高一数学简单旋转体教案

合集下载

《简单旋转体 》示范公开课教学设计【高中数学必修2(北师大版)

《简单旋转体 》示范公开课教学设计【高中数学必修2(北师大版)

《简单旋转体》教学设计简单几何体是立体几何初步的入门,在本节课中我们将认识简单旋转体和简单多面体,并了解其相应的结构特点。

简单几何体的学习为后面研究几何体的结构特征,空间图形的基本关系以及简单几何体的面积和体积打下基础,是本章内容学习的起点和基础。

【知识与能力目标】(1)能根据几何结构特征对空间物体进行分类(2)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.【过程与方法目标】通过生活中的实物,抽象概括其结构特点,增强学生对生活与数学的联系,培养学生的空间立体感.让学生通过直观感受空间物体,从实物中概括出球、柱、锥、台的几何结构特征。

让学生观察、讨论、归纳、概括所学的知识。

【情感态度价值观目标】通过生活中的实物,抽象概括其结构特点,增强学生对生活与数学的联系,培养学生的空间立体感。

【教学重点】让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

【教学难点】柱、锥、台、球的结构特征的概括说明。

电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。

平面是空间最基本的图形,平整的桌面、平静的湖面都给人平面的印象◆教学重难点◆◆课前准备◆◆教材分析◆教学过程◆教学目标几何的平面可以无限延展,一般地,我们用平行四边形表示平面。

也记作:平面 或平面ABCD或平面AC或平面BD创设情境,揭示课题:我们生活的空间里有各式各样的几何体,出示课本中的图形问题1:这些图形具有什么样的几何结构特征?你能对他们进行分类吗?学生观察思考,小组交流讨论。

设计意图:由学生熟悉的生活中的实物入手,引发学生的思考,如何将这些空间物体分类?激发学生的学习兴趣。

上面的图形大致可以分为两类。

给出简单旋转体和简单多面体的概念。

揭示课题。

一、简单旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体。

(1)球的旋转定义: 半圆以它的直径为旋转轴,旋转所成的曲面叫做球面.球面所围成的几何体叫做球体,简称球。

高中数学 同步教学 简单旋转体

高中数学 同步教学 简单旋转体

分析:圆柱中挖去圆锥后的几何体被平行于底面的平面所截得的
截面是一个圆环面,它由圆柱被截得的圆面去掉圆锥被截得的同心
圆面得到,故先作出轴截面再求解.
题型一
题型二
题型三
题型四
题型五
解:该几何体的轴截面如图所示,被平行于下底面的平面所截得
的圆柱的截面圆的半径O1C=R.
∵OA=AB=R,
(2)特殊的旋转体:球、圆柱、圆锥、圆台.
名师点拨如果只考虑物体的形状和大小,而不考虑其他因素,那么
由这些物体抽象出来的空间图形叫作空间几何体.旋转体是特殊的
空间几何体.
【做一做1】 以等腰梯形的对称轴为轴旋转一周,所形成的旋转
体为(
)
A.圆台
B.圆锥
C.圆柱
D.球
答案:A
2.几种简单几何体的比较
柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;
③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的
母线;④圆柱的任意两条母线所在的直线是互相平行的.
其中正确的是(
)
A.①②
B.②③
C.①③
D.②④
答案:D
【做一做2-2】 有下列说法:
①球的半径是连接球面上任意一点和球心的线段;②球的直径是
名称 定义

相关概念
图形表示
球心:半圆的圆心
以半圆的直径
叫作球心;
所在的直线为
半径:连接球心和
旋转轴,将半
球面上任意一点
圆旋转所形成
的线段叫作球的
的曲面叫作球
半径;
面.球面所围
直径:连接球面上
成的几何体叫
的两点并且过球
作球体,简称

《旋转》数学教案设计

《旋转》数学教案设计

《旋转》數學教案設計《旋转》数学教案设计一、教学目标:1. 知识与技能:理解和掌握旋转的基本概念,能够正确识别和描述物体的旋转运动。

2. 过程与方法:通过观察、操作、讨论等活动,培养学生观察、分析问题的能力,以及抽象思维和空间想象能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的探索精神和团队合作意识。

二、教学重点和难点:重点:理解旋转的概念,掌握旋转的特点和性质。

难点:理解和掌握旋转中心、旋转方向和旋转角度这三个要素。

三、教学过程:1. 引入新课:教师可以通过实物展示(如风车、陀螺等)或者动画视频引入旋转这一主题,让学生直观感受并理解旋转现象。

2. 探索新知:(1) 旋转定义:引导学生通过观察和思考,归纳出旋转的定义——在平面内,一个图形绕着某一点转动一定的角度,这种图形的位置变化叫做旋转。

(2) 旋转要素:讲解旋转的三个要素——旋转中心、旋转方向和旋转角度,并通过实例进行解释说明。

(3) 旋转特点:引导学生通过实际操作,发现并总结旋转的特点,例如旋转后图形的形状和大小不变,只是位置发生了改变。

3. 巩固练习:设计一些简单的题目,让学生运用所学知识解决问题,进一步理解和掌握旋转的相关知识。

4. 小结与拓展:引导学生回顾本节课的学习内容,对旋转的定义、要素和特点进行总结。

然后,可以提出一些开放性的问题,比如“生活中有哪些旋转的现象?”、“你能设计一个利用旋转的装置吗?”等,引导学生进行更深入的思考和探究。

四、教学评价:通过对学生的课堂参与度、作业完成情况、小测验成绩等方面的综合评价,了解学生对旋转的理解和掌握程度,以便及时调整教学策略,提高教学效果。

五、教学反思:在教学过程中,要注重引导学生自主学习和探究,激发他们的学习兴趣和积极性。

同时,也要关注学生的个体差异,提供适当的帮助和支持,以满足他们不同的学习需求。

高中数学旋转问题教案模板

高中数学旋转问题教案模板

一、教学目标1. 知识与技能目标:(1)理解旋转的概念和旋转中心、旋转角度等基本概念;(2)掌握旋转的几何性质,包括图形的对称性、中心对称、旋转角度等;(3)学会利用旋转解决实际问题。

2. 过程与方法目标:(1)通过观察、实验、操作等活动,探究旋转的性质;(2)运用几何图形和数学语言表达旋转问题,提高几何思维能力;(3)培养学生观察、分析、推理、解决问题的能力。

3. 情感态度与价值观目标:(1)激发学生对数学学习的兴趣,培养学生热爱数学的情感;(2)培养学生严谨、求实的科学态度;(3)提高学生的审美情趣,培养学生的创新精神。

二、教学重难点1. 教学重点:(1)旋转的概念和旋转性质;(2)旋转图形的对称性;(3)旋转问题的解决方法。

2. 教学难点:(1)旋转图形的对称性分析;(2)旋转问题的解决方法。

三、教学用具1. 多媒体课件;2. 教学黑板;3. 练习题;4. 学生练习本。

四、教学过程(一)导入新课1. 复习旧知识:回顾平面直角坐标系中点与坐标的对应关系,以及几何图形的对称性。

2. 提出问题:在平面直角坐标系中,如何表示一个图形绕某一点旋转一定角度后的位置?(二)新课讲授1. 介绍旋转的概念:图形绕某一点旋转一定角度,所得图形与原图形全等,且对应点所连线段垂直于旋转轴。

2. 介绍旋转中心、旋转角度等基本概念。

3. 讲解旋转的性质:(1)旋转图形的对称性:旋转图形具有中心对称性,对称中心为旋转中心。

(2)旋转角度的测量:利用量角器或直尺测量旋转图形中对应点的连线与旋转轴的夹角。

4. 讲解旋转问题的解决方法:(1)根据旋转中心、旋转角度和原图形的位置,确定旋转后的图形位置;(2)利用旋转性质解决实际问题。

(三)课堂练习1. 完成多媒体课件中的例题,巩固旋转的性质和解决方法。

2. 学生独立完成练习题,教师巡视指导。

(四)课堂小结1. 回顾本节课所学内容,强调旋转的概念、性质和解决方法。

2. 鼓励学生在日常生活中发现旋转现象,提高数学素养。

11-1-5旋转体(教案)——高中数学人教B版(2019)必修第四册

11-1-5旋转体(教案)——高中数学人教B版(2019)必修第四册

旋转体【教学目标】1.了解圆柱、圆锥、圆台、球的定义。

2.掌握圆柱、圆锥、圆台、球的结构特征。

3.能够根据圆柱、圆锥、圆台、球的结构特征识别和区分几何体。

【教学重难点】1.掌握圆柱、圆锥、圆台、球的结构特征。

2.会作旋转体的轴截面,并利用轴截面解决问题。

【教学过程】一、问题导入从生活中的一些物体可以抽象出圆柱、圆锥、圆台,。

观察它们的结构,总结出形成圆柱、圆锥、圆台的方式。

二、新知探究1.旋转体的结构特征【例1】判断下列各命题是否正确(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球。

[解](1)错。

由圆柱母线的定义知,圆柱的母线应平行于轴。

(2)错。

直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示。

(3)正确。

(4)错。

应为球面。

【教师小结】(1)圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求。

(2)只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误。

2.旋转体中的计算[探究问题](1)圆柱、圆锥、圆台平行于底面的截面是什么样的图形?[提示]圆面。

(2)圆柱、圆锥、圆台过轴的截面是什么样的图形?[提示]分别为矩形、等腰三角形、等腰梯形。

(3)经过圆台的任意两条母线作截面,截面是什么图形?[提示]因为圆台可以看成是圆锥被平行于底面的平面所截得到的几何体,所以任意两条母线长度均相等,且延长后相交,故经过这两条母线的截面是以这两条母线为腰的等腰梯形。

(4)球的截面是什么?[提示]球的截面均是圆面,球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做球的小圆。

数学《旋转体的概念》教案

数学《旋转体的概念》教案

数学《旋转体的概念》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、信息技术教案、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, information technology lesson plans, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please pay attention!数学《旋转体的概念》教案数学《旋转体的概念》教案15.3旋转体的概念(1)一、教学内容分析本节课是在学习完棱柱、棱锥两种特殊的多面体之后,学习的第二类简单的几何体,圆柱与圆锥学生已经有所接触,但只是生活意义上的理解,课本这里是给出数学定义.圆柱与圆锥内容的承上之处是它们与棱柱、棱锥都是由四边形或三角形构成的,区别在于构成的方式不同,这里学生认知上的一个重要发展是曲面的概念及其形成的数学理解.而这一发展又正好是对球的概念及所有旋转体的概念的形成起到了启下作用,是学生后序发展的最近发展区.二、教学目标设计1、理解圆柱、圆锥及其有关概念的形成过程;2、理解圆柱、圆锥的侧面的母线的概念及母线之间的关系,母线所具有的性质;3、通过对圆柱、圆锥的研究培养空间想象力及知识的自我生成和发展能力.三、教学重点及难点重点是圆柱、圆锥概念的生成;难点是母线及其相关性质的理解和简单应用.四、教学用具准备教具、学具:圆柱,圆锥实物模型、多媒体设备(宋体四号)五、教学流程设计六、教学过程设计一、情景引入1.观察总结概括多面体及其重要特征,然后给出圆柱、圆锥、球和其他旋转体引入旋转体的概念.2.思考圆柱可看成由何种平面图形绕它所在平面内的一条直线旋转形成的?3.讨论通过从不同角度观察圆柱并联想到特殊图形讨论可以是何种图形,如何旋转可得到圆柱二、学习新课1.概念辨析圆柱的概念:圆柱的轴,圆柱的底面,侧面,侧面的母线及圆柱的高.底面和侧面分别是由矩形的哪条边旋转得到的?底面由与轴垂直的边旋转得到,所以圆柱的底面是圆面且垂直于轴.侧面是由与轴平行的边旋转得到,所以侧面是曲面,且该边旋转到任何位置所得到的线段都是侧面的母线,因此母线有无穷多条,互相平且相等.2.例题分析例1用垂直于轴的平面截圆柱,所得截面是何种图形?例2用平行于轴的平面截圆柱,所得截面是何种图形?例3把圆柱的侧面沿一条母线展开,所得图形是哪种图形?可以实物引导学生具体操作,探究并解决问题.3.问题拓展根据对圆柱的学习,你能否研究一下圆锥,得出与圆柱相应的概念、性质,并回答与圆柱的三个例题相对应的问题?下面可以让学生独立或分组根据实物对圆锥进行研究,教师巡视观察学生的进展情况,并随时给予指导.最后由学生总结研究结果.在学习过圆柱和圆锥的基础上引导学生给出旋转体的概念.三、巩固练习1、举出生活中的圆柱和圆锥的实例.2、用垂直于圆柱底面的平面截圆柱,何时截面面积最大?最大面积是多少?3、若直角三角形绕其斜边所在直线旋转一周所得几何体是何形状?四、课堂小结1、圆柱,圆锥,旋转体的概念,和侧面母线,侧面展开图形状.2、圆柱与圆锥垂直于轴的截面和平行于轴的截面的特点.五、作业布置练习册,拓展作业:1、求过圆锥顶点的截面三角形顶角的最大值和面积的最大值.2、与圆柱和圆锥的轴斜交的平面截圆柱和圆锥所得截面是何种图形?七、教学设计说明圆柱、圆锥学生已经有所接触,所以并不陌生,但是学生的经验或知识仅是感性经验,并没有上升到数学的角度,所以对圆柱和圆锥的本质特点往往把握不准.因此本节课在设计时把重点放在从数学的角度观察圆柱和圆锥,揭示其数学特征,并用数学语言表示描述其特征上,让学生体验把感性知识数学化的过程.在练习和作业中的截面问题要求较高,可根据学生的情况控制难度.另外从知识的呈现次序上,与课本先总后分不同,采用了先分后总的次序,比较符合认识规律.。

高一数学简单旋转体教案

高一数学简单旋转体教案

高一数学简单旋转体教案第一章:立体几何初步1.1简洁旋转体一、教学目标1.学问与技能(1)通过实物操作,增加同学的直观感知。

(2)能依据几何结构特征对空间物体进行分类。

(3)会用语言概述球、圆柱、圆锥、圆台、棱柱、棱锥、棱台的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让同学通过直观感受空间物体,从实物中概括出球、柱、锥、台的几何结构特征。

(2)让同学观看、争论、归纳、概括所学的学问。

3.情感态度与价值观(1)使同学感受空间几何体存在于现实生活四周,增加同学学习的乐观性,同时提高同学的观看力量。

(2)培育同学的空间想象力量和抽象括力量。

二、教学重点、难点重点:让同学感受大量空间实物及模型、概括出球、柱、锥、台的结构特征。

难点:球、柱、锥、台的结构特征的概括。

三、教学用具(1)学法:观看、思索、沟通、争论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.老师提出问题:在我们生活四周中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导同学回忆,举例和相互沟通。

老师对同学的活动准时赐予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展现具有球、柱、锥、台结构特征的空间物体),你能通过观看。

依据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导同学观看物体、思索、沟通、争论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观看棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织同学分组争论,每小组选出一名同学发表本组争论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边相互平行。

概括出棱柱的概念。

4.老师与同学结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不行以依据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让同学思索、争论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

精--高一数学简单旋转体优秀教案.doc

精--高一数学简单旋转体优秀教案.doc

高一数学简单旋转体教课设计第一章:立体几何初步 1.1 简单旋转体一、教课目的 1.知识与技术(1)经过实物操作,加强学生的直观感知。

( 2)能依据几何构造特点对空间物体进行分类。

(3)会用语言概括球、圆柱、圆锥、圆台、棱柱、棱锥、棱台的构造特点。

( 4)会表示有对于几何体以及柱、锥、台的分类。

2.过程与方法( 1)让学生经过直观感觉空间物体,从实物中归纳出球、柱、锥、台的几何构造特点。

( 2)让学生观察、议论、归纳、归纳所学的知识。

3.感情态度与价值观( 1)使学生感觉空间几何体存在于现实生活四周,加强学生学习的踊跃性,同时提升学生的察看能力。

(2)培育学生的空间想象能力和抽象括能力。

二、教课要点、难点要点:让学生感觉大批空间实物及模型、归纳出球、柱、锥、台的构造特点。

难点:球、柱、锥、台的构造特点的归纳。

三、教课器具(1)学法:察看、思虑、沟通、议论、归纳。

( 2)实物模型、投影仪四、教课思路(一)创建情形,揭露课题 1.教师提出问题:在我们生活四周中有许多有特点的建筑物,你能举出一些例子吗?这些建筑的几何构造特点怎样?指引学生回想,举例和互相沟通。

教师对学生的活动实时赐予评论。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展现拥有球、柱、锥、台构造特点的空间物体),你能经过察看。

依据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.指引学生察看物体、思虑、沟通、议论,对物体进行分类,辩解棱柱、圆柱、棱锥。

2.察看棱柱的几何物品以及投影出棱柱的图片,它们各自的特点是什么?它们的第一章:立体几何初步 1.1 简单旋转体一、教课目的 1.知识与技术(1)经过实物操作,加强学生的直观感知。

(2)能依据几何构造特点对空间物体进行分类。

( 3)会用语言概括球、圆柱、圆锥、圆台、棱柱、棱锥、棱台的构造特点。

( 4)会表示有对于几何体以及柱、锥、台的分类。

2.过程与方法( 1)让学生经过直观感觉空间物体,从实物中归纳出球、柱、锥、台的几何构造特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学简单旋转体教案
第一章:立体几何初步
1.1简单旋转体
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述球、圆柱、圆锥、圆台、棱柱、棱锥、棱台的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出球、柱、锥、台的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出球、柱、锥、台的结构特征。

难点:球、柱、锥、台的结构特征的概括。

三、教学用具
(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有球、柱、锥、台结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩
棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p7,习题1.1 a组第1题。

共2页,当前第1页12
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课外练习课本p6 b组题。

相关文档
最新文档