定义为强辐射作用下的上升时间常数。
入射时,光敏电阻的光电流上升到稳态值的67%所需要的时间τr当停止辐射时,由于光敏电阻体内的光生电子和光生电荷需要通过复合才能恢复到辐射作用前的稳定状态,而且随着复合的进行,光生载流子数密度在减小,复合几率在下降,所以,停止辐射的过渡过程要远远大于入射辐射的过程。
停止辐射时光电导率和光电流的变化规律可表示为:2.4、实验步骤利用图1实验装置可以测量出光敏电阻的时间响应特性,并能够画出其时间响应特性曲线。
具体实验步骤如下:a. 电路接通无误后将LED与光敏电阻闭合、固定,接通平台电源,进入如平台软件的主界面,在主界面中点击“时间响应实验”选项。
然后,再从时间响应实验栏的“采样频率”选项中设置适当的频率,最后,采用两个示波探头CH1 与CH2 分别接在电阻Re端测量方波输入脉冲和光敏电阻变换电路的输出上,然后点击“采集数据”菜单。
“时间相应测量结果的界面”,界面分为两部分,上部显示加在光敏电阻上的输入方波脉冲的波形,其横轴为时间坐标,显示以方波脉冲光作用到光敏电阻上,下部分为光敏电阻变化电路的输出信号,对比上下两部分波形,观测光敏电阻的时间响应特性。
b.调节R2,使得方波信号工作在非饱和状态。
测量光敏电阻在强(R1=510Ω)、弱(R1=1MΩ)两种辐射作用下时间响应特性。
例如,弱辐射的上升时间测量方法为:上升曲线边缘处点击鼠标右键,在上升到稳态50%点击鼠标右键,弱辐射条件下光敏的上升时间为两者差,可从界面右下角处直接读出。
2.5、实验结果及分析测量光敏电阻在强、弱两种辐射作用下时间响应特性,并分别计算出对应的上升、下降时间,将结果进行比较。
关机与结束①所测的数据及实验结果(包括实验曲线)保存好,分析实验结果的合理性,如不合理,则要重新补作上述实验;若合理,可以进行关机;②先将实验平台的电源关掉,再将所用的配件放回配件箱;③将实验所用仪器收拾好后,请指导教师检查,批准后离开实验室。
实验二光电二极管的特性参数及其测量1、实验目的硅光电二极管是最基本的光生伏特器件,掌握了光电二极管的基本特性参数及其测量方法对学习其他光伏器件十分有利。
通过该实验,要熟悉光电二极管的光电灵敏度、时间响应、光谱响应等特性。
2、实验仪器①GDS-Ⅲ(或Ⅳ)型光电综合实验平台1 台;②LED 光源1 个;③光电二极管1 只;④通用光电器件实验装置 3 只;⑤光电器件支杆2 只;⑥连接线20 条;⑦示波器探头2 条;☆注意事项:LED与光电二极管的区别以及正负极性问题(从顶端看去,能够看出它们的差异,光电二极管的光敏面积,即显深颜色部分,较大;发光二极管没有)。
光电二极管的长引脚为正、短引脚为负。
通用光电器件引线红色为正,黑色为负。
3、实验原理光电二极管是典型的光生伏特器件,它只有一个PN 结。
光电二极管的全电流方程为:式中前一项称为扩散电流,也称为暗电流,用I d 表示;后一项为光生电流,常用IP 表示。
显然,扩散电流I d 与加在光电二极管上的偏置电压U有关,当U=0 时,扩散电流为0。
扩散电流I d 与偏置电压U的关系为:式中,I D 为PN 结的反向漏电流,与材料中的杂质浓度有关;q 为电子电荷量,k 为波尔曼常数,T为环境的绝对温度。
显然,上式描述了光电二极管的扩散电流与普通二管没有什么区别。
而与入射辐射有关的电流I p 为:式中,h为普朗克常数,α为硅材料的吸收系数,d 为光电二极管在光行进方向上的厚度,λ为入射光的波长。
显然,对单色辐射来讲,当光电二极管确定后,上述参数均为常数。
因此,结论为光电二极管的光电流随入射辐射通量Φe,λ线性变化,式中的负号表明光生电流的方向与扩散电流的方向相反。
4、实验内容①光电二极管伏安特性的测量;②光电二极管时间响应特性的测量;(选作)5、实验步骤①光电二极管伏安特性的测量a.将LED、光电二极管接入中通用光电器件实验装置(注意正负极性),按图1搭建电路。
电路检查无误后将LED与光电二极管闭合,避免杂散光的影响,打开实验平台开关。
b. 调出光电综合实验平台的执行软件界面,在界面上先选中“伏安特性实验”。
点击界面上的“示波器”,所示的示波器显示界面,选择通道1 为红色,通道2 为蓝色,再点击“开始”菜单,屏幕上将显示出各通道输入信号的波形。
c. 调节电路参数,使输出信号波形的每个台阶的高度均有一定的差异,高度尺寸不太小或太大,此时光电二极管的变换电路调得比较合适。
点击停止按键,然后在主界面上再点击“数据采集”,保存光电二极管器件的伏安特性曲线图。
②光电二极管时间响应特性的测量a. 按图2搭建电路,电路检查无误后,进行“时间响应实验”。
b. 调节电路参数,观测时间响应特性,并保存。
6、实验结果及分析①测量光电二极管的伏安特性曲线。
②测量光电二极管的时间响应特性曲线。
关机与结束①所测的数据及实验结果(包括实验曲线)保存好,分析实验结果的合理性,如不合理,则要重新补作上述实验;若合理,可以进行关机;②先将实验平台的电源关掉,再将所用的配件放回配件箱;③将实验所用仪器收拾好后,请指导教师检查,批准后离开实验室。
实验三PSD位置传感器实验1.实验目的通过PSD 光电位置传感器的原理实验,掌握光伏器件的横向效应和利用横向效应制造出的光点位置传感器(PSD),并了解有关PSD 的应用技术。
2. 实验仪器①GDS-Ⅲ(或Ⅳ)型光电综合实验平台主机1 台;②一维PSD 光电位置传感器及其夹持器1 件;③点状半导体激光器1 只;④二维调整架1 只;3.实验内容将装载有点光源的被测物体所发出的圆形光点落入到一维PSD 器件上,其两个电极分别输出两路电流,电流强度的和与差值与光点距器件中心位置的距离有关,因此,可用电流强度来度量光点在PSD 上的位置,既用电流测出被测物体的位置。
4. 实验原理如右图所示为PIN型PSD器件的结构示意图,它由3层构成,上面为p型层,中间为i型层,下面为n型层;在上面的p型层上设置有两个电极,两电极间的p型层除具有接受入射光的功能外还具有横向分布电阻的特性。