第3章 模糊控制理论的基础讲解

合集下载

模糊控制系统

模糊控制系统

5.测量装置
它是将被控对象的各种非电量,如流量、温度、压力、速度、浓度等转换为电 信号的一类装置。通常由各类数字的或模拟的测量仪器、检测元件或传感器等组成。 它在模糊控制系统中占有十分重要的地位,其精度往往直接影响整个系统的性能指 标,因此要求其精度高、可靠且稳定性好。
3.2 模糊控制系统的基本原理⑴
若该工作机构的负载扰动有很大随机性,为了保持直流电动机转速为 1000r/min,根据人工操作经验,控制规则用条件语言来表示如下: 如果电动机转速nd低于1000r/min,那么应该升高电压ud,若nd低得越 多,则ud升得越高; 如果电动机转速nd高于1000r/min,那么应该降低电压ud,若nd高得越 多,则ud降得越低; 如果电动机转速nd等于1000r/min,则保持电压ud不变。
3.1 模糊控制系统的组成⑴
模糊控制系统通常由模糊控制器、输入/输出接口、执行机构、 被控对象和测量装置等五个部分组成。
1.被控对象 它可以是一种设备或装置以及它们的群体,也可以是一个生产 的、自然的、社会的、生物的或其他各种的状态转移过程。这些被 控对象可以是确定的或模糊的、单变量或多变量的、有滞后或无滞 后的,也可以是线性的或非线性的、定常的或时变的,以及具有强 耦合和干扰等多种情况。对于那些难以建立精确数学模型的复杂对 象,更适宜采用模糊控制。 2.执行机构 除了电气的以外,如各类交、直流电动机, 伺服电动机,步进电动机等,还有气动的和液压 的,如各类气动调节阀和液压马达、液压阀等。
智能控制技术⑵
题记
在这个世界上,有许多高深的理论其实就 发源于我们司空见惯的日常生活里。
任何理论,如果不用于解决实际问题,这 种理论再好也是没有实际意义的。

第3章:模糊控制系统

模糊控制理论基础知识

模糊控制理论基础知识

第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。

现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。

若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。

例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。

因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a Rμ,集合A 到集合B 的模糊关系R ~也就确定了。

由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。

一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。

称这样的R ~为具有自返性的模糊关系。

一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。

模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。

一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。

模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。

模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。

二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。

他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。

随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。

2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。

日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。

同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。

3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。

研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。

同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。

总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。

经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。

未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。

模糊控制基本理论

模糊控制基本理论
μ 1 A B
1
A
0
0
0
u
u
u
A∩B
A∪B
AC
第二节 常用隶属函数
1.三角型隶属函数Triangular MF
0 x a a f ( x) b cx c a 0 xa a xb bxc cx
0 a b c x 1
a为三角形左边底角的顶点坐标, b为顶角顶点坐标, c为 右边地角顶点的坐标。
2. F并集 A与B的并集,记作A∪B,有
AB (u) A (u) B (u) max{ A (u) , B (u)}, u U
1.3 模糊集合的基本运算
3. F补集
A的补集,记作AC,有
A (u) 1 A (u) , u U
C
μ
μ 1 A B
X Y {( x, y) | x X , y Y }
它是由序偶( x , y)的全体所构成的二维论域
上的集合。一般来说X×Y≠Y×X。
3.1 模糊关系及模糊矩阵的定义
2. 模糊关系及模糊矩阵 设 X 、 Y 是两个非空集合,以直积 X×Y 为论域定义的模 糊集合R称为X和Y的模糊关系,记为RX×Y。 (1)模糊关系RX×Y由其隶属函数μR(x,y)完全刻画,μR(x,y)表 示了X中的元素x和Y中的元素y具有关系RX×Y的程度。 (2)当X和Y为有限离散集合时,设X={x1,x2,…,xn}, Y={y1,y2,…,ym},则X和Y的模糊关系RX×Y可用n×m阶
第二节 常用隶属函数
4.Sigmoid型隶属函数
1
f ( x)
1 1 e a ( x c )
0.8
a=2 a=-2

第3章 模糊控制

第3章 模糊控制

期望值
+ - y
e
ec
ke d/dt kec
E
EC
ห้องสมุดไป่ตู้
模糊
控制器
U
u
ku
图中ke、kec为量化因子,ku为比例因子
量化: 将一个论域离散成确定数目的几小段(量化 级)。每一段用某一个特定术语作为标记,这 样就形成一个离散域。
假设在实际中,误差的连续取值范围是 e=[eL,eH],eL表示低限值,eH表示高限值。 将离散语言变量E的论域定义为{-m,„,-1, 0,1, „,m}。则有量化因子: 2m ke eH eL 量化因子实际上类似于增益的概念,在这 个意义上称量化因子为量化增益更为合适。
i Ri : IF x1 IS A1i AND x2 IS A2 AND xp IS Aip
i i THEN vi a0 a1 x aip x p i 1 , , N
(3 1)
vi 是模糊语言值; xi是一个输入变量;是输 i 出变量;系数集{a j }是待辨识的参数。模型的辨 i i ( N , p ) { A , a 识分两步。即结构参数 的辨识和系数 j j } 的确定。
1、最大隶属度函数法 简单地取所有规则推理结果的模糊集合中隶属 度最大的那个元素作为输出值。即: 当论域 V 中,其最大隶属度函数对应的输出 值多于一个时,简单取最大隶属度输出的平均即 可: U 0 max v (v) v V 为具有相同最大隶属度输出的总数。 此方法计算简单,但丢失信息,控制性能不高。
式中,<>代表取整运算。 模糊控制器的输出U可以通过下式转换为 实际的输出值u:
uH uL u ku U 2
问题的提出 变量量化会导致一定的量化误差。 解决方法 在量化级之间,加入插值运算。对于任意一 个连续的测量值可以通过相邻两个离散值的加 权运算得到模糊度的值。

模糊理论与模糊控制_第三章

模糊理论与模糊控制_第三章
在研究复杂系统的过程中,逻辑学也在不断发展,以致后来 出现了三值逻辑、多值逻辑,直到1974 年出现了模糊逻辑。
二值逻辑排斥真值的中介过渡性,认为事物在形态和类属上 是非此即彼的。
多值逻辑突破了真值的两极性,承认真值有中介过渡性,但 是认为中介状态之间是彼此独立、界限分明的,和二值逻辑 一样仍然是一种精确逻辑。
不过,只要把这两个复合命题的文字略加修饰,变成“即使2+ 2=5 ,雪也是白的”和“如果2+2=5是真的,则雪就是黑的”就不 会觉得怪异了。 可见,真值蕴涵“若P则Q”的定义包含着语言和思维中最基本、
最本质的东西,因而具有高度概括性、包容性和科学性,完全能 满足逻辑本质要求的普适性和简单性。
例:若用P代表“室温高于26℃”;Q代表“打开空调”; C代表条件命题(P→Q)表示“如果室温高于26℃,则打开空
R T (A U ) (1 T (A)) (T ( A) T (U )) T (A) (T ( A) T (U ))
(2) 若A且B, 则U
英文表示成“if A and B then U”,并简记作(AB)→U。
它代表着像“星期天下雨的话,我就在家”、“水温低于60℃ 而且还在降低,则马上加热”这类条件命题。
空调”是对的。
后两种情况下,T(P)=0,表明简单命题P为假,但这并不能否 定简单命题Q本身的意义。所以在“室温不高于26℃” 时,无论开 不开空调整个句子在逻辑上都认为是对的。
两个简单命题P和Q经蕴涵连接词构成复合命题P→Q,被称作“条 件命题”。 需要特别强调的是,条件命题不是从一个简单命题P “逻辑地推
语句命题判断
二值逻辑中把意义明确、具有真假特性的语句都归之为命题,认 为它们只有“真”和“假”两种结论。
命题常用英文大写字母A、B⋯表示,命题的真假叫作它的真值。 命题P的真值用T(P)表示,T(P)表示命题P属于“真”的程度, 在 二值逻辑中命题P的真值T(P)∈{0,1}:T(P)=0时表示命题P为假, 而T(P)=1时表示命题P为真,有时也用F表示假,用T表示真。

智能控制课件-模糊控制

智能控制课件-模糊控制

0 0 0 0
0 .5 1 .0
0 .5 1 .0
0 .5 1 .0 0 .5 0 .5 0 0
0 0 0 0 0 0 0 .5 0 0 .5 0 .5 0 .5 1 .0 0 0
15
5
模糊决策 模糊控制器的输出为误差向量和模糊关系的合成 合成( 复合) 合成(复合)
0
0
0
0 0 0 0 0 0 PSe × PSu = 0 × [0 0 0 0 0 0.5 1.0 0.5 0] = 0 1.0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
自学习、自适应;模糊推理策略;模糊模型辨识;稳定性;硬件实现
3
3.2 模糊控制的基本原理
以模糊集理论 模糊集理论、 模糊集理论 、 模糊语言变量、 模糊语言变量、 模糊逻辑推理为基础,从行为上模 模糊逻辑推理 仿人的模糊推理和决策过程的一种智能控制方法。
3.2.1 模糊控制器的构成
模糊控制器( Fuzzy Controller—FC )也称模糊逻辑控制器( Fuzzy Logic Controller—FLC)。采用模糊理论中模糊条件语句来描述,是一种 语言型控制器,也称模糊语言控制器( Fuzzy Language Controller-FLC)。 语言型控制器
12
0 0 0 0 0 0 .5 0 0 .5 0 .5 0 .5 1 0 0 .5 1 .0 0 .5 NSe × NSu = 0 × [0 0.5 1 0.5 0 0 0 0 0] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

第三章、模糊控制系统

第三章、模糊控制系统
0.1 0.6 0.7 0.2 V= 例: % 3 + 4 + 5 + 6
精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)模糊控制易于被人们接受。模糊控 制的核心是控制规则,模糊规则是用语言 来表示的,如“今天气温高,则今天天气 暖和”,易于被一般人所接受。 (4)构造容易。模糊控制规则易于软件 实现。 (5)鲁棒性和适应性好。通过专家经验 设计的模糊规则可以对复杂的对象进行有 效的控制。
第二节 模糊集合
一、模糊集合 模糊集合是模糊控制的数学基础。
c (x) Min A (x), B (x)
② 代数积算子
c (x) A (x) B (x)
③ 有界积算子
c (x) Max0, A (x) B (x) 1
(2)并运算算子 设C=A∪B,有三种模糊算子: ① 模糊并算子
c (x) Max A (x), B (x)
c (x) A (x) B ( x) 1 1 (1 A (x)) (1 B (x))
γ取值为[0,1]。
当γ=0时, c (x) A (x) ,B相(x当) 于A∩B
时的算子。
当γ=1时,c (x) A(x) B (x) A(,x)相.B (x)
(3)等集
两个模糊集A和B,若对所有元素u,
它们的隶属函数相等,则A和B也相等。

A B A (u) B (u)
(4)补集 若 A 为A的补集,则
A A (u) 1 A (u)
例如,设A为“成绩好”的模糊集, 某学生 u0 属于“成绩好”的隶属度为:
A (u0 ) 0.8 则u0 属于“成绩差”的隶属度
第三章 模糊控制的理论基础
第一节 概 述 一、 模糊控制的提出
以往的各种传统控制方法均是建立在 被控对象精确数学模型基础上的,然而, 随着系统复杂程度的提高,将难以建立 系统的精确数学模型。
在工程实践中,人们发现,一个复杂 的控制系统可由一个操作人员凭着丰富 的实践经验得到满意的控制效果。这说 明,如果通过模拟人脑的思维方法设计 控制器,可实现复杂系统的控制,由此 产生了模糊控制。
2 模糊算子
模糊集合的逻辑运算实质上就是隶属 函数的运算过程。采用隶属函数的取大 (MAX)-取小(MIN)进行模糊集合的 并、交逻辑运算是目前最常用的方法。但 还有其它公式,这些公式统称为“模糊算 子”。
设有模糊集合A、B和C,常用的模糊 算子如下:
(1)交运算算子 设C=A∩B,有三种模糊算子: ① 模糊交算子
为: A (u0 ) 1 0.8 0.2
(5)子集 若B为A的子集,则
B A B (u) A (u)
(6)并集 若C为A和B的并集,则
C=A∪B 一般地,
A B AB (u) max( A (u), B (u)) A (u) B (u)
(7)交集 若C为A和B的交集,则
C=A∩B 一般地,
A B AB (u) min( A (u), B (u)) A (u) B (u)
(8)模糊运算的基本性质 模糊集合除具有上述基本运算性质
外,还具有下表所示的运算性质。
运算法则 1.幂等律 A∪A=A,A∩A=A 2.交换律 A∪B=B∪A,A∩B=B∩A 3.结合律 (A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)
A(x) 来描述:

A (x)

1 0
x A x A
为了表示模糊概念,需要引入模糊集 合和隶属函数的概念:
1 x A
A (x) (0,1) x属于A的程度
0
x A
其中A称为模糊集合,由0,1及 A (x)构成,
表示元A (素x)x属于模糊集合A的程度,取值 范围为[0,1],称 为x属于A模(x)糊集合A的
合中不成立,即 A (u) A (u) 1 ,
A (u) A (u) 0
证:设 A (u) 0.4 ,

A (u) 1 0.4 0.6
A (u) A (u) 0.4 0.6 0.6 1
A (u) A (u) 0.4 0.6 0.4 0
4.吸收律 A∪(A∩B)=A A∩(A∪B)=A 5.分配律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B) ∪(A∩C)
6.复原律 A A
7.对偶律
AB AB AB AB
8.两极律 A∪E=E,A∩E=A A∪Ф=A,A∩Ф=Ф
例3.4 设 A 0.9 0.2 0.8 0.5
为: trapmf(x,[a,b, c,d])
(5)三角形隶属函数
三角形曲线的形状由三个参数a,b,c
确定:
0

x

a
f
( x,
a,
b,
c)

b

c

a x
c b
0
xa a xb
b xc xc
其中参数a和c确定三角形的“脚”,而
参数b确定三角形的“峰”。 Matlab表
当于A∪B时的算子。
平衡算子目前已经应用于德国Inform公 司研制的著名模糊控制软件Fuzzy-Tech中。
第三节 隶属函数
一、几种典型的隶属函数
在Matlab中已经开发出了11种隶属函数, 即双S形隶属函数(dsigmf)、联合高斯型 隶属函数(gauss2mf)、高斯型隶属函数 ( gaussmf ) 、 广 义 钟 形 隶 属 函 数 (gbellmf)、II型隶属函数(pimf)、双S形 乘 积 隶 属 函 数 ( psigmf ) 、 S 状 隶 属 函 数 (smf)、S形隶属函数(sigmf)、梯形隶 属 函 数 ( trapmf ) 、 三 角 形 隶 属 函 数 (trimf)、Z形隶属函数(zmf)。
例3.2 设论域U={张三,李四,王五},评 语为“学习好”。设三个人学习成绩总评 分是张三得95分,李四得90分,王五得85 分,三人都学习好,但又有差异。
若采用普通集合的观点,选取特征函数
1 C A (u) 0
学习好 A 学习差 A
此时特征函数分别为(张三)=1,(李四)=1,
② 概率或算子
c (x) A (x) B (x) A (x) B (x)
③ 有界和算子
c (x) Min1, A (x) B (x)
(3)平衡算子
当隶属函数取大、取小运算时,不可避免 地要丢失部分信息,采用一种平衡算子, 即“算子”可起到补偿作用。
设C=AoB,则
一模糊子集A可表示为:
A {0.95,0.90,0.85}
其含义为张三、李四、王五属于“学习 好”的程度分别是0.95,0.90,0.85。
例3.3 以年龄为论域,取 X 0,200 。Zadeh给 出了“年轻”的模糊集Y,其隶属函数为1Y( Nhomakorabeax)
1


A A(x) / x
在 模 糊 集 合 的 表 达 中 , 符 号 “ /” 、 “ +” 和 “ ∫ ” 不 代 表 数 学 意 义 上 的 除 号 、 加号和积分,它们是模糊集合的一种表 示方式,表示“构成”或“属于”。
模糊集合是以隶属函数来描述的, 隶属度的概念是模糊集合理论的基石。
二、模糊集合的运算
1 模糊集合的基本运算 由于模糊集是用隶属函数来表征的,
因此两个子集之间的运算实际上就是逐 点对隶属度作相应的运算。
(1)空集 模糊集合的空集为普通集,它的隶属
度为0,即
A A (u) 0
(2)全集 模糊集合的全集为普通集,它的隶属度
为1,即
A E A(u) 1
示为
trimf(x,[a,b, c])
(6)Z形隶属函数 这是基于样条函数的曲线,因其呈现Z形
状而得名。参数a和b确定了曲线的形状。 Matlab表示为 zmf(x,[a,b])
有关隶属函数的MATLAB设计,见著作:
楼顺天,胡昌华,张伟,基于MATLAB的系统分析 与设计-模糊系统,西安:西安电子科技大学出版 社,2001
二、模糊控制的特点 模糊控制是建立在人工经验基础之上
的。对于一个熟练的操作人员,他往往凭 借丰富的实践经验,采取适当的对策来巧 妙地控制一个复杂过程。若能将这些熟练 操作员的实践经验加以总结和描述,并用 语言表达出来,就会得到一种定性的、不 精确的控制规则。如果用模糊数学将其定 量化就转化为模糊控制算法,形成模糊控 制理论。
1.特征函数和隶属函数 在数学上经常用到集合的概念。 例如:集合A由4个离散值x1,x2,x3,x4 组成。A={x1,x2,x3,x4} 例如:集合A由0到1之间的连续实数值组成。
A x, x R,0 x 1
以上两个集合是完全不模糊的。对任意 元素x,只有两种可能:属于A,不属于 A。这种特性可以用特征函数
隶属度。
2. 模糊集合的表示
① 模糊集合A由离散元素构成,表示为:
A 1 / x1 2 / x2 i / xi

A (x1, 1), (x2 , 2 ),, (xi , i ),
② 模糊集合A由连续函数构成,各元素的 隶属度就构成了隶属度函数(Membership Function),此时A表示为:
模糊控制理论具有一些明显的特点: (1)模糊控制不需要被控对象的数学模型。 模糊控制是以人对被控对象的控制经验为 依据而设计的控制器,故无需知道被控对 象的数学模型。 (2)模糊控制是一种反映人类智慧的智能 控制方法。模糊控制采用人类思维中的模 糊量,如“高”、“中”、“低”、 “大”、“小”等,控制量由模糊推理导 出。这些模糊量和模糊推理是人类智能活 动的体现。
f (x, a,b, c)
1
1 x c 2b
相关文档
最新文档