溶胶-凝胶原理与纳米材料的制备

合集下载

实验溶胶凝胶法制备纳米二氧化钛实验

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。

纳米材料制备实验报告

纳米材料制备实验报告

纳米材料制备实验报告
实验名称:纳米材料制备实验
实验目的:通过实验掌握纳米材料的制备方法,了解纳米材料的性质和应用
实验原理:纳米材料是指颗粒尺寸在1-100纳米之间的材料,具有独特的物理化学性质,常用的纳米材料制备方法包括溶胶-凝胶、热分解、气相法等
一、实验材料和仪器
1. 实验材料:氧化物前驱体,还原剂,溶剂等
2. 实验仪器:加热炉,离心机,紫外可见分光光度计等
二、实验步骤
1. 溶胶-凝胶法制备纳米氧化物
a. 配制溶胶:将氧化物前驱体溶解在溶剂中,得到均匀的溶胶
b. 凝胶化处理:通过控制溶胶的温度和PH值,使其凝胶化
c. 煅烧处理:将凝胶加热至一定温度,使其形成纳米氧化物
2. 热分解法制备纳米金属
a. 配制前驱体:将金属盐溶解在溶剂中,制备金属前驱体
b. 热分解处理:将前驱体加热至一定温度,使其分解生成纳米金属
c. 脱溶剂处理:将产物经过洗涤和去除溶剂的处理,得到纯净的纳米金属颗粒
三、实验结果与分析
1. 利用紫外可见分光光度计对纳米材料进行表征,观察其吸收峰和波长
2. 观察纳米材料的形貌和尺寸,利用透射电子显微镜进行观察和分析
3. 探讨纳米材料的性质和应用前景,如在催化、生物医药等领域的应用
结论:通过本实验,掌握了纳米材料的制备方法和分析技术,对纳米材料的性质和应用有了更深入的了解,为进一步研究和开发纳米材料提供了重要的参考和基础。

溶胶-凝胶法制备TiO2纳米粉

溶胶-凝胶法制备TiO2纳米粉

溶胶-凝胶法制备TiO2纳米粉姓名:郭霖班级:材料物理学号:110102030021前言:纳米材料是由极细晶粒组成、特征尺寸在纳米数量级(1~100nm)的固体材料。

由于这种材料粒子的粒径介于块状物体与原子、分子之间,其特性明显不同于本体物质和微观粒子,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,表现出许多优异的力学、热学、光学、磁学和电学等性质和新的规律。

当粉体的尺寸达到纳米级别时,其比表面积会迅速增加,同时由于表面效应、小尺寸效应以及量子效应,纳米粉体将表现出许多特殊性能。

TiO2是一种重要的功能材料,除广泛应用于精细化工领域外,还因其具有许多特异的功能应用于电子工业中。

纳米二氧化钛(TiO2)是一种光催化材料,而用作光催化剂的TiO2主要有两种晶相——锐钛矿相和金红石相。

由于纳米颗粒与微米颗粒相比,具有一些独特的性质,如量子效应、表面-界面效应等,一般在TiO2光催化反应中,都将TiO2制成纳米尺度的粉体[,而制备具有锐钛矿晶型结构的纳米TiO2粉体是提高、改进其各种功能的有效途径之一。

溶胶-凝胶法原理:溶胶-凝胶法制备纳米材料属于湿化学法(包括化学共沉淀法,水热法,微乳液法等)中的一种。

该法是指用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米结构的材料。

制备纳米粉体材料的基本原理是,将前驱体(无机盐或金属醇盐)溶于溶剂水或有机溶剂中,形成均相溶液,溶质与溶剂产生水解或醇解反应,反应生成物聚集成1nm左右的粒子并组成溶胶,然后通过缩聚反应形成湿凝胶,最终经过干燥和后续热处理等过程得到纳米粉体材料。

制备优点:溶胶-凝胶法制备TiO2纳米粉体,采用溶胶-凝胶法具有设备投资少、易于控制、操作简单、颗粒大小均匀、纯度高、比表面积大、光催化活性高等优点。

溶胶-凝胶原理与纳米材料的制备

溶胶-凝胶原理与纳米材料的制备

溶胶-凝胶原理与纳米材料的制备溶胶-凝胶法是制备纳米材料的一种常用方法,它基于溶胶-凝胶原理,通过控制溶胶的化学成分、pH值、温度、反应时间等条件,使得溶胶逐渐凝胶化,最终形成具有纳米级尺寸的凝胶体系。

溶胶-凝胶法是一种可控制、灵活性高、适用范围广的制备纳米材料的方法。

溶胶-凝胶法的基本原理包括三个方面:溶胶的制备、凝胶化和热处理。

首先是溶胶的制备,溶胶可以是一种单一的化学物质,也可以是多种化学物质组成的复合体系。

不同化学成分的溶胶在反应过程中起到不同的作用,例如,有些材料可以作为前驱体,在热处理过程中形成目标纳米材料的晶相;有些材料可以作为协同剂,调节溶胶的粘度、表面张力等性质;有些材料则是稳定剂,防止凝胶体系聚集或分解。

其次是凝胶化,凝胶化是指溶胶的胶态转化过程。

在凝胶化过程中,溶胶中的化学反应、聚合或交联等作用导致溶胶逐渐成为一种具有凝胶状态的物质。

凝胶化过程的速度和程度可以通过控制溶胶的条件和参数进行调节。

凝胶化的过程和结果会直接影响到最终制备出的纳米材料的性质和效果。

最后是热处理,热处理是指将凝胶体系在高温下加热处理一段时间,使得原先的凝胶体系发生相应的化学反应、热稳定性变化等,最终形成目标纳米材料。

热处理的条件和温度对产物的晶相、尺寸、形貌等影响非常大,掌握好这个环节可以最大限度地控制目标纳米材料的性质和效果。

溶胶-凝胶法制备纳米材料具有很多优点。

首先,它是一种灵活、可控的制备方法,可以调节制备过程中的参数和条件,以适应不同纳米材料的制备需求;其次,它是一种比较纯净、绿色的制备方法,不需要使用大量的有害溶剂和助剂;再次,通过溶胶-凝胶法制备的纳米材料通常具有良好的均匀性和高度定向性,可以在很多领域里得到应用,例如,电子设备、催化剂、生物医学等。

《溶胶-凝胶法制备纳米SiO2材料及其应用研究》

《溶胶-凝胶法制备纳米SiO2材料及其应用研究》

《溶胶-凝胶法制备纳米SiO2材料及其应用研究》一、引言随着纳米科技的快速发展,纳米材料因其独特的物理和化学性质在众多领域中展现出巨大的应用潜力。

其中,纳米SiO2材料因其高比表面积、优异的化学稳定性和良好的生物相容性,在催化剂、生物医学、电子器件和复合材料等领域具有广泛的应用。

溶胶-凝胶法作为一种制备纳米SiO2材料的重要方法,具有操作简便、原料易得、反应条件温和等优点。

本文将详细介绍溶胶-凝胶法制备纳米SiO2材料的工艺流程、材料特性及其应用研究。

二、溶胶-凝胶法制备纳米SiO2材料1. 实验原理溶胶-凝胶法是一种通过溶胶向凝胶转变的过程来制备纳米材料的方法。

在此过程中,首先将硅源(如正硅酸乙酯)在一定的条件下水解成硅醇(Si-OH)单体,然后通过缩合反应形成三维网状结构的溶胶,进一步干燥形成凝胶,最后经过煅烧处理得到纳米SiO2材料。

2. 实验步骤(1)将硅源与溶剂(如乙醇)混合,加入适量的催化剂(如氨水)进行水解反应;(2)在一定的温度和搅拌速度下进行缩合反应,形成溶胶;(3)将溶胶置于干燥环境中进行干燥处理,得到湿凝胶;(4)将湿凝胶在高温下进行煅烧处理,得到纳米SiO2材料。

三、材料特性通过溶胶-凝胶法制备的纳米SiO2材料具有以下特点:1. 粒径小:纳米SiO2材料的粒径通常在几十到几百纳米之间;2. 分布均匀:溶胶-凝胶法能够使原料分子在三维空间内均匀分布,从而得到粒径分布均匀的纳米SiO2材料;3. 结构可调:通过调整原料配比、反应温度等参数,可以调节纳米SiO2材料的结构;4. 化学稳定性好:纳米SiO2材料具有良好的化学稳定性,能够抵抗酸碱等化学物质的侵蚀。

四、应用研究纳米SiO2材料因其独特的性质在众多领域中具有广泛的应用。

以下是其在几个主要领域的应用研究:1. 催化剂:纳米SiO2材料具有较高的比表面积和良好的吸附性能,可作为催化剂载体或催化剂活性组分。

将其应用于催化反应中,能够提高催化效率并降低催化剂用量;2. 生物医学:纳米SiO2材料具有良好的生物相容性和无毒性,可广泛应用于生物医学领域。

溶胶-凝胶法的原理和应用

溶胶-凝胶法的原理和应用

溶胶-凝胶法的原理和应用1. 溶胶-凝胶法的概述溶胶-凝胶法是一种常用的制备纳米颗粒材料的方法。

它通过将溶胶转化为凝胶,再通过热处理或其他方式将凝胶转化为纳米颗粒材料。

这种方法可以制备出具有高比表面积和孔隙结构的材料,具有广泛的应用前景。

2. 溶胶-凝胶法的原理溶胶-凝胶法的制备过程一般包括四个步骤:溶胶的制备、凝胶的形成、凝胶的加工和热处理。

以下是具体的原理介绍:2.1 溶胶的制备溶胶是指由固体颗粒悬浮在液体中形成的胶体系统。

在溶胶制备过程中,需要选择合适的溶剂和溶质,并通过物理或化学方法将其混合均匀,形成胶体系统。

2.2 凝胶的形成凝胶是指溶胶中颗粒聚集形成的凝胶网状结构。

在凝胶形成过程中,需要调节溶胶中的各种参数,如pH值、温度、浓度等,以促使颗粒聚集并形成凝胶。

2.3 凝胶的加工凝胶形成后,需要对凝胶进行进一步的加工处理。

加工的方式可以是冷冻干燥、超临界流体萃取等,目的是去除溶剂,使凝胶更加稳定。

2.4 热处理经过凝胶加工后,需要将凝胶进行热处理,将凝胶转化为纳米颗粒材料。

热处理过程中,需要控制温度和时间等参数,以保证颗粒的形成和结构的稳定。

3. 溶胶-凝胶法的应用溶胶-凝胶法具有广泛的应用前景,以下是该方法在一些领域的应用示例:3.1 纳米材料制备溶胶-凝胶法可以用于制备各种纳米颗粒材料,如二氧化硅、氧化铁等。

这些纳米材料具有高比表面积和孔隙结构,广泛应用于催化、传感、光学等领域。

3.2 传感器制备利用溶胶-凝胶法可以制备出高灵敏度和高选择性的传感器。

通过调节溶胶-凝胶过程中的参数和材料组成,可以实现对特定物质的检测和识别。

3.3 催化剂制备溶胶-凝胶法制备的纳米颗粒材料具有较大的比表面积和孔隙结构,非常适合用作催化剂。

这些催化剂可以应用于化学反应、汽车尾气净化等领域,具有高效率和长寿命的特点。

3.4 能源存储材料制备溶胶-凝胶法可以制备出具有高比表面积和孔隙结构的能源存储材料,如超级电容器材料、锂离子电池材料等。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法纳米材料作为一种新型材料,在各个领域都有着广泛的应用前景。

其特殊的物理、化学性质使其在电子、光电子、生物医学、材料科学等领域具有重要的研究价值和应用前景。

纳米材料的制备方法多种多样,下面将介绍几种常见的制备方法。

一、溶剂热法。

溶剂热法是一种常见的纳米材料制备方法,其原理是在高温高压的条件下,利用溶剂对原料进行溶解,再通过溶剂的挥发或者结晶使得纳米材料形成。

这种方法制备的纳米材料具有粒径均匀、形貌良好的特点,适用于金属氧化物、硫化物等纳米材料的制备。

二、溶胶-凝胶法。

溶胶-凝胶法是一种常用的无机纳米材料制备方法,其原理是通过溶胶的形成和凝胶的固化使得纳米材料形成。

这种方法制备的纳米材料具有高比表面积、孔隙结构丰富、粒径可控的特点,适用于氧化物、硅酸盐等无机纳米材料的制备。

三、化学气相沉积法。

化学气相沉积法是一种常用的纳米碳材料制备方法,其原理是通过气相中的化学反应使得纳米碳材料在衬底上沉积形成。

这种方法制备的纳米碳材料具有高结晶度、纯度高、形貌可控的特点,适用于碳纳米管、石墨烯等碳基纳米材料的制备。

四、机械合成法。

机械合成法是一种简单、易操作的纳米材料制备方法,其原理是通过机械能对原料进行高能量的机械作用,使得原料在局部区域发生变形、断裂、聚合等反应,最终形成纳米材料。

这种方法制备的纳米材料具有晶粒尺寸小、晶粒尺寸可控的特点,适用于金属、合金等纳米材料的制备。

五、电化学沉积法。

电化学沉积法是一种常见的金属纳米材料制备方法,其原理是通过电化学反应在电极表面沉积金属离子形成纳米材料。

这种方法制备的纳米材料具有形貌可控、结晶度高的特点,适用于金属纳米颗粒、纳米线等金属纳米材料的制备。

以上介绍了几种常见的纳米材料制备方法,每种方法都有其特点和适用范围。

在实际应用中,可以根据具体的要求选择合适的制备方法,以获得满足需求的纳米材料。

希望以上内容对您有所帮助。

溶胶-凝胶法制备TiO2纳米薄膜材料材料化学实验1

溶胶-凝胶法制备TiO2纳米薄膜材料材料化学实验1

溶胶-凝胶法制备TiO 2纳米薄膜材料1、实验原理溶胶-凝胶法是以金属醇盐的水解和缩合反应为基础的,其反应过程可以用以下方程式表示:金属醇盐M(OR)n 溶于有机溶剂与水发生水解反应:xROH OR OH M O xH n OR M x n x +→+-)()()(2此反应可持续进行下去,直到生成M(OH)n 。

同吋也发生金属醇盐的缩聚反 应,分为失水缩聚和失醇缩聚:O H M O M M OH OH M 2+----→--+--(失水缩聚)ROH M O M M OH OR M +----→--+--(失醇缩聚)由于-M-0-M-桥氧键的形成,使得相邻两胶粒联在一起,这就是导致凝胶的胶粒间相互结合的机理。

2、实验部分2.1、实验药品及主要实验仪器实验药品:钛酸丁酯(化学纯)、冰醋酸、浓盐酸、二次蒸馏水,无水乙醇。

实验仪器:磁力加热搅拌器、电子天平、温度计、PH 计(PH 试纸)、恒温干燥箱、马弗炉、径直提拉制膜装置(如果没有手工也可以)、XRD 、量筒、烧杯、普通玻璃片(此用作为TiO 2基体)等。

2.2、实验预处理采用普通玻璃作为制备Ti02薄膜的基体,需要保证玻璃表面洁净,否则,经热处理后得不到均匀连续的Ti02膜。

基片清洗过程一般为:首先取出玻璃先用自来水清洗几遍,然后用二次蒸馏水清几遍洗,最后将玻璃片用无水乙醇清洗,干燥即可。

烧杯、量筒等容器用蒸馏水洗净、烘干后备用。

2.3实验具体步骤(1)、精确称取11.35g 钛酸丁酯,准确量取3ml 冰醋酸和12.60ml 无水乙醇。

(2)、常温下将钛酸丁酯和冰醋酸加到无水乙醇烧杯中,快速搅拌0.5h 使其均匀混合,得淡黄色透明混合溶液A 。

(3)、量取2.40 mL H 2O( 经二次蒸馏) 和4.80 mL 无水乙醇配成的溶液,并向混合溶液中滴加浓盐酸, 调pH 约为 1, 充分搅拌得到均匀溶液B 。

(4)、剧烈搅拌下将溶液 B 以约12滴/ min 的速率缓慢滴加到溶液A 中, 滴加完毕得到均匀透明的溶胶,缓慢将温度升至约40度, 继续搅拌3 h 左右, 通过溶剂慢慢挥发得半透明湿凝胶.2.4 Ti02薄膜的制备采用浸渍提拉技术制备Ti02薄膜的操作过程:将处理过的洁净的玻璃基体浸入到已配制好的Ti02溶胶中,均匀用力提拉得到Ti02湿膜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
羧酸或 β- 二酮
2、金属螯合凝胶法
基本思路: 通过可溶性螯合物的形成减少前驱体液中的 自由离子。
具体方法: 在制备前驱体时添加螯合剂,如柠檬酸和 EDTA(ethylene-diaminetetra-acetic acid),同时控制 溶液的pH值、温度和浓度等常数,并将溶剂去除就可以 形成凝胶。
凝胶——又称冻胶,是溶胶失去流动性后,一种 富含液体的半固态物质。 凝胶是一种柔软的半固体,由大量的胶 束组成的三维网络。
胶凝时间——在完成凝胶的大分子聚合过程 中最后键合的时间。
溶胶-凝胶法: 溶胶-凝胶法是制备材料的湿化学方法中一
种方法。由金属有机化合物、金属无机化合物 或两者混合物经过水解缩聚过程,逐渐凝胶化 并进行相应的后处理(如煅烧),而获得氧化 物或其他化合物的工艺。
具体方法:
• 首先制备金属-柠檬酸螯合物; • 然后与乙二醇在适当温度(100~150C)迅速发生酯化 • 一般CA/EG = 20/80.
2、金属螯合凝胶法
2)聚合法前驱液法(PP法):
方法: 首先在含水的金属盐溶液中加入水溶性的聚合物 ,
如: 聚乙烯醇PVA、聚丙烯酸PAA、聚乙烯亚胺 PEI 然后,金属离子充当聚合物之间的交联剂形成三维网络,而形成凝胶
溶胶-凝胶原理与纳米材料的制备
第八章 溶胶-凝胶原理与技术
8.1 溶胶—凝胶的基本概念
溶胶——又称胶体溶液,是指在分散体系中保持固体 物质不沉淀的胶体。胶体中固体粒子大小 一般为1~5nm.
分散相 + 分散介质 —— 溶胶(分散系)
分散介质: 液体,水,即水溶胶。如:牛奶 气体,即气溶胶。如:液体与气体形成的雾
1、金属醇盐水解法
➢ 制备多金属组分凝胶:(如Y2O3稳定ZrO2粉末) 首先将几种金属醇盐在适当的有机溶剂中混合制得前驱体 然后加水水解,即可获得多组分金属凝胶。 影响不同金属组分均匀性的因素: • 形成凝胶前,各种醇盐是否混合均匀; • 各种醇盐对水的水解活性差异;
解决方法
通过添加有机络合剂(或螯合剂)可以改 善混合均匀性问题。常用的络合剂:
3、溶胶凝胶法的应用
溶胶凝胶法合成的粉体材料
粉体名称 SiO2,Al2O3 TiO2, ZrO2
SiC
主要用途
粉体名称
主要用途
光纤、陶瓷 羟基羟基凝灰石 生物活性材料
光纤、传感器 耐火材料
LaCoO3 ZnS,CaS
气敏材料 半导体
4、溶胶凝胶法制备纳米材料的过程
溶胶凝胶法合成的粉体材料的基本流程:
50℃并充分搅拌直至溶液透明,并呈黄色
溶胶凝胶法制备ZnTiO3粉末
然后按照: Ti(OC4H9)4 (四丁基太酸盐) HCl
= 1.5 :1
凝胶的制备: Zn(NO3)26H2O逐步滴入所制备好的溶胶中, 使其Zn:Ti 比 = 1; 在50℃条件下不断的搅拌,直至得到透明的凝胶。
最后进行800C热处理,即可得ຫໍສະໝຸດ ZnTi O3纳米粉末。4
溶胶-凝胶法的发展历史
1846年 — J.J.Ebelmen开始进行该项研究;
1930’ — W. Geffcken用金属醇盐水解和凝胶化制 备氧化物薄膜,从而证实可行性;
1971年 — H.Dislich制备出多组分玻璃,引起 关注,并迅速发展;
1980’ — 开始被广泛应用,铁电材料、超导、 粉末冶金、陶瓷、薄膜的制备;
1、金属醇盐水解法
将金属有机化合物溶解合适的溶液中,发生一系列的化学 反应,如水解、缩聚和聚合,形成连续的无机网络凝胶。
➢ 获得无机凝胶的途径: 采用金属醇盐,加水后快速溶解; 采用能够在水中稳定的金属螯合物,但水解速度较慢。
➢ 影响水解的因素: 水与醇盐的摩尔比; 溶液的种类; 溶液的温度及pH值;
1)溶剂的影响: 溶剂的选择是溶胶制备的前提。不同溶剂所形成的
溶胶,其溶胶向凝胶转化的时间不同,因此对所制备的 粉末粒径有影响。
2)加水量的影响: 加水量对醇盐水解缩聚物的结构有较大影响。 加水量少,醇盐分子被水解的烷氧基团少,易形成
适当调节这些因素,可以 获得线型或交联程度较高 的聚合凝胶
溶胶凝胶法制备ZnTiO3粉末
ZnTiO3广泛应用于除硫催化剂、微波介质陶瓷以及NO、 CO气敏传感器中。
➢ 制备方法: 前驱体溶液的制备: CH3COOH( 醋酸) Ti(OC4H9)4 (四丁基太酸盐)
= 3.7 :1
溶胶的制备: 将其溶入 HCl水溶液(H2O :HCl=10.9:1),加热至
溶质 水解 溶剂 催化剂 缩聚
凝胶化
溶胶
湿凝胶
干燥 脱水
干凝胶
热处理
粉体
4、溶胶凝胶法制备纳米材料的过程
第一步: 制取包含金属醇盐和水的均匀溶液,以保证醇盐的
水解反应在分子水平上进行。
第二步: 制备溶胶,即聚合。
第三步: 将溶胶通过陈化得到湿凝胶。
第四步: 凝胶干燥
4、溶胶凝胶法制备纳米材料的工艺影响因素
2、金属螯合凝胶法
1)原位聚合法及聚合螯合法(PC法): 原理:
有机单体聚合形成不断生长的刚性有机聚合网络, 包围稳定的金属螯合物,从而减弱不同金属离子的差异 性,减少各金属在高温分解过程中的偏析。
2、金属螯合凝胶法
1)原位聚合法及聚合螯合法(PC法): Pechini法(典型代表):
在金属螯合物之间利用α-羟基羧酸和多羟基醇的酯化 作用形成聚合物。常用的是物质是柠檬酸(CA)和乙二 醇(EG),
7
8.2 溶胶- 凝胶法制备纳米粉体 特点:
溶胶-凝胶法主要用于制备氧化物玻璃、高纯陶瓷 粉末和硅酸盐等。采用溶胶-凝胶法制备的粉体,纯度 高、高均匀性、超细。
8
一、溶胶-凝胶法制备纳米粉末的常用方法:
1、金属醇盐水解法 2、金属螯合溶胶法 ➢ 原位聚合法及聚合螯合法(polymerized complex method,PC法) ➢ 聚合物前驱液法(polymer precursor method, PP法)
5
溶胶-凝胶法的应用
1. 隔热材料
SiO2气凝胶具有高的透光率并能有效阻止环境温 度的热辐射,因此被用作太阳能集热器中的透明 隔热材料。
2. 电介质材料
气凝胶介电常数极低且连续可调,可用作高速运 算的大规模集成电路的衬底材料。
3. 纳米材料
SiO2、TiO2、ZrO2、YSZ、MSZ等纳米粉体
相关文档
最新文档