钢结构的裂纹成因及防范措施 改

合集下载

钢结构产生裂缝的原因分析及解决措施

钢结构产生裂缝的原因分析及解决措施

钢结构产生裂缝的原因分析及解决措施前言钢结构是一种常用的建筑结构形式,具有高强度、耐久性和稳定性等优点。

然而,有时钢结构会出现裂缝问题,给结构的安全性和稳定性带来威胁。

本文将分析钢结构产生裂缝的原因,并提出解决措施以防止或修复这些裂缝。

裂缝的原因分析1. 载荷超载:如果钢结构超过了其承载能力,会导致裂缝的产生。

这可能是由于设计错误、运输或安装失误等问题所引起。

因此,在设计和施工过程中,应确保载荷不超过钢结构的承载能力。

2. 施工质量问题:不良的施工质量也是导致钢结构裂缝的原因之一。

例如,焊接质量不合格、连接件失稳或材料缺陷等都可能导致裂缝的产生。

因此,在施工过程中,应严格遵守相关的施工标准和质量控制要求。

3. 环境因素:环境因素如温度变化、湿度和风力等也可能引起钢结构裂缝。

例如,温度变化引起的热胀冷缩效应可能导致结构的变形和应力集中,最终导致裂缝的产生。

因此,在设计和使用钢结构时,应考虑环境因素对结构的影响,并采取相应的措施进行管理和保护。

解决措施1. 加强设计和施工质量管理:在钢结构的设计和施工过程中,应加强质量管理,确保设计规范和施工标准得到严格遵守。

同时,对焊接、连接等关键工艺进行监控和检测,确保施工质量符合要求。

2. 载荷控制和监测:确保钢结构的载荷不超过其承载能力,合理进行结构设计和分析,以防止载荷超载。

此外,对钢结构进行定期监测,及时发现载荷异常,做出及时调整和维护。

3. 应对环境因素:针对环境因素的影响,采取相应的措施进行管理和保护。

例如,在高温季节,可以采取隔热措施,减少结构受热膨胀的影响;在潮湿环境下,采取防锈措施,防止钢结构受潮和腐蚀。

结论钢结构裂缝的产生与多种因素相关,包括载荷超载、施工质量问题和环境因素等。

通过加强设计和施工质量管理,控制和监测载荷,以及应对环境因素,可以有效预防和解决钢结构裂缝问题,提升结构的安全性和稳定性。

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施建筑钢结构焊接是连接构件的常用方法,但焊接过程中容易产生裂纹,严重影响结构的安全性和使用寿命。

研究焊接裂纹的产生机理并采取合理的防止措施至关重要。

焊接裂纹主要是由于焊接过程中产生的应力引起的,其产生机理包括冷裂纹、热裂纹和残余应力裂纹。

冷裂纹是指焊缝在冷却过程中由于收缩应力引起的裂纹。

焊接时,焊缝收缩后会产生应力,如果不加控制地冷却,收缩应力会引起元件产生冷裂纹。

防止冷裂纹的主要措施包括预热、均匀冷却以及控制焊接方向。

预热可以减少冷却速率,降低收缩应力的大小。

均匀冷却可以避免应力集中,减少冷裂纹的产生。

控制焊接方向可以调整焊缝形式,减少应力的集中。

热裂纹是指在焊接过程中由于组织相变引起的裂纹。

焊接时,材料会受到高温热输入,过高的热输入会引起材料组织相变,从而产生热裂纹。

防止热裂纹的关键措施是控制焊接热输入,采用适当的预热和后热处理方法,以使材料组织相变得到控制。

残余应力裂纹是指焊接后钢结构中残余应力引起的裂纹。

焊接后,由于组织变化和热应力等原因,结构会产生残余应力。

如果应力过大,就容易引起裂纹的产生。

防止残余应力裂纹的措施包括适当的焊接顺序和采用适当的预热和后热处理方法。

还可以通过合理的焊接工艺来防止焊接裂纹的产生。

采用适当的焊接电流和电压、焊接速度和焊缝宽度、合理的焊接通道和方法等,都可以减少应力集中和裂纹的产生。

针对建筑钢结构焊接裂纹的产生机理,我们可以采取预防措施,如合理控制焊接热输入、适当预热和后热处理、调整焊接方向、控制焊接顺序等,从而降低焊接裂纹的发生率,提高结构的安全性和使用寿命。

(注:本文仅供参考,具体内容和措施应根据实际情况和规范要求确定。

)。

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施标签:焊接裂纹;建筑;防治现阶段,随着市场经济的不断发展,建筑行业市场的竞争压力逐渐增加,这对部分建筑企业来说是一个很大的挑战。

为在激烈的竞争当中得以生存,工程质量情况逐渐得到越来越多建筑企业的重视,工程质量的提升不仅可以实现企业价值的最大化,还能在一定程度上把握对成本的管控。

因此,本文以建筑钢结构为基础,对焊接中裂纹的产生机理和防治进行研究。

一、裂纹的产生机理及特征建筑钢在焊接的过程中很容易产生裂纹,主要分为三种形式:热裂纹、冷裂纹、层状撕裂。

(一)热裂纹热裂纹是复杂钢结构中较容易出现的一种裂纹形式,其产生的主要原因是在焊接后结晶的过程中受到高温。

热裂纹通常会出现在焊接缝当中,并在缝隙当中呈现纵向分布,是焊接过程中经常出现的一种裂纹。

根据所受温度的不同,热裂纹呈现的形式也有所差异,主要分为三种:凝固裂纹。

这种裂纹又称结晶裂纹,主要在焊接快结束前脆性温度间的焊缝金属凝固所形成。

焊缝金属结晶的过程中,由于液层之间存在韧性较低的杂质,金属在冷却不均的情况下拉伸超过临界值,即导致热裂缝的出现。

液化裂缝。

这种热裂缝的产生是由于一些低熔点的金属或金属化合物在焊接中产生的热量引起晶界焊接热,从而影响液化而产生的裂纹。

塑料裂纹。

又被称为多层焊接,其产生原因主要是受焊接热循环的影响,导致金属材料塑性降低,受到拉应力在晶界进行二次结晶而形成的裂纹。

(二)冷裂纹冷裂纹通常在焊接结束后冷却的过程中出现,有的是直接出现,也有一部分是在经过一段时间后出现,这种产生后不会立即出现而是随着时间的推移慢慢显露出来的裂纹,被称为延迟裂纹。

冷裂纹大多为延迟裂纹,通常产生在低、中合金钢焊接的热影响区域,很少部分在焊接缝上,裂纹横纵不一,由于大部分冷裂纹都不是直接出现,因此具有一定的隐蔽性。

经相关统计显示,冷裂纹产生的主要原因分为以下几种:钢的淬硬趋势焊接头氢含量焊接头拘束度。

(三)层状撕裂层状撕裂在钢结构焊接的过程中主要分为两种,一种裂点出现在焊缝的根部附近,由根部向四周蔓延,另一种是出现在含热区,主要是焊接过程中在收缩应力具有很强拉伸性的情况下,由一些非金属的杂质扩散而成。

钢结构焊接裂纹的种类及对策

钢结构焊接裂纹的种类及对策

钢结构焊接裂纹的种类及对策根据裂纹发生的时间大致可以将裂纹分成高温裂纹和低温裂纹两大类。

1、低温裂纹根据裂纹是低温裂纹常见的一种形态,其产生原因如下:(1)主要是由于焊接金属含氢量较高所致氢的来源有多种途径,如焊条中的有机物,结晶水,焊接坡口和它的附近粘有水份、油污及来自空气中的水份等。

(2)焊接拉头的约束力较大,例如厚板焊接时接头固定不牢、焊接顺序不当等均有可能产生较大的约束应力而导致裂纹的发生。

(3)当母材碳当量较高,冷却速度较快,热影响区的硬化从而导致裂纹的发生。

对于根部裂纹的防止措施:(1)选用低氢或超低氢焊条或其他焊接材料。

(2)对焊条或焊剂等进行必要的烘焙,使用时注意保管。

(3)焊前,应将焊接坡口及其附近的水份、油污、铁锈等杂质清理干净。

(4)选择正确的焊接顺序和焊接方向,一般长构件焊接时最好采用由中间向两端对称施焊的方法。

(5)进行焊前预热及后热控制冷却速度,以防止热影响区硬化。

2、高温裂纹焊道下梨状裂纹是常见的高温裂纹的一种,主要发生在埋弧焊或二氧化碳气体保护焊中,手工电弧焊则很少发生。

焊道下梨状裂纹的产生原因主要是焊接条件不当,如电压过低、电流过高,在焊缝冷却收缩时使焊道的断面形状呈现梨形。

防止措施:选择适当的焊接电压、焊接电流;焊道的成形一般控制在宽度与高度之比为1:1.4较适宜。

弧坑裂纹也是高温裂纹的一种,其产生原因主要是弧坑处的冷却速度过快,弧坑处的凹形未充分填满所致。

防止措施是安装必要的引弧板和引出板,在焊接因故中断或在焊缝终端应注意填满弧坑。

焊接裂纹的修补措施如下:(1)通过超声波或磁粉探险伤检查出裂纹的部位和界限。

(2)沿焊接裂纹界限各向焊缝两端延长50mm,将焊缝金属或部分母材用碳弧气刨等刨去。

(3)选择正确的焊接规范,焊接材料,以及采取预热、控制层间温度和后热等工艺措施进行补焊。

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施钢结构作为建筑工程中重要的材料之一,广泛应用于不同类型的建筑物中。

然而,在钢结构的生产和施工过程中,焊接裂纹是一个常见的问题,会导致结构的强度和稳定性受到影响,甚至可能引发严重的事故。

因此,了解钢结构焊接裂纹的产生机理,采取防止措施,对于保障钢结构的安全性和可靠性具有重要意义。

钢结构焊接裂纹的产生机理主要有以下几个方面:
1. 材料缺陷:焊接过程中,如果钢材本身就存在缺陷,比如孔洞、气孔、裂纹等,容易在焊接过程中扩大,形成焊接裂纹。

2. 焊接过程中的热应力:钢材在焊接过程中会受到热应力的影响,会产生变形和应力集中的问题。

如果应力集中过于严重,就会导致焊接裂纹的产生。

3. 焊接参数不当:焊接参数的选择不当,比如电流、电压、焊接速度等不合理,容易导致焊接温度不均匀,从而引发焊接裂纹。

为了防止钢结构焊接裂纹的产生,可以采取以下措施:
1. 选择质量好的材料:在选材的过程中,应选择质量好的钢材,尽可能避免存在缺陷的材料被用于焊接。

2. 确定合理的焊接参数:在焊接过程中,应根据钢材的材质和焊接方式确定合理的焊接参数,保证焊接温度均匀,减少应力集中的问题。

3. 采用预热和后热处理技术:在焊接前进行预热,可以减少焊接过程中的热应力,从而避免焊接裂纹的产生。

在焊接后进行后热处
理,可以降低残余应力,进一步保证结构的稳定性和安全性。

总之,了解钢结构焊接裂纹的产生机理,采取有效的防止措施,对于确保建筑物整体的安全性和可靠性具有重要意义。

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施现如今,随着社会经济的不断发展,各企业对于建筑钢结构的焊接技术有着较高的要求,而对于建筑钢结构,它具备强度高、抗震性强的有点,且在所有建筑工程施工中,运用比较广。

但在设计钢结构中,由于设计的方案不同,导致在焊接过程中加大了焊接人员的工作难度,造成钢结构出现裂纹的出现。

本文就建筑钢结构焊接过程中出现的裂纹,采取防止措施。

标签:建筑钢结构;焊接;裂纹1建筑钢结构焊接过程中的难点因为空间结构复杂的建筑钢对钢材料的选择标准非常高,所以-般会选择强度大、硬度大的低合金高强钢。

但是由于建筑钢在焊接的过程中总是会出现钢结构连接点的形状复杂、焊接密集的现象,所以使得焊接点无法自由地进行收缩,并且在焊接的过程中也有可能会因为焊接工人的施工不合理会导致建筑钢受很多力,可能刚开始在焊接的过程中间建筑钢结构的焊接点所承受的力不大,但是会随着焊接过程时间的延长而使得承受的力逐步增大,自然而然的就会使很多的力合成-个很强的合力,从而使得建筑钢结构在焊接的过程中产生裂纹[1]。

除此之外,因为空间结构复杂的建筑钢材料选择的是低合金高强度的钢,并且低合金高强度的碳含量较高,所以使得低合金高强度的刚虽然强度高,但是很难焊接,从而使得建筑钢结构在焊接的过程中会出现延迟性的裂纹,并且还应会因为建筑钢结构的施工高度的升高而导致建筑钢结构的焊接任务变得更加困难。

1建筑钢结构焊接裂纹的特征及产生机理1.1热裂纹在较高的温度条件下,建筑钢结构焊接容易出现热裂纹,在焊接的过程中,焊缝受到温度的影响,发生了结晶反应,再加上金属本身的拉伸应力的影响,导致热裂纹呈现出来不同的形态,通过分析这些形态,又可以将其划分为不同的种类。

由于高温和拉伸应力的影响,在焊接的过程中受热不均匀,导致受热面出现了失衡的现象,这-现象导致焊缝处发生了结晶,这-结晶受到金属杂质和拉伸应力的影响,出现了多边化的裂纹[2]。

主要有两种类型的裂纹,-个是凝固裂纹,另-个是液化裂纹,还有失塑裂缝。

钢结构裂纹成因分析及防范措施_0

钢结构裂纹成因分析及防范措施_0

钢结构裂纹成因分析及防范措施摘要:在工程建设中,钢材的应用必不可少。

而焊接裂纹是常见的钢结构焊接缺陷之一,焊接裂纹的存在可能导致严重的工程事故。

本文讨论了钢结构焊接过程产生的焊接裂纹的种类以及形成原因,提出了预防焊接裂纹出现的措施。

关键词:钢结构裂纹成因分析防范措施Abstract: in the engineering construction, the application of the steel is indispensable. And welding crack is a common steel welding structure, one of the existence of welding cracks can lead to serious engineering accident. This paper discussed the steel structure of the welding process produce welding cracks in the types and causes, and put forward the measures of prevention welding crack appeared.Keywords: steel structure crack reason analysis preventive measures前言近年来,我国经济发展迅猛,各种大型工程投入施工。

钢结构工程在建设中所占比重越来越大。

焊接是钢结构连接的主要方式之一,焊接质量在钢结构工程中极为重要。

但在焊接施工中一些焊接缺陷问题却普遍存在,例如:焊接裂纹、孔穴、夹渣、未熔合、形状缺陷等,其中焊接裂纹是其中危害最大而且是最普遍的一种,可能成为构件脆断、疲劳破坏和腐蚀破坏的起因,严重影响钢结构工程的质量和施工进度,如焊接裂纹未被发现和处理,还会危及钢结构工程的安全。

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施建筑钢结构是目前常见的建筑结构之一,它具有高强、轻量、简洁美观等优点。

然而,在实际使用中,钢结构存在一些问题,其中之一就是焊接裂纹的产生。

本文将探讨建筑钢结构焊接裂纹的产生机理及防止措施。

一、焊接裂纹的产生机理焊接裂纹主要可分为热裂纹、冷裂纹、应力裂纹。

1.热裂纹焊接时,由于局部加热,使钢材产生热变形。

当其塑性变低且残余应力积累时,钢材易于出现裂纹。

热裂纹主要是由于热应力造成的。

2.冷裂纹一般在焊后自然冷却时出现,这种裂纹的发生对于焊接工艺、材料和钢结构的使用情况等很敏感。

冷裂纹主要是由于低温下的脆性造成的。

3.应力裂纹应力裂纹主要是由于因材料、尺寸和结构等造成永久性变形产生的应力,使焊缝发生断裂。

这种裂纹的主要表现是在进行负载、温度等变化时,在原有断口处产生裂纹。

二、焊接裂纹的防止措施1.材料选择焊接材料的选择并不是随便选用,应根据实际情况选择专业的材料并在正确的离子层选择。

2.焊接工艺合理的焊接工艺非常重要。

在焊接的过程中,应该注意控制焊接的速度和节奏,以避免局部高温、局部残余应力的发生。

此外,焊接的工艺应掌握得当,包括电极的选择、焊接电流、焊接时间、频率等,以确保焊接缝有足够的强度。

3.质量控制如果缺乏质量控制,很容易忽略焊接过程中的每个细节,如使用的电极、焊接速度和温度控制等,这将极大地影响焊接接头的质量。

因此,应及时检查焊缝的质量,减少焊接裂纹等质量问题的发生。

4.故障修复当发现要素问题后,应及时进行修复。

例如,当发现焊接过程中电极受到污染时,应停止焊接并更换电极。

当发现焊接过程中有缺陷时,应及时纠正,以确保焊接的质量。

5.不断改进工艺不断改进工艺也是防止焊接裂纹的重要措施。

随着科技的不断进步,随着工艺的提高,新的焊接方法和材料的出现,改进工艺是防止焊接裂纹的重要手段。

总之,建筑钢结构焊接裂纹对建筑钢结构的使用具有一定的影响,为防止焊接裂纹的发生,应注意材料的选择、焊接工艺的合理性、质量控制等多个方面,并不断改进工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构的裂纹成因及防范措施
钱汉忠
南通新华钢结构工程有限公司
摘要:宿迁恒力国际大酒店工程采用劲性钢结构与钢筋混凝土组成的混合结构。

因此,在钢构件的制作和安装过程中,对钢构件的质量控制显得尤为重要。

尤其是对钢构件焊接过程中的裂纹控制。

本文分析了本工程制作和安装过程中钢结构裂纹产生的原因,提出了有针对性的解决措施,取得了较好的结果。

关键词:钢结构;安装;裂纹;解决措施;
1、裂纹产生
施工人员在安装现场质量检查中,发现工程12.6m标高处支座梁与框架梁连接节点腹板处出现裂纹,接报后,承制与安装双方进行了现场调查,平台钢结构主次梁梁焊接接头部位存在裂纹缺陷,拿出补修方案并100%探伤,并委托专业单位对裂纹梁主材进行硬度检测和现场取样分析。

此次复检共检查类同梁12根,发现裂纹仅此1条,裂纹产生的位置在主腹板与次梁腹板连接焊缝位置。

焊接接头部位存在的裂纹为个别现象,裂纹在接头的热影响区围绕接头呈半弧形。

裂裂纹形态见图1梁立面截面图。

图1梁立面截面图
2、裂纹产生的原因分析
蒸馏平台钢结构所用钢材为Q345B低合金钢,进厂原材料经过严格的各项复
检,化学成分和力学性能均满足GB/T15911994《低合金高强度结构钢》的要求。

经现场硬度检测和现场取样分析,化学成分和力学性能均符合国标要求,见表1和表2。

表1 C
Mn Si P S V Nb Ti 0.18 1.33 0.5 0.035
0.03 0.05 0.04 0.01
表2 Mpa s /δ
Mpa b /δ %/s δ J C A kv /)20(︒+ 360 530
23 38
在正常情况下该钢种可焊性良好,不易产生焊接裂纹。

安装现场发现的裂纹分布于焊接接头的热影响区,具有延迟性,由此可以断定此种裂纹为焊接冷裂纹中的延迟裂纹。

裂纹产生的主要原因分析如下。

2.1施工人员自作主张,在插入接头位增加焊接补强板
在梁结构设计过程中设计并没有增加筋板和补强板,施工人员在安装前擅自在腹板侧增加一块补强板,工序上先进行了补强焊接,然后将次梁插入,随后安装梁,将梁腹板紧贴补强在主梁腹板处进行二次焊接, 造成局部区域焊缝密度过大,使得焊接时这些部位的拘束应力过大,而拘束应力大是产生冷裂纹的重要原因之一,这就大大增加了裂纹产生的可能性。

如图2所示。

图2 擅自增加的补强板
2.2 焊接施工现场条件较差,工艺制定和执行不良,特别是焊前预热和焊后缓冷不到位
焊接工艺技术防止缺陷产生的措施主要有:焊前预热、焊后缓冷;选用合适焊条和工艺参数,使用前在保温箱内按规定的温度、时间加热保温,使用时放置在保温桶内取用等。

该处主材腹板分别16mm、20mm厚,翼板分别25mm、32mm厚,无拘束度常温下该结构腹板间角焊道不需进行预热和焊后缓冷。

《铁路钢桥制造规范》(TB10212)17.2.6、17.4.4规定:焊接环境温度,低合金高强度结构钢不应低于5℃。

该工程冬季裂纹发生时日当地气象部门气温数据温度为(-7~-19℃),焊接过程中遭遇严寒的影响而未采取有效的防护措施(焊补强板侧时未预热),也无焊后良好保温消除应力热处理措施,焊缝金属冷却速度很快,对焊缝周围产生张力,同时焊缝中也容易出现淬硬的马氏体组织。

对于Q345来说低碳合金元素含量比低碳钢多,材料淬硬倾向和出现裂纹的倾向大。

当残余应力达到材料的屈服极限时,焊缝金属产生塑性变形,当变形量超过材料的极限时产生裂纹,这是裂纹产生的主因。

2.3 构造刚性约束大,施工时,荷载分布不尽合理
该结构次梁安装中端部已受刚性约束,在梁焊接时梁上的钢构件已经安装,构件的荷载通过临时支撑被传递到平台梁上,临时支撑位置不合理,以构件中心为重心,重心向1轴侧只有一个支撑立于该次梁上,此次梁承受相对较大荷载,而此荷载又全部通过次梁的焊接接头传到框架梁腹板上,增加了腹板处的内应力,直接导致焊缝区残余应力增大。

原则上在有荷载情况下应该卸载后施焊,施工没有充分重视焊接时荷载的因素,造成主梁腹板焊缝区拘束应力过大,这也增加了裂纹产生的可能性。

通过以上分析可以看出,由于各种措施不得当,使得焊缝中形成淬硬组织;同时封闭的刚性约束加上焊接时荷载较大,造成焊接接头部位很大的拘束应力,在这些因素的共同作用下,产生了焊接冷裂纹。

3、防范与改善措施
接工艺支持要求后,针对裂纹返修制定如下返修工艺方案:
3.1 先卸除荷载缺陷处荷载,尽量增加焊缝收缩的自由度。

3.2 选经验丰富的有资质证焊工和气刨施工补修人员。

3.3 选低氢型焊条材料:E5015或E5016φ3.2mm(350℃烘焙1h)。

ER50-6气体保护焊丝,规格:φ1.2mm,使用富氩混合气或含水符合GB50205要求的纯CO 。

严格烘干和保温措施。

3.4 采用PT/超声波探伤对缺陷定位,焊缝缺陷可见范围两端各+50mm。

焊缝缺陷的剔除用碳弧气刨加砂轮打磨干净渗碳层。

补修焊工参与缺陷的剔除工作,确保剔除部位正确,严禁在返修区域或母材上造成新的缺陷;
3.5 焊接前,对焊缝两侧75~100mm宽周围区域用氧-乙炔火焰加热到120℃(考虑T型接头实际热传导情况和环境温度低于0℃),用温度器在距焊缝100mm处测量,为防止大风带来的不利影响应搭设临时防风棚。

3.6 焊道周围20mm范围内的锈、水、油污等杂质的清理要彻底,在次梁侧用8mm 碳棒刨轻刨并打磨干净渗碳层,深度控制8mm左右,用手工电弧焊施焊,也可用气体保护焊。

为防止裂缝出现在敏感的第一道焊缝和焊根,适当加大电流,减慢焊速。

焊完一遍后,彻底清理焊道。

尽量采用多层多道焊或分段间隔焊跳焊以减少焊接残余应力的产生,一面完成后,在腹板另一侧清根彻底后补焊,要求连续施工,中途停工需在施工前检查焊道质量并重新预热,焊缝不得有弧坑、夹渣、裂纹、咬边以防止形成应力集中。

3.7焊后热处理,防止焊接区域迅速冷却而产生裂纹,在焊缝两侧100mm宽,后热至200℃,消氢和消除应力1h,后用石棉等保温缓冷。

3.8若存在经设计、业主方确认的加劲补强板方案,参考以上预热后热方案执行。

4、结束语
采取以上针对性措施后,经过对现场返修焊道100%超声检验和100%目视检查,未发现焊缝表面裂纹缺陷。

经过数天后的再次复检,也未发现延迟裂纹出现。

因此,可以确定上述对裂纹产生的原因分析准确,所采取的防范和返修工艺措施效果良好。

在本工程应用的现场安装方面的经验,可以对今后复杂结构和环境条件的安装起到积极的借鉴作用。

参考文献
[1]钢结构设计手册(第三版). 北京: 中国建筑工业出版社.。

相关文档
最新文档