饮酒驾车的数学模型(1)

合集下载

微分模型

微分模型




这时求得的t 是死者从死亡起到尸体被发 现所经历的时间,因此反推回去可推测死者 的死亡时间大约是前一天的夜晚10:35.
养猪是否获利,怎样获得最大利润? 如果把饲养技术水平,猪的类型等因素忽 略不计,且不考虑市场需求的变化,那么 影响获利大小的一个主要因素就是选择猪 的售出时机。
试做出适当的假设,建立猪的最佳 销售时机的数学模型.
基础部 主讲:陈玉松
司机饮酒模型
死忙时间推测模型 猪的最佳销售时机模型
例1 设警方对司机饮酒后驾车时血液中酒精含量 的规定为不超过80%(mg/ml).现在有一起交通事故, 在事故发生3个小时后,测得司机血液中酒精含量是 56%( mg/ml ).又经过两个小时后,测得其酒精含量 降为40%( mg/ml ).
试判断:事故发生时,司机是否违反了酒精 含量的规定???
模型的建立



因此,当事故发生时,司机血液中的酒精 浓度已经超出规定。
例2 在凌晨1时警方发现一具尸体,测得尸体温度 是29度,当时环境温度是21度,一小时后尸体温度 下降到27度,若人的正常体温是37度,试协助警方 估计死者的死亡时间。


Fra bibliotek




(2)要获得最大利润,价格越高越好
养猪应该选择最大体重大有生长速度快的品种.

饮酒与安全驾车问题的数学模型

饮酒与安全驾车问题的数学模型

p o i e e s n b e s g e t n rt e r v d sr a o a l u g s i sf h m. o o
Ke r s d u k d i n ; if r n i l q to M a h ma i a y wo d : r n r vi g d fe e t ua in; a e t e tc
恢 复驾 车所 需的 时 间也 就 越 长。在 保 障安全 驾 车的前提 下 ,对 司机 允许 的饮 酒量提 出 了合理 的 建议 。 关键词 :饮 酒驾 车 ;微 分方程 ;Ma e t a t mai h c
中 图 分 类 号 : 02 9 文 献标 志 码 :A 文 章 编 号 : l7 — 3 62 1 ) 2 0 1- 4 6 4 3 2 (0 0 0 — 0 3 0
Ab t a t By n l z n h M e a o i sr c: a a y i g t e t b l M e h n s c c a im o lo o i u n b d e c h l n h ma o is h a e sa ls e t
Th a he a i a o l n t eI s fDrnk n nd S f t rv n eM t m tc l M deso h s ueo i i g a a e y D i i g
XU i u Hu - n j
( p r n f ai o reYa g h uP ltc ncIsi t, n z o 2 17 C ia Deat me t B scc us, n z o oyeh i nt eYa g h u2 5 2 , hn ) o u t
Apr 2 0 . 01
饮 酒 与 安 全 驾 车 问题 的数 学模 型

饮酒驾车问题的数学模型

饮酒驾车问题的数学模型

饮酒驾车问题的数学模型按照国家质量监督检验检疫总局《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定,饮酒驾车指:车辆驾驶人员血液中的酒精含量大于或者等于20mg/100mL,小于80mg/100mL的驾驶行为。

醉酒驾车指:车辆驾驶人员血液中的酒精含量大于或等80mg/100mL的驾驶行为。

那么酒后什么时候酒精浓度最高,酒后到底多长时间才能安全驾车下面我们就此问题建立数学模型。

一、提出问题体重为70kg的人在喝下(认为是瞬时饮酒)1瓶啤酒后,测量他的血液中酒精含量(毫克/百毫升),得数据[1]如下问题1.饮酒后多长时间后血液中含酒精量最大。

问题2.某人在早上8点喝了一瓶啤酒,下午2点检查时符合新的驾车标准,他在19点吃晚饭时又喝了一瓶啤酒,过了6小时后驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他陷入困惑,为什么喝同样多的酒,两次检查结果会不一样呢过六小时后再喝一瓶,过多长时间才可以驾车。

问题3.一次喝3瓶啤酒多长时间可以驾车。

二、基本假设短时间饮酒是一次饮入,中间时差不计。

酒精在血液与体液中含量相同。

酒精进入体内后不受其他因素对酒精的分解,不考虑个体差异。

转移过程为,胃→体液→体外。

人的体液占人体重的65%至70%,血液占体重的7%左右;而酒精在血液与体液中的含量是一样的。

三、参数说明t为饮酒时间,y1(t)为时刻人体消化的酒精量,y2(t)为时刻人体的酒精量,k1为酒精在人体中的吸收率常数,k2为酒精在人体中的消除率常数,c(t)为时刻内血液中酒精浓度。

f为酒在人体的吸收度(为一常数,其值等于血液与体液的重量之比)。

四、模型建立与求解可把酒精在体内的代谢看成进与出的过程,用和分别表示酒精输入速率和酒精输出速率,这样问题可简化为血液中酒精的变化律等于输入速率减去输出速率,即。

通过一系列计算得到人体内酒精含量。

可以看出,当酒精含量最大,解得,且此时c(t)达到最大值。

五、问题的回答 1.饮酒后多长时间后血液中含酒精量最大。

数学建模例题_之_饮酒驾驶模型[1]

数学建模例题_之_饮酒驾驶模型[1]

饮酒驾驶模型摘要本文针对酒后驾车造成交通事故死亡率高,以及根据国家质量检验检疫局发布的饮酒后驾车新标准,建立了饮酒后血液中酒精含量的数学模型。

通过了解酒精在体内吸收,分布和排除的动态过程,及这些过程与人体内酒精反应的定量关系建立微分方程,运用药物动力学原理建立单室和双室模型。

得出血液中的酒精含量)(t C ,与进入体内总酒量)(t x 、时间t 的函数关系式:单室模型:()()()()k k e e x k t x t C a t k kt a a --==--0双室模型:()()n n p n p t pt pt v t x v t x AUC AUC n n∆⎪⎪⎭⎫⎝⎛++=--1001本文还运用了 Wagner-Nelson 法(待吸收的百分数对时间作图法),与题中给出的参考数据在计算机运行的结果作对比。

本文还解决了如下问题:1、从模型分析了大李第二次被判为饮酒驾车是因为二次饮酒,而使血液中酒精含量累积而超标。

2、对喝了低度酒多长时间驾车违反规则作了量化分析;3、从单室模型得出了一个血液中酒精含量峰值计算公式:()k k k gk t a a -=303.2max4、用本文的模型对天天喝酒能否开车作了讨论。

本文最后对模型的优点和不足作了评价。

一、问题提出据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

微分方程模型--饮酒驾车

微分方程模型--饮酒驾车
• • • • 模糊逻辑与模糊推理 神经网络在数据拟合中的应用 遗传算法在最优化求解中的应用 ……
– 在建模仿真中的应用 – ……
MATLAB 的保留常量
特殊变量 ans pi eps flops inf NaN i,j nargin nargout realmin realmax 取 值 用于结果的缺省变量名 圆周率 计算机的最小数,当和 1 相加就产生一个比 1 大的数 浮点运算数 无穷大,如 1/0 不定量,如 0/0 i=j= − 1 所用函数的输入变量数目 所用函数的输出变量数目 最小可用正实数 最大可用正实数
人把酒喝入体内后,酒精进入血液需要有一个吸收的过程,故可认为有一 酒精向体外排泄速率与人体体液中酒精的含量成正比; 个吸收室,且酒精被完全吸收。把肠胃作为Ⅰ室,人体体液作为Ⅱ室,酒 2、仅考虑所喝酒中的酒精全部进入血液,不考虑其他因素的影响; 精被吸收后进入Ⅱ室,并最终由Ⅱ室分解并排除,其运动过程如图:
体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他 的血液中酒精含量(毫克/百毫升),得到数据如下:
时间(小时) 酒精含量 时间(小时) 酒精含量
0.25 30 6 38
0.5 68 7 35
0.75 75 8 28
1 82 9 25
1.5 82 10 18
2 77 11 15
2.5 68 12 12
4 51 15 7
4.5 50 16 4
5 41
30
时间(小时) 6 酒精含量
38
人把酒喝入体内后,酒精进入血液需要有一个吸收的过程,故可认为有一 酒精向体外排泄速率与人体体液中酒精的含量成正比; 个吸收室,且酒精被完全吸收。把肠胃作为Ⅰ室,人体体液作为Ⅱ室,酒 2、仅考虑所喝酒中的酒精全部进入血液,不考虑其他因素的影响; 精被吸收后进入Ⅱ室,并最终由Ⅱ室分解并排除,其运动过程如图:

数学建模饮酒驾车的数学模型(含程序和数据)

数学建模饮酒驾车的数学模型(含程序和数据)

收速率和分解速率,单位: mg h-1 。 k0 是表示饮酒速率的参数,单位: mg h1 ; k1 , k2 是 表示酒精吸收能力和分解能力的常数,单位:h1 。t 为时间变量,t 0 表示饮酒开始,t1 为 饮酒结束时间。
1.分析酒精饮用,吸收和代谢三个过程:
⑴司机饮酒过程:我们用 gt表示酒精的饮用速率。可以通过司机饮酒时间和饮酒量确
1 t
m1t
V1
,
2
t
m2 t
V2

估算一下 1(t) , 2 (t) 数值大小。体重70 kg 的正常人体液质量 45 ~ 50kg ,消化道液包
括刚饮用的酒水质量不超过 2kg
, V1 V2
20 , m1 不小于 m2 。相比
m1t ,
V1
m2 t 对吸收速率
V2
的影响可以忽略不计。由于体液体积是一定的,我们可以将酒精的吸收速率表示成如下形
大李的“续酒超标”是由于再次饮酒时体内仍有酒精残留。大李饮酒 6 小时后血液酒 精含量为16.2083mg / dl ,符合标准。晚饭时体内有酒精残留13.5610 mg / dl ,导致了再次饮 酒后 6 个小时血液酒精含量为 24.9183mg / dl 这样超标的结果。短时间饮用 3 瓶啤酒后, 0.0507 小时到 11.0522 小时内血液酒精含量大于 20mg / dl ,共持续 11.0015 小时;若在 2 小 时内慢慢饮用,则在 0.5947 小时到 11.8517 小时内血液酒精含量大于 20mg / dl ,共持续 12.0915 小时,以上时间段内驾车就会违反新标准。通过求导解零点法我们可以估计酒后血 液酒精含量达到最高值的时间。想天天喝酒的司机如果采取合理的饮酒方案仍能安全驾驶。 关键字:饮酒驾车 Fick 原理 微分方程 非线性最小二乘拟合

数学建模 酒驾问题建模

数学建模 酒驾问题建模

合理判断酒驾模型从2011年5月1日新交规开始实施,警察查酒驾依据的标准是:血液中酒精含量<20mg/100ml,合格;血液中酒精含量 20mg/100ml, <80mg/100ml,为酒后驾驶;血液中酒精含量>80mg/100ml,为醉酒驾驶。

具体喝多少酒就达到酒后或醉酒标准呢?警察是用酒精测试仪进行现场测定的,对着测试仪呼一口气,酒精含量马上就会显示出来。

如果达到醉酒或酒后标准,当事人可提出异议,警察可以安排抽血化验血液中酒精含量,一般要第二天出结果。

如果当事人从酒精测试仪没有提出异议,测试结果可作为处罚依据。

有人计算出了各种酒的临界值:表1喝酒后血液中酒精含量与人的体重、酒的度数高低、饮酒后休息的时间有关,与个体的酒量没有任何关系。

一般来说,体重大的人血液量也会增加,酒精度数越高(白酒>黄酒>红酒>啤酒),就越容易达到酒后驾驶标准。

北京大学综合医院营养科主任朱翠凤博士说,根据个人体质、性别、年龄等具体情况不同,计算血液里酒精含量的方法也不同。

酒喝到体内,胃和肝脏都能分泌分解酒中酒精的酶,其中95%的酒精是在肝脏被分解的。

同样的酒量,如体内分泌分解酒精的酶多,则酒精被分解得多,那么进入血中的酒精就少,决定酒量大小的最主要因素是体内分泌分解酒精酶的能力大小。

“一个人的酒量大小很大程度是天生的。

”海慈医院营养科副主任杨红:一个人的酒量大小,很大程度上由遗传因素决定,能喝的人天生就能喝,但如果不能喝酒却硬多喝,对身体有很大的影响。

酒在人体内的分解与时间明显相关参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的.2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:时间(小时) 酒精含量0.25 300.5 680.75 751 821.5 822 772.5 683 683.5 584 514.5 505 416 387 358 289 2510 1811 1512 1213 1014 715 716 4请查阅或收集相关资料,建模回答下列问题:(1)表1中给出的饮用各种酒的“酒后驾驶标准”和“醉酒驾驶标准”合理否?制订你认为合理的评判标准。

2004年中国大学生数学建模竞赛C题_饮酒驾车问题[1]

2004年中国大学生数学建模竞赛C题_饮酒驾车问题[1]

数学建模饮酒驾车题及建模论文饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31号发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3.怎样估计血液中的酒精含量在什么时间最高。

4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:酒后不开车摘要近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。

加强司机的安全观念成为重中之重。

和大李一样困惑的司机也不在少数,问题1我们便会对大李所遇到的情况加以科学地解释;问题2我们要将情况推广,在喝酒持续时间长短两种情况下讨论酒后驾车的合理时间间隔;在问题2的基础上,进而我们引出问题3来研究酒后人体血液中的酒精含量出现最高的时间点;问题4是帮助那些想每天喝酒的司机来协调他们喝酒和开车的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)一. 问题重述………………………………………………………二.问题分析…………………………………………………………三. 模型假设…………………………………………………………四.符号说明…………………………………………………………五.模型的建立与求解………………………………………………5.1 快速饮酒的模型……………………………………………5.2 慢速饮酒的模型……………………………………………5.3 多次饮酒模型………………………………………………六.模型的评价与改造…………………………………………………6.1 解释题目中大李遇到的问题…………………………………6.2 喝了三瓶酒或半斤底度白酒后多久才能驾车………………6.3 估计血液中酒精含量在何时最高……………………………6.4 天天喝酒,能否开车……………………………………………6.5 给司机的忠告……………………………………………………七.模型评价…………………………………………………………………八.模型推广…………………………………………………………………九.参考文献…………………………………………………………………十.附录………………………………………………………………………一、问题重述关键词:微分方程、模型。

本问题主要是分析驾驶员在喝过一定量的酒后,血液中酒精含量上升,影响司机驾车,所以司机饮酒后需经过一段时间后才能安全驾车,国家标准新规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中酒精含量大于或等于80毫克/百毫升为醉酒驾车,司机大李在中午12点喝下一瓶啤酒,6小时后检查符合新标准,晚饭地其又喝了一瓶啤酒,他到凌晨2点驾车,被检查时定为饮酒驾车,为什么喝相同量的酒,两次结果不一样?讨论问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3. 怎样估计血液中的酒精含量在什么时间最高。

4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:二、模型假设1、酒精从胃转移到体液的速率与胃中的酒精浓度成正比。

2、酒精从体液转移到体外的速率与体液中的酒精浓度成正比。

3、酒精从胃转移到体液的过程中没有损失,且不考虑误差。

三、符号说明:酒精从体外进入胃的速率;kf(t):酒精从胃转移到体液的速率;1(t):酒精从体液转移到体外的速率;f2X(t):胃里的酒精含量;Y(t):体液中酒精含量;V 0:体液的容积;K 1:酒精从胃转移到体液的速率系数;K 2:酒精从体液转移到体外的速率系数;C(t):体液中的酒精浓度。

0D :短时间喝酒情况下进入胃中的初始酒精量。

T :较长时间喝酒所用的时间或达到浓度最大值所需时间。

四、模型的分析与建立(一)、模型分析:假设酒精先以速率0k 进入胃中,然后以速率)(1t f 从胃进入体液,再以速率f 2(t)从体液中排到体外。

(二)模型建立:找到C(t)与t 的关系用x(t)与y(t)分别表示酒精在胃、体液中的酒精量,c(t)表示酒精在体液中的浓度。

根据前面的假设可知:)()(11t x k t f =)()(22t y k t f =1.对胃建立方程: dx(t)=k 0dt-f 1(t)dt)()(10t f k dtt dx -= 可得:01)()(k t x k dtt dx =+ 利用一阶线性常微分方程求解,可以得到;⎪⎪⎩⎪⎪⎨⎧==+=+=-01110111)0()(1x x A c k k A A e c t x t k 又因为)()(11t x k t f = ,联合式可得:111111)(A k e c k t f t K +=-0111k e c k t k +=-00011)(k ek x k t k +-=-2又对中心室可建立方程组如下; ⎪⎩⎪⎨⎧=-=021)0()()()(y y t f t f dt t dy 同理:)()()(21t y k t f dtt dy -= 因为000111)()(k e k x k t f t k +-=-,将其代入上式可得到:000121)()()(k e k x k t y k dtt dy t k +-=+- 利用微分求解:t k t k t k t k e B A e c e k k k x k k k e c t y 121222212001202)(----++=--++= 又酒精浓度为酒精量与体液容积之比,0)()(v t y t c =,即: t k t k e B A e c t c 12333)(--++=(其中 023v c c =,0203v k k A =,0120013)(v k k k x k B --=,0333)0(c c C B A ==++)。

(三)模型的讨论:情况一 1当酒是在较短时间内喝时此时有00)0(x D x ==,00=k ,00=c 。

由上可得:03=A ,012013)(v k k D k B -=,33B c -= 因此有:]333121212[)()(t k t k t k t k tk t k e e A e e B e B e B t c -------=--=+-= (其中 021013)(v k k D k B A -=-=) 设K1>K2,因此可认为:t k Ae t c 2)(-≈tK A t c 2ln )(ln -=⇒利用数表一:(喝下两瓶啤酒 取0.25小时以后)通过Matlab 进行曲线拟合可得:>> t=[ 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y1=[82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];y2=log(y1);polyfit(t,y2,1);ans =-0.1940 4.77535459.118=A ,1940.02=k根据查阅资料可知:一瓶啤酒的酒精量一般为640ml ,密度为810mg/ml 酒精浓度不超过4.5%,所以两瓶啤酒的酒精总量mg D 46656%5.481064020=⨯⨯⨯=由于体重为70kg,体重的65%左右,体液密度为1.05mg/ml 33.43310005.110%657030=⨯⨯⨯=v 毫克/百毫升。

由02101)(v k k D k A -=可求得:114.21=k 。

可得短时间内喝下两瓶啤酒时关系式如下;][5459.118)(114.21940.0t t e e t c ---=用Matlab 软件画出图形为:情况二1当酒是在较长时间内喝时我们可将其进行分段讨论。

当t ](,T0∈时,同样可以得到:T 为喝酒总用时,取2小时。

此时T D k 00=,x (0)=0,y (0)=0因为:t k t k e B A e c t c 12333)(--++=可知)()1()()(12223313333t k t k t k tk t k e e B e A e B A e B A t c --------=+++-=由上式可以求得:A 3=277.50259B 3=28.0386772所以可得 :T k T k T k T k T k t k Be e e B e e B e A T c 212122][)()1()(33------=-=---=2当t T >时,则此时血液中的浓度与时间关系式如下: )(2)(1)(20211)(][)()()(T t k T t k T t k e T C e e v k k T x k t c ------+-⨯-= 其中]1[1)(110011001T k T k e k k k k e k k x k T x ---=+-= ][)(]1[)(212102020T k T k T k e e k k k e y k k T c -----+-= 综上所述,可得,当T t ≥时⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--+-=-=+-⨯-=----------][]1[)(]1[)()(][)()()(212121*********)()()(0211T k T k t k T k T t k T t k T t k e e k k k e y k k T c e k k T x e T C e e v k k T x k t c 五、问题的解答问一:假设大李第一次喝酒是在短时间内喝的,根据所建立模型,符合情况一][27295.59)(114.21940.0t t e e t c ---=(一瓶啤酒)当6=t 时,可以求得百毫升/2778.18)(mg t c =,小于200mg/百毫升,所以第一次检查时不是饮酒驾驶。

紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车。

第一次喝完6小时后残余18.2778mg/百毫升,又过8小时残余 3.92mg/百毫升,因此晚六点喝酒不是短时间喝完,因此可知,18.2778+3.92=22.1978>20。

因此为饮酒驾车。

问二(1)当酒是在较短时间内喝时,符合情况一所以:三瓶啤酒时 ][81885.177)(114.21940.0t t e e t c ---=当百毫升毫克/20)(=t c 时,可求得小时261.11=t 。

所以当驾驶员在较短时间内喝下三瓶啤酒时,必须经过11.261小时后开车才不会被认为是饮酒驾车。

(2)当酒是在较长时间内喝时,符合情况二t k t k e B A e c t c 12333)(--++=当百毫升毫克/20)(=t c 时,可以求出407.13=t 小时,所以当驾驶员在较长时间(T 为二小时)喝下三瓶啤酒后,必须经过13.407小时后开车才不被认为是饮酒驾车。

问三:(1) 短时间内喝酒时,符合情况一 ][)()(1202101t k t k e e V K K D k t c ----=当)(t c 的导数等于0时,可解得:23.1212ln 1ln =--=k k k k T 所以当t=1.23时,)(t c 取得最大值。

相关文档
最新文档