空间曲线及其方程
空间曲线及其方程

当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全
部点.
例 3 如果空间一点 M 在圆柱面 x2 y2 a2上以
角速度 绕z轴旋转,同时又以线速度v沿平行于z 轴的正方向上升(其中 、v都是常数),那么点
M 构成的图形叫做螺旋线.试建立其参数方程.
螺距 h 2b
三、空间曲线在坐标面上的投影
(以后在求三重积分和曲面积分时需要确定 一个立体或曲面在坐标面上的投影)
z
问题:求已知曲线C在xoy面上的 C •( x, y, z)
投影曲线C的方程.
注意:一个点与其在xoy面上的 投影点的x,y坐标相同.
o
y
x C •( x, y,0)
所以求曲线在xoy面上的投影曲线的方程就是 求原曲线上点x,y坐标的关系.
z
o 1y x
要点:
第四节 空间曲线及其方程
空间曲线的一般方程:
F(x, y, z) 0 C : G( x, y, z) 0
空间曲线可看作两个曲面的交线.
x x(t)
空间曲线的参数方程:
y
y(t )
z z(t)
空间曲线在坐标面上的投影: 注意一个点与其投影
点的x,y 坐标相同.
消去变量z 得:H ( x, y) 0 投影柱面
第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可看作两个空间曲面的交线.
曲面S1 : F ( x, y, z) 0 曲面S2 : G( x, y, z) 0
曲 线C
:
高等数学 -空间曲线及其方程

第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
G(x, y, z) 0
L
S1
F(x, y, z) 0
z
表示圆柱面与平面的交线 C.
2C
y
sin
1 x
,
,
求证: lim f (x, y) 0.
x0
y0
证: f (x, y) 0
x y
xy 0 xy 0
要证
ε
ε 0, δ ε 2,当0 ρ x2 y2 δ 时,总有
故
lim f (x, y) 0
x0
y0
证: Q 0 f (x, y)
x y 0 x 0, y 0
若对任意给定的 , 点P 的去心
E
邻域
内总有E 中的点 , 则
称 点P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;
• 若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ;
• 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E
的外点 , 则称 P 为 E 的边界点 .
显然, E 的内点必属于 E , E 的外点必不属于 E , E 的
边界点可能属于 E, 也可能不属于 E .
空间曲线及其方程

n级排列的总数为n!个。
<2> 一个排列中,若较大的数 is 排在较小的数 it 的前面 ( is > it ) 时,称这一对数 is it 构成一个逆序。 一个排列中逆序的总数,称为它的逆序数。 记为τ(i1, i2, … in),简记为τ 。 例如: 例如: τ(1 2 3)=0, τ(3 1 2)=2, τ(4 5 2 1 3)=7, 1 3 2 2 1 3 3 1 2
3. 空间曲线在坐标面上投影 F (x, y, z) = 0 设空间曲线C的一般方程 G (x, y, z) = 0 由方程组(4)消去z后得方程 H (x, y) = 0 (5) 方程(5)表示一个母线平行于z 轴的柱面,
z
(4)
曲线 C 一定在柱面上. 空间曲线 C 在 x O y 面上的 投影曲线必定包含于: H (x, y) = 0 z=0
§6
二次曲面的标准方程 二次曲面的标准方程 曲面的标准
1.定义 由x, y, z的二次方程: 定义 ax2 + by2 + cz2 +dxy + exz + fyz + gx + hy + iz +j = 0 + + 所表示的曲面, 称为二次曲面. 其中a, b, …, i, j 为常数且a, b, c, d,e, f 不全为零. 研究方法是采用平面截痕法.
z = 4− x 2 − y 2 C: z = 3( x 2 + y 2 )
由方程消去 z , 得 x2 + y2 =1 ( 圆柱面) x 于是交线C 在xoy面上的投影曲线为 x2 + y2 = 1 z=0
O x2 + y2 ≤ 1
空间曲线及其方程

平行于x轴的柱面
投影柱面
yoz面上的投影Cyoz为线段:
z
x
10,
| y | 1
(3)同理xoz面上的投影Czox也为线段:
z
y
10,
| x | 1.
15
例7 求抛物面 y2 z2 x 与平面 x 2 y z 0
的截线在三个坐标面上的投影曲线方程. z
解 截线C的方程为:
y2 z2 x
y
x 2y z 0
如图,
o
x
16
(1)消去z ,得 C 在 xoy 面上的投影:
x2 5 y2 4xy x 0
,
z 0
(2)消去y ,得 C 在 zox 面上的投影:
x2 5z2 2xz 4x 0
,
y 0
(3)消去 x,得 C 在 yoz 面上的投影:
y2 z2 2y z 0
F( x, y, z) 0 G( x, y, z) 0
消去x
C yoz
:
x0 R( y, z)
0
C在zox 面上的投影 Czox:
F( x, y, z) 0 消去y G( x, y, z) 0
C z ox
:
T ( x, z)
y
0
0
9
例4
C
:
x
2
x2 (y
y2 1)2
z2 1 (z 1)2
.
x 0
17
四、一元向量值函数
1. 基本概念
(1) 一元向量值函数
r r(t), t I
其中r
xi
yj
zk ,
空间曲线的向量形式
r(t )
x(t)i
空间曲线及其方程

-0.5 -1
0
x
0
1
2
0.5
1
y
0.1
0.05
x
z
0
-0.05 x
-1
-0.1
-0.5
0
0.25
0.5
0.75
1
0
0.5 y
1
例6
求曲线 C:z z
4x2 y2 3(x2 y2)
z
在 xoy 面上的投影曲线.
解: 从方程组消去 z, 得
x2 y2 1.
Co
x
所以曲线C在 xoy 面的投影曲线为
2
4
xa2a2cots
y
a 2
sint
(0t2)
za
1 2
12
c
ots
三、空间曲线在坐标面上的投影
设空间曲线 C的一般方程为
z
F(x, y,z) 0, G(x, y,z) 0.
C
y
从 方 程 组 中 消z去 后变 得量 到 方 程
H(x, y)0.
x C
当x、y和z满 足 方 程 , x组 、y必 时定 满 足, 方 这 说 明C曲 上线 的 所 有 点 都 所在 表由 示方 的程 面 上 .
y2
4x
0.
例1 方程组 x2y2 1, 表示怎样的 ? 曲线
2x3z6
z
解 因为 x2y21表示圆, 柱面
2
C
2x3z6表 示 平. 面
x2 y2 2x3z
1 表 6
示
二
者
的.
交线o
10
10
x
5
空间曲线及其方程

1第四节空间曲线及其方程⎩⎨⎧==0),,(0),,(z y x G z y x F 曲线上的点都满足方程,不在曲线上的点不能同时满足两个方程.xozy1S 2S C空间曲线C 可看作空间两曲面的交线.特点:一、空间曲线的一般方程2方程组表示怎样的曲线?⎩⎨⎧=++=+6332122z y x y x 解122=+y x 表示圆柱面,6332=++z y x 表示平面,⎩⎨⎧=++=+6332122z y x y x 交线为椭圆.例13方程组表示怎样的曲线?⎪⎩⎪⎨⎧=+---=4)2(222222a y a x y x a z 解222yx a z --=上半球面,4)2(222a y a x =+-母线平行于z 轴的圆柱面,交线如图.例2Oxyz准线为xOy 面上的圆, 圆心在点.2),0,2(a a 半径为4⎩⎨⎧==0),,(0),,(z y x G z y x F 消去变量z 后得:0),(=y x H 曲线关于的投影柱面xoy 设空间曲线的一般方程:以此空间曲线为准线,垂直于所投影的坐标面.投影柱面的特征:二、空间曲线在坐标面上的投影如图:投影曲线的研究过程.投影柱面空间曲线投影曲线56类似地:可定义空间曲线在其他坐标面上的投影⎩⎨⎧==00),(x z y R ⎩⎨⎧==00),(y z x T 面上的投影曲线,yoz 面上的投影曲线,xoz ⎩⎨⎧==00),(z y x H 空间曲线在面上的投影曲线xoy7求曲线在坐标面上的投影.⎪⎩⎪⎨⎧==++211222z z y x (1)消去变量z 后得,4322=+y x 在面上的投影为xoy ,04322⎪⎩⎪⎨⎧==+z y x 解例38求曲线在坐标面上的投影.⎪⎩⎪⎨⎧==++211222z z y x 解例3所以在面上的投影为线段.xoz ;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在面上的投影也为线段.yoz .23||,021≤⎪⎩⎪⎨⎧==y x z (2) 因为曲线在平面上,21=z9求曲线⎪⎩⎪⎨⎧+=--=)(342222y x z yx z 在xOy 面上的投影.消去z 得:122=+y x ,所求投影为圆周⎩⎨⎧==+0122z y x . 注:所围立体在xy 面上的投影为:122≤+y x .即上半球面与圆锥面的交线.解例4。
同济版高等数学第六版课件第八章第六节空间曲线及其方程

直角坐标方程是另一种描述空间曲线 的方法,它由一个方程组组成,表示 曲线上任意一点的坐标与三个直角坐 标轴之间的关系。
02
空间曲线的方程
空间曲线的一般方程
空间曲线的一般方程是两个三维空间 的方程联立得到的,通常表示为: F(x,y,z)=0 和 G(x,y,z)=0。
一般方程描述了空间中曲线的形状和 位置,通过解方程组可以求得曲线上 点的坐标。
参数方程
参数方程是描述空间曲线 的一种常用方法,其中参 数的变化反映了曲线上点 的运动轨迹。
空间曲线的弯曲程度
曲率
曲率描述了曲线在某一点 的弯曲程度,曲率越大, 弯曲程度越剧烈。
挠率
挠率描述了曲线在某一点 的方向变化速率,与曲线 的形状和类型有关。
曲率和挠率的关系
曲率和挠率共同决定了空 间曲线的弯曲程度和形状 。
原曲线与投影曲线的位置关系
通过比较原曲线和投影曲线的形状,可以确定它们之间的位 置关系,如相交、相切或相离。
投影曲线的面积与原曲线的关系
投影曲线面积的求解
根据投影曲线的方程,利用定积分计算其面积。
投影曲线面积与原曲线的关系
通过比较投影曲线面积和原曲线的面积,可以分析它们之间的数量关系,如相等 、成比例或相差一个常数倍。
02
极坐标方程的一般形式为:ρ=ρ(θ),其中 ρ 是极径,θ是极角
。
极坐标方程可以用来表示各种形状的空间曲线,如球面曲线、
03
柱面曲线等。
03
空间曲线的性质
空间曲线的方向
01
02
03
方向向量
空间曲线的方向由其上的 方向向量决定,方向向量 表示了曲线上任意两点的 相对位置。
切线向量
8.3-8.4空间曲面、空间曲线及其方程

(4)
方程(5)表示一个母线平行于z 轴的柱面,
注意:曲线 C 一定在柱面上. 空间曲线 C 在 x O y 面上的 投影曲线必定包含于:
z
C
o o
H (x, y) = 0 z=0
y
x
注: 同理可得曲线在yOz面或xOz面
上的投影曲线方程.
已知两个球面的方程分别为:x2 + y2 + z2 = 1和 例6 x2 + (y 1)2 + (z1)2 = 1.求它们的交线C在xOy 面上的投影曲线的方程. 解 联立两个方程消去 z ,得 椭圆柱面
定义1 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系: (1) 曲面 S 上的任意点的坐标都满足此方程; (2) 不在曲面 S 上的点的坐标不满足此方程,
则 F( x, y, z ) = 0 叫做曲面 S 的方程,
曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
故所求方程为
( x x0 ) 2 ( y y0 ) 2 ( z z0 ) 2 R 2 z
特别,当M0在原点时,球面方程为
x2 y2 z 2 R2
表示上(下)球面 .
M0
M
o x
y
例2
研究方程
表示怎样
的曲面. 解 配方得 故此方程表示: 球心为 M 0 (1, 2, 0 ) , 半径为 5 的球面. 说明: 如下形式的三元二次方程 ( A≠ 0 )
特别,当 p = q 时为绕 z 轴的旋转抛物 面. (2) 双曲抛物面(鞍形曲面)
x
y
z
x y z ( p , q 同号) 2p 2q
2
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .
2 2
C
x
o
1
y
四、曲线的一般方程与参数方程互化
例1. 将下列曲线化为参数方程表示:
解: (1) 根据第一方程引入参数 , 得所求为
(2) 将第二方程变形为
故所求为
内容小结
• 空间曲线
例如,
2 2 2 x y z 1 C : 2 2 2 x ( y 1) ( z 1) 1
z
在xoy 面上的投影曲线方程为
C
o x
1 y
x2 2 y2 2 y 0 z0
又如,
上半球面 和锥面
所围的立体在 xoy 面上的投影区域为: 二者交线在
三、空间曲线在坐标面上的投影
设空间曲线 C 的一般方程为
消去 z 得投影柱面
则C 在xoy 面上的投影曲线 C´为
z
C
H ( x, y ) 0 z0 y 消去 x 得C 在yoz 面上的投影曲线方程 x C R( y, z ) 0 x0 T ( x , z ) 0 消去y 得C 在zox 面上的投影曲线方程 y0
o
y
z
x2 y2 1 4 9 y3
x
思考: 对平面 y b23y交线情况如何?
交线情况如何?
z
z
ay x
x 2 y 2 ax z0
ay x
x 2 z 2 a 2 y 0 ( x 0 , z 0)
补充: 空间立体或曲面在坐标面上的投影.
空 间 立 体
曲 面
例
设一个立体,由上半球面 z 4 x 2 y 2 和 z 3( x 2 y 2 )锥面所围成, 求它在 xoy 面上的投影.
解
半球面和锥面的交线为
2 2 z 4 x y , C : 2 2 z 3 ( x y ),
消去 z 得投影柱面 x 2 y 2 1,
空间曲线及其方程
一、空间曲线的一般方程
二、空间曲线的参数方程
三、空间曲线在坐标面上的投影 四、曲线的一般方程与参数方程互化
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
G( x, y, z ) 0 L F ( x, y, z ) 0
S2
S1
例如,方程组
z
2
C
表示圆柱面与平面的交线 C.
• 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
展示空间图形
x 1 (1) y2
z 4 x y (2) yx0
z
2
2
z
2 y
1
o o
o x
2y
x
(3)
x z a
2
2
2
x2 y2 a2
z
a
o
a
y
x
y 5x 1 y x3 y x3
z
y 5x 1
A
x
o
z
x
y
P
y
( r , , )称为点M的球坐标
球面坐标与直角坐标的关系为
x r sin cos , y r sin sin , z r cos .
球坐标的三坐标面分别为
r 为常数
球 面; 圆锥面; 半平面.
为常数 为常数
z
为常数
z 为常数
M ( x, y, z )
z
o
r
P(r , )
y
x
球面坐标
设 M ( x , y , z ) 为空间内一点,则点 M 可用 三个有次序的数r,, 来确定. 如图, z 规定:0 r , M ( x, y, z ) r 0 , 0 2.
o
1 y
x
又如,方程组
z
表示上半球面与圆柱面的交线C.
ay x
二、空间曲线的参数方程
将曲线C上的动点坐标x, y, z表示成 参数t 的函数: 称它为空间曲线的 参数方程.
例如,圆柱螺旋线的参数方程为
z
t
o
x A
M
令 t , b
v
M
y
上升高度 h 2 b , 称为螺距 .
规定: 0 r ,
0 2,
z
M ( x, y, z )
o
z .
r
P(r , )
y
x r cos , 柱面坐标与直角 y r sin , 坐标的关系为 z z.
x
如图,三坐标面分别为
r 为常数
圆柱面;
半平面; 平 面.
则交线 C 在 xoy 面上的投影为
x 2 y 2 1, z 0.
一个圆,
所求立体在 xoy 面上的投影为
x y 1.
2 2
附:柱面坐标
设 M ( x , y , z ) 为空间内一点,并设点M 在 xoy 面上的投影 P 的极坐标为 r ,,则这样的三 个数 r , , z 就叫点 M 的柱面坐标.