圆心角--知识讲解(基础)

合集下载

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。

本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。

教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。

教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。

但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。

三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。

四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。

2.教学难点:圆心角、弧、弦之间的数量关系。

五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。

六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。

2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。

3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。

4.课堂练习:布置针对性的练习题,巩固所学知识。

【教案】 圆周角与圆心角、弧的关系

【教案】 圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

(2).一条弧所对的圆周角等于这条弧所对的圆心角的一半。

圆心角--知识讲解(基础)

圆心角--知识讲解(基础)

圆心角--知识讲解(基础)【学习目标】1.了解圆心角的概念;2.掌握弧、弦和圆心角定理及其推论,并能解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆心角与弧的定义1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB就是一个圆心角.BAO要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB所对的弦为线段AB,所对的弧为弧AB.2.1°的弧的定义1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2.圆心角定理的推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相,,,等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.【典型例题】类型一、圆心角的概念1.判别下列各图中的角是不是圆心角,并说明理由.【思路点拨】根据圆心角的定义进行判断.【答案与解析】解:①不是,因为顶点在圆内非圆心的位置;②不是,因为顶点在圆外,没有在圆心;③不是,因为顶点在圆上,而不是在圆心;④是,满足圆心角定义.【总结升华】掌握与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧、圆心角等.类型二、圆心角定理及推论2.(2016台湾)如图,圆O通过五边形OABCD的四个顶点.若则的度数为何?()=150°∠A=65°∠D=60°A.25B.40C.50D.55,,,,,,,.【思路点拨】连接OB,OC,由半径相等得到三角形OAB,三角形OBC,三角形OCD都为等腰三角形,根据∠A=65°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【答案】B【解析】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=65°∠D=60°∴∠1=180°﹣2∠A=180﹣2×65°=50°∠2=180°﹣2∠D=180﹣2×60°=60°∵=150°∴∠AOD=150°∴∠3=∠AOD﹣∠1﹣∠2=150°﹣50°﹣60°=40°则=40°故选B【总结升华】此题考查了圆心角、弧、弦的关系,弄清圆心角、弧、弦的关系是解本题的关键.举一反三:【变式】如图,AB是⊙O的直径,BC CD DE,∠COD=35°,求∠AOE的度数.【答案】解:∵BC CD DE,∠COD=35°,∴∠BOC=∠EOD=∠COD=35°,∴∠AOE=180°-∠EOD-∠COD-∠BOC=75°.3.如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.【答案与解析】(1)证明:如图,∵AD=BC,∴∴=﹣,=﹣,即=∴AB=CD;(2)解:如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=3.则AF=3+1=4,即AE=AF+3=7.【总结升华】本题考查了勾股定理,垂径定理以及圆心角、弧、弦间的关系.注意过圆心作弦的垂线是圆中常见的辅助线.B D.举一反三:【变式】已知:如图所示,⊙O中弦AB=CD.求证:AD=BC.【答案与解析】证法一:如图①,∵AB=CD,∴AB C D.∴AB BD CD,即AD BC,∴AD=BC.证法二:如图②,连OA、OB、OC、OD,∵AB=CD,∴∠AOB=∠COD.∴∠AOB-∠DOB=∠COD-∠DOB,即∠AOD=∠BOC,∴AD=BC.4.如图所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:AE B F【思路点拨】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【答案与解析】证明:∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴AE BF.【总结升华】本题利用了在同圆或等圆中,等弧对等弦及等弦对等弧求解.举一反三:【变式】如图,BC为⊙O的直径,OA是⊙O的半径,弦BE∥OA.求证:AC AE.COAE B【答案】证明:连接OE,∵BE∥OA,∴∠B=∠COA,∠E=∠AOE,∵OE=OB,∴∠B=∠E,∴∠COA=∠AOE,∴AC AE.。

人教版九年级数学上第24章圆24.1圆的有关性质弧、弦、圆心角讲义

人教版九年级数学上第24章圆24.1圆的有关性质弧、弦、圆心角讲义

合作探究探究点1 圆的定义情景激疑在准备好的一张纸上以点〇为圆心、3 cm为半径画一个圆,观察画图过程.由此你会得出什么结论?知识讲解定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的圆形叫做圆.其固定的端点O叫做圆心,线段OA叫倣半径.以O点为圆心的圆,记作O,读作“圆O〞.定义2:圆心为O、半径为r的圆可以看成是所有到定点O的间隔等于定长r的点的集合.注意〔1)圆心确定圆的位置,半径确定圆的大小.(2) 确定一个圆首先确定圆心,再确定半径,二者缺一不可.(3) 定点是圆心,定长是半径.(4) “圆〞指的是“圆周〞,而不是“圆平面〞.典例剖析例1 以下说法错误的有 ( )(1) 经过P点的圆有无数个;(2) 以P点为圆心的圆有无数个;(3) 半径为3cm且经过P点的圆有无数个。

(4) 以P点为圆心、3cm为半径的圆有无数个.A. 1个B. 2个C. 3个D. 4个解析确定一个圆必须满足两个条件,即圆心和半径,只满足一个条件或不满足任何一个条件的圆都有无数个,故(1)(2)正确,(3)虽然半径,但P点不是圆心,实际上也只是一个条件,能作无数个圆,故(3)正确;(4)满足两个条件,只能作一个圆,所以(4)错误.综上所述,错误的说法有1个,应选A答案 A错因分析导致此题错误的主要原因是对于确定一个圆的两个要素(圆心和半径)理解不够准确。

类题打破1 以O点为圆心画圆,可以画______ 个圆;以4 cm为半径画圆.可以面_____个圆.答案无数无数点拨确定圆的条件:一是圆心,二是半径.探究点2 与圆有关的概念知识讲解连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

圆上任意两点间的局部AB.读作“圆弧AB〞或“弧AB〞,圆的任意一条直径的两个端点把图分成两条弧,每一条弧都叫做半圆。

注意 (1)弦和弧是有区别的,弦是线段,而弧是曲线。

(2)直径是圆中最长的弦,而弦不都是直径。

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。

九年级数学上册《圆心角》教案、教学设计

九年级数学上册《圆心角》教案、教学设计
-学生需详细阐述解题思路,展示解题过程,提高解决问题的能力。
3.拓展提高题:
-选择一道具有一定难度的题目,涉及圆心角与圆周角的综合应用。
-例如:已知一个圆的半径为5cm,求圆内接正六边形的边长和面积。
-学生通过思考和探索,培养几何直观和逻辑思维能力。
4.小组合作题:
-以小组为单位,共同完成一道较复杂的几何题目,要求小组成员共同讨论、分析,共同解决问题。
九年级数学上册《圆心角》教案、教学设计
一、教学目标
(一)知识与技能
1.理解圆心角的定义,掌握圆心角的度量和计算方法。
-掌握圆心角与圆周角的概念及其关系。
-学会使用量角器、圆规等工具测量圆心角。
-掌握圆心角与弧度的互换计算。
2.能够运用圆心角定理解决实际问题,如圆中弧长、圆周长、圆面积的计算。
-掌握圆心角定理及其推论。
1.学生需按时完成作业,字迹工整,表述清晰。
2.家长要关注学生的学习情况,协助学生检查作业,签字确认。
3.教师要及时批改作业,给予反馈,针对学生的薄弱环节进行有针对性的辅导。
-例如:已知圆的直径为10cm,圆内有一条弦长为8cm,求这条弦所对的圆心角的度数。
-通过合作交流,培养学生的团队协作能力和沟通能力。
5.思维导图总结:
-要求学生利用课后时间,绘制一张关于圆心角的思维导图,梳理所学知识点及其相互关系。
-学生可以通过思维导图,加深对圆心角知识的理解和记忆。
作业布置要求:
-通过实际生活中的例子,如自行车轮子、风扇等,引入圆心角的概念。
-设计有趣的问题和练习,引导学生主动发现圆心角的性质和计算方法。
2.采用直观演示、动手操作、合作交流等教学策略,帮助学生掌握圆心角的知识。

圆周角和圆心角弧的关系

圆周角和圆心角弧的关系

知2-练
5 (中考·泰安)如图,点A,B,C是⊙O上的三点,且 四边形ABCO是平行四边形,OF⊥OC交⊙O于点F, 则∠BAF等于( ) A.12.5° B.15° C.20° D.22.5°
知识点 3 同弧或等弧所对的圆周角
知3-讲
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相 等,相等的圆周角所对的弧也相等. 拓展:在同圆或等圆中,相等的圆周角所对的弦也相等. 易错警示:同一条弧所对的圆周角有无数个,它们都 相等;这里特别要注意不要误认为“同弦所对的圆周 角都相等”,因为一条弦所对的圆周角有两个.
解: 连接OC,如图,∵BC=BD,
∴ BC BD.
∴∠BOC=∠BOD=65°.
∴∠A= 1 2
∠BOC=
1 2
×65°
=32.5°.
知3-讲
总结
知3-讲
同圆或等圆中的弦、弧、圆心角、圆周角之间的关系 可以互相转化,当某个结论不好求时,可运用转化思 想将其转化为求与之相关的另一结论.
知3-练
例2 如图,AB为⊙O的直径,弦CD交AB于点P,∠ACD
= 60°,∠ADC =70°,求∠APC的度数. 分析:∠APC等于圆周角∠BAD
与∠ADC之和. 解:连接BC,则∠ACB=90°,
∠DCB =∠ACB -∠ACD = 90°- 60° = 30°.
又 ∵∠BAD =∠DCB = 30°, ∴ ∠APC = ∠BAD +∠ADC = 30° +70°=100°.
证明: 方法一:如图,延长CD交⊙O于点H. ∵AB是直径,CD⊥AB, ∴ AC AH . ∵点C是 AE 的中点, ∴ AC CE, ∴ AH CE, ∴∠ACF=∠CAF,∴AF=CF.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆心角--知识讲解(基础)
【学习目标】
1.了解圆心角的概念;
2.掌握弧、弦和圆心角定理及其推论,并能解决有关问题;
3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它
两组量对应相等,及其它们在解题中的应用.
【要点梳理】
要点一、圆心角与弧的定义
1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB就是一个圆心角.
要点诠释:
(1)一个角要是圆心角,必须具备顶点在圆心这一特征;
(2)圆心角∠AOB所对的弦为线段AB,所对的弧为弧AB.
2.1°的弧的定义
.如下图,
1°的圆心角所对的弧叫做1°的弧
(1)圆心角的度数和它所对的弧的度数相等. 注意不是角与弧相等.即不能写成圆心角∠AOB=.
(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).
要点二、圆心角定理及推论
1.圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
要点诠释:
(1)圆心到圆的一条弦的距离叫做弦心距.
(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.
(3)注意定理中不能忽视“同圆或等圆”这一前提.
2.圆心角定理的推论:
在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.
要点诠释:
在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相
等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).
*如果它们中间有一组量不相等,那么其它各组量也分别不等.
【典型例题】
类型一、圆心角的概念
1. 判别下列各图中的角是不是圆心角,并说明理由.
【思路点拨】根据圆心角的定义进行判断.
【答案与解析】
解:①不是,因为顶点在圆内非圆心的位置;
②不是,因为顶点在圆外,没有在圆心;
③不是,因为顶点在圆上,而不是在圆心;
④是,满足圆心角定义.
【总结升华】掌握与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧、圆心角等. 类型二、圆心角定理及推论
2.(2016•台湾)如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=65°,∠D=60°,则的度数为何?()
A.25 B.40 C.50 D.55
【思路点拨】连接OB,OC,由半径相等得到三角形OAB,三角形OBC,三角形OCD都为等腰三角形,根据∠A=65°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.
【答案】B
【解析】
解:连接OB、OC,
∵OA=OB=OC=OD,
∴△OAB、△OBC、△OCD,皆为等腰三角形,
∵∠A=65°,∠D=60°,
∴∠1=180°﹣2∠A=180°﹣2×65°=50°,∠2=180°﹣2∠D=180°﹣2×60°=60°,
∵=150°,
∴∠AOD=150°,
∴∠3=∠AOD﹣∠1﹣∠2=150°﹣50°﹣60°=40°,
则=40°.
故选B
【总结升华】此题考查了圆心角、弧、弦的关系,弄清圆心角、弧、弦的关系是解本题的关键.
举一反三:
【变式】如图,AB是⊙O的直径,BC CD DE
==,∠COD=35°,求∠AOE的度数.
【答案】
解:∵BC CD DE
==,∠COD=35°,
∴∠BOC=∠EOD=∠COD=35°,
∴∠AOE=180°-∠EOD-∠COD-∠BOC=75°.
3.如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.
(1)求证:AB=CD;
(2)如果⊙O的半径为5,DE=1,求AE的长.
【答案与解析】
(1)证明:如图,∵AD=BC,
∴=,
∴﹣=﹣,即=
∴AB=CD;
(2)解:如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.
则AF=FD,BG=CG.
∵AD=BC,
∴AF=CG.
在Rt△AOF与Rt△COG中,

∴Rt△AOF≌Rt△COG(HL),
∴OF=OG,
∴四边形OFEG是正方形,
∴OF=EF.
设OF=EF=x,则AF=FD=x+1,
在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,
解得x=3.
则AF=3+1=4,即AE=AF+3=7.
【总结升华】本题考查了勾股定理,垂径定理以及圆心角、弧、弦间的关系.注意过圆心作弦的垂线是圆中常见的辅助线.
举一反三:
【变式】已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .
【答案与解析】
证法一:如图①,∵ AB =CD ,∴ A B C D =.
∴ A B B D C D B D -=-,即AD BC =,
∴ AD =BC .
证法二:如图②,连OA 、OB 、OC 、OD ,
∵ AB =CD ,∴ ∠AOB =∠COD .
∴ ∠AOB -∠DOB =∠COD -∠DOB ,
即∠AOD =∠BOC ,∴ AD =BC .
4.如图所示,AB 是⊙O 的弦,C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD ,分别交⊙O 于点E 、F. 试证: =A E B F .
【思路点拨】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE =∠BOF.
【答案与解析】
证明: ∵OC =OD ,
∴∠OCD =∠ODC.
∵AO =OB ,∴∠A =∠B.
∴∠OCD -∠A =∠ODC -∠B ,
即∠AOC=∠BOD,
即∠AOE=∠BOF.
AE BF.
∴=
【总结升华】本题利用了在同圆或等圆中,等弧对等弦及等弦对等弧求解.
举一反三:
=. 【变式】如图,BC为⊙O的直径,OA是⊙O的半径,弦BE∥OA. 求证:AC AE
A
【答案】
证明:连接OE,
∵BE∥OA,
∴∠B=∠COA,∠E=∠AOE,
∵OE=OB,
∴∠B=∠E,
∴∠COA=∠AOE,
=.
∴AC AE。

相关文档
最新文档