2.人教版九年级下册第二单元测试卷

合集下载

最新人教版初中数学九年级数学下册第二单元《相似》检测卷(含答案解析)(1)

最新人教版初中数学九年级数学下册第二单元《相似》检测卷(含答案解析)(1)

一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .12 2.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 3.下列判断正确的是( )A .对角线相等的四边形是矩形B .将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似C .如果两个相似多边形的面积比为16:9,那么这两个相似多边形的周长比可能是4:3D .若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm4.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EF EC CD =B .BF EG CD AB =C .AF BC FD GC = D .CG AF BC AD = 5.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A.18013B.10 C.12613D.16.如图,在▱ABCD中,M、N为BD的三等分点,连接CM并延长交AB与点E,连接EN 并延长交CD于点F,则DF:FC等于().A.1:2 B.1:3 C.2:3 D.1:47.如图,一次函数y=﹣2x+10的图象与反比例函数y=kx(k>0)的图象相交于A、B两点(A在B的右侧),直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D,若52BCBD,则△ABC的面积为()A.12 B.10 C.9 D.88.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1: 4 B.1:5 C.1:6 D.1: 79.如图,已知在ABC中,D为BC上一点,//EG BC,分别交AB,AD,AC于点E,F,G,则下列比例式正确的是()A .AE EF BE BD =B .EF AF DC AD = C .AC FG CG DC = D .AE FG AB DC= 10.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 11.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1612.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B .5C .22D .3二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,D E 、分别是ABC 的边AB BC 、上的点,且//,DE AC AE CD 、相交于点O ,若:1:25DOE COA S S =△△,则BE CE的值是________.15.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.16.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AOD COB S S =,那么BOC DOC S S =△△:__________.17.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.18.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.19.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.20.在ABC 中,点D 、E 分别在边AB 、AC 上,AB=12,AC=16,AE=4,若ABC 与ADE 相似,则AD=__________.三、解答题21.如图,在边长为1的55⨯的正方形网格上有两个三角形,它们顶点都在格点上.(1)ABC 与DEF 是否相似?请说明理由.(2)请在空白网格上画出MNP ABC △∽△,并指出相似比.(要求MNP △三个顶点都在格点上,并与ABC ,DEF 都不全等)MNP ABC △∽△,相似比为__________.22.已知:E 是矩形ABCD 的边AB 上一个动点,直线EF DE ⊥交BC 于点F .(1)求证:ADE ∽BFE △;(2)若直线EF 经过C 点,且3AD =,10AB =,是否存在这样的点E ,使ADE 和BFE △相似?若存在,请求出AE 的长度;若不存在,请说明理由.(3)连结DF ,若3AD =,2AE =,当ADE 和EFD △相似时,则AB =______. 23.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)k y k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 的面积为332,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 24.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.25.如图,在ABC 中,正方形EFGH 内接于ABC ,点E F 、在边AB 上,点G H 、分别在BC AC 、上,且2EF AE FB =⋅,(1)求证:90C ∠=︒(2)求证:AH CG AE FB ⋅=⋅.26.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE = (2)若6,43DE CE ==AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC , ∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.2.D解析:D【分析】利用相似三角形的判定定理,在AD∥BC,得∠DAC=∠BCA的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A.∵AD∥BC,∴∠DAC=∠BCA,当∠BAC=∠ADC时,则△ABC∽△DCA;B.∵AD∥BC,∴∠DAC=∠BCA,当∠B=∠ACD时,则△ABC∽△DCA;C.∵AD∥BC,∴∠DAC=∠BCA,由AC2=AD•BC变形为AC ADBC AC=,则△ABC∽△DCA;D.∵AD∥BC,∴∠DAC=∠BCA,当DC ABAC BC=时,不能判断△ABC∽△DCA.故选择:D.【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.3.C解析:C【分析】A.利用矩形的判定定理对角线相等的平行四边形可判断;B.一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似应满足长与宽相等时可以,而矩形的长与宽一般不等;C.利用相似图形的性质即可;D.利用黄金分割法可求出BC有两个值即可.【详解】解:A、对角线相等的平行四边形是矩形,故此选项错误;B、将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形不一定相似,故此选项错误;C、如果两个相似多边形的面积比为16:9,则两个相似多边形的相似比为4:3,那么这两个相似多边形的周长比等于相似比是4:3,故此选项正确;D、若点C是AB的黄金分割点,且AB=6cm,则BC的长约为3.7cm或2.3cm,故此选项错误;故选择:C.【点睛】本题综合性考查矩形,矩形相似,相似多边形的性质,黄金分割问题,掌握矩形的判定方法,矩形相似的判定方法,相似多边形的性质,会求黄金分割中线段的长是解题关键.4.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AE=,FD EC∵EG∥AB,∴AE BG=,EC GC∴AF BC=,FD GC故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.5.A解析:A【分析】连结AM,AN,根据圆周角定理可知△ABM是直角三角形,利用勾股定理即可求出AC的长;易证△AMN∽△ACD,根据相似三角形的性质即可求出MN的长.【详解】解:连结AM,AN,∵AC是⊙O的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5,∴22-,AB BM∵CM=9,∴AC=15,∵∠MCA=∠MNA,∠MCA=∠CAD,∴∠MNA=∠CAD,∵∠AMN=∠ACN,∴∠AMN=∠ACN,∵△NMA∽△ACD,∴AM:MN=CD:AC,∴12:MN=13:15,∴MN=180.13故选:A.【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.6.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 7.B解析:B【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S.【详解】 过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD =∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上, ∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --.设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+,∴点()0,2D ,∵点F 是直线AB 与y 轴的交点,∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=, 故选:B .【点睛】 本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.8.B解析:B【分析】设△DEF 的面积为S ,分别用S 表示出△AEB ,△AOB ,△DOC 的面积,即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,设△DEF的面积为S,∵DF∥AB,DE:EB=1:3,∴△ABE的面积为9S,∵EO:BO=1:2,∴△AOB的面积=△DOC的面积=6S,∴四边形FEOC的面积为6S-S=5S,∴15DEFSS EFOC=四边形=1:5,故选:B.【点睛】本题考查了相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质.9.D解析:D【分析】根据相似三角形的判定推出△AEF∽△ABD,△AFG∽△ADC,△AEG∽△ABC,再根据相似三角形的性质得出比例式即可.【详解】A、∵EG∥BC,即EF∥BD,∴△AEF∽△ABD,∴AE EFAB BD=,∵AB BE≠,故本选项不符合题意;B、∵EF∥BD,∴△AEF∽△ABD,∴EF AFBD AD=,∵BD≠DC,故本选项不符合题意;C、∵EG∥BC,即FG∥DC,∴△AFG∽△ADC,∴AG FGAC DC=,∵AG ACAC CG≠,故本选项不符合题意;D 、∵EG ∥BC ,∴△AEG ∽△ABC , ∴AE AG AB AC=, ∵FG ∥DC , ∴△AFG ∽△ADC , ∴AG FG AC DC =, ∴AE FG AB DC=,故本选项符合题意; 故选:D【点睛】本题考查了相似三角形的性质和判定,能正确的识别图形、灵活运用定理进行推理是解此题的关键.10.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽ ∴14∠=∠,23∠∠=∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解. 11.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~, EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.12.B解析:B【分析】如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OF BD BH,即可解决问题.【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80,∴AB•DH=80,∴DH=8,在Rt △ADH 中,226AH AD DH =-=, ∴HB=AB-AH=4,在Rt △BDH 中,2245BD DH BH +=, 设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ ,∴OA 平分∠DAB ,∵AD=AB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OA OF BD BH , ∴4OF ,∴故选:B .【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥, 90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =,AE ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226)(3)x =+,解得:x =3,AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小, 33AP PQ A P PQ A Q DE ''∴+=+===.故答案是:3;33.【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.【分析】先证明然后根据相似三角形的面积比等于相似比的平方求出的值继而可求的值最后可求的值【详解】解:又故答案是:【点睛】本题考查了相似三角形的判定和性质掌握相似三角形的面积比等于相似比的平方是解题关键 解析:14【分析】 先证明DOE COA ∽,然后根据相似三角形的面积比等于相似比的平方求出DE AC 的值,继而可求BE BC 的值,最后可求BE EC 的值. 【详解】 解://DE AC ,DOE COA ∴∽, 又:1:25DOE COA S S =△△,15DE AC ∴=,//DE AC ,BDE BAC ∴∽△△,15BE DE BC AC ∴==, 14BE EC ∴=. 故答案是:14. 【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题关键.15.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;16.3:1【分析】根据在梯形ABCD 中AD ∥BC 易得△AOD ∽△COB 且S △COB :S △AOD=9:1可求=3:1则S △BOC :S △DOC=3:1【详解】解:根据题意AD ∥BC ∴△AOD ∽△COB ∵S △解析:3:1【分析】根据在梯形ABCD 中,AD ∥BC ,易得△AOD ∽△COB ,且S △COB :S △AOD =9:1,可求BO OD =3:1,则S △BOC :S △DOC =3:1. 【详解】解:根据题意,AD ∥BC ,∴△AOD ∽△COB ,∵S △AOD :S △COB =1:9,∴BO OD=3:1, 则S △BOC :S △DOC =3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.17.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC ==∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒ ∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x = ∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.18.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD 长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长解析:325【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =, 利用等面积法,求出245AB AC AD BC ⋅==,在Rt ACD △中,22325CD AC AD =-=, 如图,连接OF , ∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥, ∴//OF AD , ∴ADE FOE ,∴AD DE FO OE=, ∵327555DO CD OC =-=-=, ∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =, 在Rt ADE △中,222427AE AD DE =+=, 在Rt EFO 中,222527EF EO FO =+=, ∴24225272AF AE EF =+=+=.故答案是:325;2. 【点睛】 本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.19.5或82【分析】求出BF和AO的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长再求出t即可【详解】∵AB是⊙O的直径∴∠C=90°解析:5或8.2【分析】求出BF和AO的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长,再求出t即可.【详解】∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=1BC=6cm,2有两种情况:①当∠EFB=90°时,如图:∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E为AB的中点,即E和O重合,∵AB=20cm,∴AE=AO=1AB=10cm,2∴105t==;2②当∠FEB=90°时,如图:∵∠B=∠B,∠FEB=∠C=90°,∴△FEB ∽△ACB , ∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm ,∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.20.或【分析】分类讨论:当△ADE ∽△ABC 和当△AED ∽△ABC 根据相似的性质得出两种比例式进而解答即可【详解】如图∵∠DAE=∠BAC ∴当△ADE ∽△ABC ∴即解得:AD=3∴当△AED ∽△ABC ∴解析:163或3 【分析】 分类讨论:当△ADE ∽△ABC 和当△AED ∽△ABC ,根据相似的性质得出两种比例式进而解答即可.【详解】如图∵∠DAE=∠BAC ,∴当△ADE ∽△ABC ,∴AB AD AC AE =, 即12164AD =, 解得:AD=3,∴当△AED ∽△ABC ,∴AB AE AC AD=, 即12416AD=, 解得:AD=163, 故答案为:163或3 【点睛】 本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.三、解答题21.(1)ABC DEF ∽△,理由见解析;(221【分析】(1)先根据勾股定理求得每条边的长度,再根据相似三角形的判定定理即可证明; (2)先画出MNP △,再根据似三角形的判定即可证明,由此可得答案.【详解】解:(1)ABC DEF ∽△,理由如下:∵在边长为1的55⨯的正方形网格上,有两个三角形,它们顶点都在格点上. ∴22112AB =+=2AC =,221310BC ,22125DE =+=221310DF =+=5EF =, ∴21055AB DE ==,10510AC DF ==10BC EF =, ∴AB AC BC DE DF EF ==, ∴ABC DEF ∽△;(2)如图,MNP ABC △∽△,理由如下:由题意可知:22222MP =+=2MN =,224225NP =+= ∴222MP AC ==,22MN AB ==25210NP BC == ∴2MP MN NP AC AB BC=== ∴MNP ABC △∽△, 2:1, 21.【点睛】本题考查了相似三角形的判定及勾股定理,熟练掌握相似三角形的判定方法是解决本题的关键.22.(1)证明见解析;(2)存在,1AE =或9;(3)4或132【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)设AE x =,则10BE x =-,利用相似三角形的性质,构建方程求解即可;(3)连接DF .分两种情形:当ADE EDF ∽△时,当ADE △∽EFD △时,分别构建方程求解即可.【详解】(1)∵四边形ABCD 是矩形∴90A B ∠=∠=︒,∵EF DE ⊥∴90DEF ∠=︒,∴AED BFE ∠=∠ ∴ADE ∽BFE △;(2)设AE x =,则10BE x =-, 由题意得:3BF BC AD ===∵ADE ∽BFE △ ∴AD AE BE BF=, ∴3103x x =- 解得:1x =或9经检验,1x =或9是分式方程的根,∴1AE =或9;(3)连接DF .当ADE ∽EDF 时 则AD AE DE EF = ∴32DF AD EF AE == ∵ADE ∽BEF ∴32AD DE EB EF == ∵3AD =∴2BE =∴224AB AE BE =+=+=当ADE ∽EFD △时 则AD AE EF DE = ∴23DE AE EF AD == ∵ADE ∽BEF ∴23AD DE EB EF == ∵3AD = ∴92BE = ∴913222AB AE EB =+=+= 综上所述,满足条件的AB 的值为4或132 故答案为:4或132. 【点睛】 本题考查了相似三角形、矩形、分式方程的知识;解题的关键是熟练掌握相似三角形、矩形、分式方程的性质,从而完成求解.23.(1)210y x =-+,8y x =;(2)4OE =;(3)()3,3-或()53,. 【分析】 (1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可;(2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,22OF OE m EF OE m ====13,,4CD m PD m ==进而求得P 的坐标,求得OC 的长,然后根据OPC 的面积为33,列出关于m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(),3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x =(x >0)上, ∴2=4k ,解得:k=8, ∴反比例函数的解析式为:8y x =; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP===, 设OE=m , ∵∠AOB=60°, ∴1133,,2222OF OE m EF m ==== ∴13,,44CD m PD m == ∴13,22E m m ⎛⎫ ⎪ ⎪⎝⎭,P 的纵坐标为34m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 1332m m =, x m ∴=,∴OD=m , ∴1344OC OD CD m m m =-=-=, ∵OPC 的面积为332, ∴13322OC PD =,即 13333,2442m m ⨯⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵()223E ,, ()43,P , //,PQ OB 如图3,当∠EOM=90°时,设(),3,M x由222,OM OE ME += ()()()()22222232232323,x x ∴+++=-+- 412,x ∴-=3,x ∴=-()33,M ∴-,如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:()3,3-或()53,.【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键. 24.(1)证明见解析;(2)35【分析】(1)连接AO 后交DC 于点H ,交BC 于点G ,由垂径定理可知AG ⊥BC ,然后根据互余关系得到∠HAE=∠HCG ,然后利用平行关系得到∠ADE=∠HCG=∠HAE ,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC 和BE 可算出AE ,然后在Rt △AEC 中算出EC ,然后证明△AED ∽△BEC ,然后利用比例关系算出DE ,在Rt △AED 中计算AD 即可.【详解】 解:(1)如图,连接AO 交DC 于点H ,交BC 于点G ,则AG ⊥BC∵AG ⊥BC ,AB ⊥DC ,∠AHE=∠CHG∴∠HAE=∠HCG∵AB ⊥DC∴∠ADE+∠EAD=90°∵AD ∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD 为O 的切线 (2)∵AC=AB ,AC=5,BE=2∴AE=3在Rt △AEC 由勾股定理可得:22=4EC AC AE -=∵AD ∥BC∴△AED ∽△BEC ∴BE EC AE DE= ∴DE=6 在Rt △AED 由勾股定理可得:22AD=35DE AE +=【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.25.(1)证明见解析(2)证明见解析【分析】(1)由已知可得RT △AEH ∽RT △GFB ,从而可得∠A+∠B=∠FGB+∠B=90°,进一步得到∠C=180°-90°=90°;(2)根据由(1)所得RT △AEH ∽RT △HCG 的性质和已知条件可以得到解答.【详解】(1)证明:由已知,EF=EH=GF ,∴由2EF AE FB =⋅可得:AE EF EF FB =,即AE EH GF FB=, 又四边形 EFGH 是正方形 ,∴∠AEH=∠GFB=90°,∴RT △AEH ∽RT △GFB ,∴∠A=∠FGB ,∴∠A+∠B=∠FGB+∠B=90°,∴∠C=180°-90°=90°; (2)∵四边形 EFGH 是正方形 ,∴HG ∥AB ,∴∠A=∠CHG ,又∠AEH=∠C=90°,∴RT △AEH ∽RT △HCG , ∴,?·AH EH AH CG HG EH HG GC==, 由已知得:EF=EH=GH ,∴2··AH CG EF AE FB ==.【点睛】本题考查正方形与相似三角形的综合应用,灵活运用相似三角形的判定和性质是解题关键.26.(1)见详解;(2)【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB ,可得∠BED=∠ECD ,即可得证; (2)连接OD ,先求出AE ,然后证明△BAE ∽△DCE ,根据CE AE =DE BE ,即CE AE =DE BC+CE,求出BC ,即可求出答案. 【详解】(1)∵四边形ABCD 内接于O , ∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD ,∵AB=EB ,∴∠BAD=∠BED ,∴∠BED=∠ECD ,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,即为312BC+43解得BC=23∴BE=BC+CE=63∴AB=BE=3【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.。

最新人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)

最新人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)

一、选择题1.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x -=- 2.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:43.下列各组线段能成比例的是( )A .1.5cm ,2.5cm , 3.5cm ,4.5cmB .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm 4.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 5.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .136.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .67.如图,在直角坐标系中,矩形OABC 的顶点O 在原点,边OA 在x 轴上,OC 在y 轴上,如果OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,则点B '的坐标为( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫ ⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .()3,2D .()3,2或()3,2-- 8.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .3600 9.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:1 10.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB等于( )A 2B .22C 51-D .211.下列相似图形不是位似图形的是( )A .B .C .D . 12.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:2二、填空题13.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.14.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.15.如图,点О是正方形ABCD 的中心,DE 与О相切于点E ,连接,BE 若10,DE =102BE =О的面积是________________.16.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.17.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.18.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________19.如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,D 是AB 边的中点,P 是BC 边上一动点(点P 不与B 、C 重合),若以D 、C 、P 为顶点的三角形与ABC 相似,则线段PC ______.20.若()0a b a c b c k k c b a+++===≠, 则k 的值为______. 三、解答题21.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.22.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少?23.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.24.已知:如图在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .求证:△BEC ∽△BCH .25.如图,点F 是ABC 中AC 边的中点,//AD BC ,DF 交AB 于点E ,交BC 延长线于点G .(1)若:3:1BE AE =,8BC =,求BG 的长;(2)若12∠=∠,求证:2FC EF FD =⋅.26.如图,已知点O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OBꞌCꞌ;(2)若△OBC内部一点M的坐标为(a,b),则点M对应点M′的坐标是;(3)求出变化后△OBꞌCꞌ的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过D作DG∥AC交BE于G,可得△BDG∽△BCE,△DGF∽△AEF,根据相似三角形的性质可得x与y 的数量关系.【详解】解:如图,过D作DG∥AC交BE于G,∴△BDG∽△BCE,△DGF∽△AEF,∴BD DGBC CE=,DG DFAE AF=,∵AC=2EC,∴AE=CE,则BD DF BC AF=∴BD DF BD CD AF=+,∴BD CD AFBD DF+=,∵x=CD:BD,y=AF:FD,∴1+x=y,∴y=x+1,故选:A..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键.2.B解析:B【分析】由题意可得DN=NM=MB,据此可得DF:BE=DN:NB=1:2,再根据BE:DC=BM:MD=1:2,AB=DC,故可得出DF:FC的值.【详解】解:由题意可得DN=NM=MB,AB//CD,AB//BC∴△DFN∽△BEN,△DMC∽△BME,∴DF:BE=DN:NB=1:2,BE:DC=BM:MD=1:2,又∵AB=DC,∴DF:AB=1:4,∴DF:FC=1:3故选:B.【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用.3.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A、1.5×4.5≠2.5×3.5,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D215105≠,故本选项错误.故选:C.【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.4.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.C解析:C【分析】根据平行线的性质得出∠E=∠B ,∠D=∠C ,根据相似三角形的判定定理得出△EAD ∽△BCA ,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.6.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 7.D解析:D【分析】由OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得OA B ''△与OAB 的位似比为1:2,又由点B 的坐标为(6,4),即可求得答案.【详解】解:∵OA B ''△与OAB 关于点O 位似,∴OA B ''△∽OAB ,∵OA B ''△的面积等于OAB 面积的14, ∴位似比为1:2,∵点B 的坐标为(6,4),∴点B′的坐标是:(3,2)或(-3,-2).故选D .【点睛】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用. 8.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.9.A解析:A【分析】根据相似三角形对应高的比等于相似比,周长的比等于相似比解答.【详解】解:∵对应高之比是1:2,∴相似比=1:2,∴对应周长之比是1:2.故选:A .【点睛】本题主要考查相似三角形的性质,周长的比等于相似比.10.A解析:A【分析】 首先根据相似的性质,可得对应边成比例,即为AD AB AB BF =,又根据12BF AD =,可得出2212AD AB =,据此进行求解即可. 【详解】∵各种开本的矩形都相似,∴矩形ABCD 与矩形BFEA 相似, ∴AD AB AB BF=, ∴AD•BF=AB•AB ,又∵12BF AD =, ∴2212AD AB =,∴AD AB=, 故选A .【点睛】本题考查了相似多边形的的性质,相似多边形对应边之比等于相似比,准确识图,熟练掌握和灵活运用相关知识是解题的关键.11.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D 中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.12.C解析:C【分析】为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF ∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.二、填空题13.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位解析:19【分析】由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】 解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 14.1:2【分析】设△ABC 的面积为1ΔEDG 的面积为xΔBDG 的面积为y 则由题意可得关于xy 的二元一次方程组解方程组得到xy 的值后可得问题解答【详解】解:设△ABC 的面积为1ΔEDG 的面积为xΔBDG解析:1:2【分析】设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,则由题意可得关于x 、y 的二元一次方程组,解方程组得到x 、y 的值后可得问题解答.【详解】解:设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,∵DE 为三角形ABE 的中位线,∴三角形DEB 的面积为三角形ABE 面积的一半或者三角形ABC 面积的四分之一, ∴x+y=14, 又由题意可得:△DGE ∽△CGB , ∴214DGE CGB S DE S BC ⎛⎫== ⎪⎝⎭, 即()111442CBD GBD x S S y ⎛⎫=-=- ⎪⎝⎭,∴ 1184x y =-,所以有: 141184x y x y ⎧+=⎪⎪⎨⎪=-⎪⎩, 解之得: 11216x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴1112126EDG BDG S S x y ===::::, 故答案为1:2.【点睛】本题考查三角形中线、中位线的应用和相似三角形的判定及性质,熟练掌握“三角形中线把三角形分成面积相等的两部分”和相似三角形的判定及性质是解题关键 .15.25【分析】连接EO 可知EO ⊥ED 延长DE 到点F 作BF ⊥DF 根据题意可知△DEO ∽△DFB 在△EFB 中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO 可知EO ⊥ED解析:25π【分析】连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,根据题意可知△DEO ∽△DFB ,在△EFB 中,222EB EF FB =+,根据勾股定理求解得出半径的长,然后再根据圆的面积公式求解即可;【详解】如图:连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,∵∠FDB=∠EDO ,∠DEO=∠DFB ,∴△DEO ∽△DFB ,∵EO=r ,ED=10,EB=∵DO=OB , ∴12DO EO DE DB FB DF===, ∴EF=10,FB=2r , 在△EFB 中,222EB EF FB =+,(22=1004r +,∴ r=5,∴ 圆的面积为225r ππ=,故答案为:25π【点睛】本题考查了圆的面积公式、相似三角形的判定、勾股定理等知识,熟练掌握这些公式是解题的关键;16.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP , ∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC , ∴23PQ BP CD BD ==, ∵CD=2,∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 17.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键. 18.【分析】连接MN 过点O 作于点E 交CD 于点F 先证明得到相似比是然后求出和的面积用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积【详解】解:如图连接MN 过点O 作于点E 交CD 于点F ∵四边形ABC 解析:23【分析】连接MN ,过点O 作OE MN 于点E ,交CD 于点F ,先证明OMN PQO ,得到相似比是4:1,然后求出OMN 和PQO 的面积,用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积.【详解】解:如图,连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,∵M 、N 分别是边AD 、BC 的中点,∴DM CN =,∴四边形MNCD 是平行四边形,∴//MN CD ,∴OMN PQO ,相似比是:4:1MN PQ =,∴:4:1OE OF =, ∵152EF BC ==, ∴4OE =,1OF =, ∴184162MNO S =⨯⨯=,12112PQOS =⨯⨯=,8540MNCD S =⨯=, ∴4016123S =--=阴影.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 19.或【分析】分两种情况求解或利用相似三角形对应边成比例求出PC 的长【详解】解:①如图∵且D 是AB 中点∴∴∵∴∴∵∴∴解得;②如图此时∴即解得故答案是:或【点睛】本题考查相似三角形的性质和判定解题的关键 解析:4或254【分析】分两种情况求解,90CPD ∠=︒或90CDP ∠=︒,利用相似三角形对应边成比例求出PC 的长.【详解】解:①如图,90CPD ∠=︒,∵90ACB ∠=︒,且D 是AB 中点,∴AD BD CD ==,∴DCP ABC ∠=∠,∵90CPD BCA ∠=∠=︒,∴CPD BCA , ∴CP CD BC BA =, ∵6AC =,8BC =,∴10AB =,5AD BD CD ===, ∴5810CP =,解得4CP =;②如图,90CDP ∠=︒,此时CDP BCA ,∴CP CD BA BC =,即5108CP =,解得254CP =.故答案是:4或254. 【点睛】 本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 20.或2【分析】根据等式的性质可得2(a+b+c )=k (a+b+c )根据因式分解可得a+b+c=0或k=2根据分式的性质可得答案【详解】解:由得b+c=ak①a+c=bk②a+b=ck③①+②+③得2(解析:1-或2【分析】根据等式的性质,可得2(a+b+c )=k (a+b+c ),根据因式分解,可得a+b+c=0或k=2,根据分式的性质,可得答案.【详解】解:由()0a b a c b c k k c b a+++===≠,得 b+c=ak ①,a+c=bk ②,a+b=ck ③,①+②+③,得2(a+b+c )=k (a+b+c ),移项,得2(a+b+c )-k (a+b+c )=0,因式分解,得(a+b+c )(2-k )=0a+b+c=0或k=2,当0a b c ++=时,a b c +=-,1a b c k c c+-===-, ∴1k =-或2.故答案为:1-或2.【点睛】本题考查了比例的性质,利用等式的性质得出2(a+b+c )=k (a+b+c )是解题关键,又利用了分式的性质.三、解答题21.(1)四边形ABCE ;(2)13或10;(2)【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,ACCDAE =CE 5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=, 综上所述,友爱四边形ABCD 的周长为13或10; (3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB , ∴在Rt △ABM 中,AM, ∵ABC 的面积为,∴12BC = ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC , ∴ABD ∽DBC∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.22.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接运用三角形面积公式求出△A 2BC 2的面积即可. 【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键.23.(1)图见解析;(2)图见解析,2C(1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C2的坐标;(3)根据所画图形判断出△A2BC2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2BC2即为所求,C2点坐标为(1,0),故答案为:(1,0);(3)∵A2C2=BC2=22+=,A2B=224225+=,62210∴A2C22+BC22= A2B2,∴△A2BC2是等腰直角三角形,且∠A2C2B=90°,∴△A2BC2的面积位为:1×(25)2=10平方单位,2故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.24.见解析.【分析】由题意可得△CDF≌△CBE,所以可得∠DCF=∠BCE,进一步结合菱形的性质可得∠H=∠BCE,再由∠B=∠B即可得到所证结论成立.【详解】∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H =∠DCF ,∴∠H =∠BCE ,∵∠B =∠B ,∴△BEC ∽△BCH .【点睛】本题考查菱形的综合应用,综合运用菱形的性质、三角形全等的判定和性质及三角形相似的判定是解题关键 .25.(1)BG=12,;(2)证明见解析【分析】(1)根据AD ∥BC ,点F 是AC 边上的中点,可证△ADF ≌△CGF ,得AD=CG ,再由BE :AE=3:1及AD ∥BC ,得BG=3AD ,BC=2AD=8,得AD=4,可求BG ;(2)由∠1=∠2,根据邻补角的性质得∠AEF=∠FCG ,又对顶角∠AFE=∠GFC ,可证△AFE ∽△GFC ,利用相似比证题.【详解】(1)解:∵AD ∥BC ,∴∠D=∠G ,又∠AFD=∠CFG ,AF=FC ,在△ADF 和△CGF 中D G AFD CFG AF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CGF(AAS),∴AD=CG ,FG=FD ,又∵AD ∥BC∴△ADE ∽△BGE ∴BE BG AE DA= 又BE :AE=3:1,∴BG=3AD ,又AD=CG∴BC=2AD=8,解得AD=4,∴BG=3AD=12;(2)证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠AEF=∠FCG ,又∵∠AFE=∠GFC ,∴△AFE ∽△GFC ,EF AF FC FG=,又AF=CF ,DF=GF , 即EF CF CF FD=, ∴FC 2=FE•FD .【点睛】本题考查了相似三角形的判断与性质,全等三角形的判定与性质.关键是利用平行线,中点,等角的补角相等,推出全等和相似三角形.26.(1)见解析;(2)(-2a ,-2b );(3)10【分析】(1)把B 、C 的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC 的面积,然后利用相似的性质把△OBC 的面积乘以4得到△OB ꞌC ꞌ的面积.【详解】(1)如下图,△OB ꞌC ꞌ为所作;(2)点M 对应点M ′的坐标为(-2a ,-2b );(3)''11144(23212131)10222OB C OCB S S ∆∆==⨯⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了作图、位似变换,熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.。

(人教版)石家庄市九年级数学下册第二单元《相似》测试卷(含答案解析)

(人教版)石家庄市九年级数学下册第二单元《相似》测试卷(含答案解析)

一、选择题1.如图,在ABC中,中线BE,CD相交于点O,连接DE,下列结论:①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④16ODEADCSS=△△.其中结论正确的是().A.①②B.①③C.①②③D.①③④2.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=2CE,AB=12,则AD的长为()A.4 B.6 C.5 D.83.如图,在Rt△ABC中,∠B=90⁰,34BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A.23B.34C.49D.9164.如图,在正方形ABCD中,E为BC中点,3DF FC=.联结AE AF EF、、.那么下列结果错误的是( )△与ECF相似A.ABE△与AEF相似B.ABE△与ADF相似C.ABED.AEF与ECF相似5.如图△BCD中,BE⊥CD,AE=CE=3,BE=DE=4.BC=5,DA的延长线交BC于F,则AF=()A.1 B.0.6 C.1.2 D.0.86.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为()A.90 B.180 C.270 D.36007.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,光源到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.21cm B.14cm C.6cm D.24cm8.如图,地面上点A处有一只兔子,距它10米的B处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C离木桩B( )米.A .60B .50C .40D .459.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:49 10.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2512.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1-二、填空题13.如图,一次函数y =﹣34x +6的图象与x 轴交于点B ,与y 轴交于点A ,过线段AB 的中点P (4,3)作一条直线与△AOB 交于点Q ,使得所截新三角形与△AOB 相似,则点Q 坐标是_____.14.如图,已知Rt ABC 中,AC=b ,BC=a ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点D 4,D 5,…,D n ,分别记BD 1E 1,BD 2E 2,BD 3E 3,…,BD n E n 的面积为S 1,S 2,S 3,…S n .则(1)1E C =__________,(2)S n =__________.15.如图,已知点M 是△ABC 的重心,AB =123,MN ∥AB ,则MN =__________16.如图,小思作出了边长为1的第1个等边三角形111A B C △,然后分别取111A B C △三边的中点2A ,2B ,2C ,作出了第2个等边三角形222A B C △,用同样的方法作出了第3等边三角形333A B C △.(1)111A B C △与222A B C △的面积比为______.(2)依此方法作下去,可得第n 次作出的等边三角形n n n A B C 的面积是______. 17.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,连接AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为_____.18.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.19.若233a b c ==,且233a b c ++=,则a b c -+=__________. 20.如图,在△ABC 中,AE AF EB FC =,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.三、解答题21.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C ,D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连接BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG .线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4-6)且AB a ,BC b =,CE ka =,(),0CG kb a b k =≠>,第(1)题①中得到C 的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG 、BE ,且3a =,2b =,12k =,求22BE DG +的值.22.综合与实践将矩形ABCD 和Rt CEF △按如图1的方式放置,已知点D 在CF 上(2CF CD >),90FCE ∠=︒,连接BF ,DE .特例研究(1)如图1,当AD CD =,CE CF =时,线段BF 与DE 之间的数量关系是_______;直线BF 与直线DE 之间的位置关系是_______;(2)在(1)条件下中,将矩形ABCD 绕点C 旋转到如图2的位置,试判断(1)中结论是否仍然成立,并说明理由;探究发现(3)如图3,当2CF CE =,2CB CD =时,试判断线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由;知识应用(4)如图4,在(3)的条件下,连接BE ,FD ,若22CE CD ==,请直接写出22BE FD +的值.23.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明;(2)已知4AB =,点M 在边AB 上,且1BM=,作直线HE . ①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由;②直接写出点M 到直线HE 的距离的最大值.24.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE = (2)若6,43DE CE ==,求AB 的长.25.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .26.如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,DE //BC ,EF //AB .(1)求证:ADE ∆∽EFC ∆;(2)如果6AB =,4=AD ,求ADE EFCS S ∆∆的值.【参考答案】***试卷处理标记,请不要删除一、选择题1. D 解析:D【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COB S S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断. 【详解】解:∵BE 、CD 为ABC 的中线,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =,所以①正确;∵//DE BC ,∴DOE △∽COB △, ∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OE AB OB=,所以③正确; ∵:1:2OD OC =, ∴13ODE DCE S S =△△, ∵AE CE =, ∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D .【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理. 2.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8, 故选:D .【点睛】 本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 3.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.4.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:54AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.5.B解析:B【分析】根据条件和判断Rt △CEB ≌Rt △AED ,然后得到角相等,证明△BEC ∽△BFA ,利用比例关系计算.【详解】解:∵AE=3,BE=4∴BA=BE-AE=1∴在Rt △CEB 与Rt △AED 中AE CE AD CB =⎧⎨=⎩∴Rt △CEB ≌Rt △AED∴∠EBC=∠BAF ∵∠ADE+∠EAD=90°,∠BAF=∠EAD∴∠EBC+∠BAF=90°∵∠BEC=∠BFA=90°∴△BEC ∽△BFA ∴AF BA CE BC =即135AF = ∴AF=0.6故选:B【点睛】 本题考查相似和全等的结合,通过全等得到角关系,然后证相似得到比例关系计算边长即可..6.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x,x,则9x-x=80,解得:x=10,故较大三角形的面积为:9x=90.故选:A.【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.7.A解析:A【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可.【详解】解:如图所示,∵DE∥BC,∴△AED∽△ABC,∴AE DEAC BC=,设屏幕上的图形高是x cm,则307 90x=,解得:x=21.答:屏幕上图形的高度为21cm,故选:A.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.B解析:B【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE ∽△ACD , ∴AB BE AC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m ∴10 1.6=9.6AC ∴AC=60m ∴BC=AC-AB=60-10=50m故选:B .【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 9.D解析:D【分析】 根据题意证明DEFBAF ,再利用相似比得到面积比. 【详解】解:∵四边形ABCD 是平行四边形,∴//CD AB ,CD AB =,∵:5:2DE EC =,∴:5:7DE DC =,∴:5:7DE AB =, ∵DEF BAF , ∴22::25:49DEF BAF S S DE AB ==.故选:D .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系. 10.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 12.B解析:B【分析】根据位似变换的概念得到△A 1OB 1∽△A 2OB 2,△A 1OB 1与△A 2OB 2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:∵△A 1OB 1与△A 2OB 2位似,∴△A 1OB 1∽△A 2OB 2,∵△A 1OB 1与△A 2OB 2的周长之比为1:2,∴△A 1OB 1与△A 2OB 2的相似比为1:2,∵A 1的坐标为(-1,2),△A 1OB 1与△A 2OB 2在原点O 的两侧,∴点A1的对应点A2的坐标为(2,-4),故选:B.【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.二、填空题13.(03)或(0)或(40)【分析】首先确定AB两点坐标分两种情形:①当PQ∥OB时②当PQ′⊥AB时分别求解即可【详解】∵一次函数y=﹣x+6的图象与x轴交于点B与y轴交于点A∴A(06)B(80)解析:(0,3)或(74,0)或(4,0)【分析】首先确定A,B两点坐标,分两种情形:①当PQ∥OB时,②当PQ′⊥AB时,分别求解即可.【详解】∵一次函数y=﹣34x+6的图象与x轴交于点B,与y轴交于点A,∴A(0,6),B(8,0),∴OA=6,OB=8,AB=22OA OB+=2268+=10,如图有两种情形:①当PQ∥OB时,满足条件.∵AP=PB,∴AQ=OQ,∴Q(0,3).②当PQ′⊥AB时,满足条件.连接AQ′.∵PA=PB,PQ′⊥AB,∴Q′A=Q′B,设Q′A=Q′B=m,在Rt△AOQ′中,则有m2=62+(8﹣m)2,解得m=254,∴OQ′=8﹣254=74,∴Q′(74,0). ③当PQ ∥y 轴时,同法可得P (4,0). 综上所述,满足条件的点Q 的坐标为(0,3)或(74,0)或(4,0). 【点睛】本题考查一次函数的应用,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.b 【分析】根据直角三角形的性质以及相似三角形的性质利用在△ACB 中D2为其重心可得D2E1=BE1然后从中找出规律即可解答【详解】解:∵D1E1⊥ACBC ⊥AC ∴D1E1∥BC ∴∵D1是斜边AB 的中 解析:12b 22(1)ab n + 【分析】根据直角三角形的性质以及相似三角形的性质,利用在△ACB 中,D 2为其重心可得D 2E 1=13BE 1,然后从中找出规律即可解答. 【详解】解:∵D 1E 1⊥AC ,BC ⊥AC ,∴D 1E 1∥BC , ∴1111AE AD CE BD =, ∵D 1是斜边AB 的中点,∴AD 1=BD 1, ∴11111AE AD CE BD ==, ∵AC =b ,∴AE 1=E 1C =12b , ∵D 1E 1∥BC , ∴BD 1E 1与CD 1E 1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D 1E 1=12BC ,CE 1=12AC ,S 1=212S △ABC ; ∴在ACB 中,D 2为其重心,∴D 2E 1=13BE 1,∴D 2E 2=13BC ,CE 2=13AC ,S 2=213S △ABC , ∵D 2E 2:D 1E 1=2:3,D 1E 1:BC =1:2, ∴BC :D 2E 2=2D 1E 1:23D 1E 1=3, ∴CD 3:CD 2=D 3E 3:D 2E 2=CE 3:CE 2=3:4,∴D 3E 3=14D 2E 2=14×13BC =14BC ,CE 3=34CE 2=14×13AC =14AC ,S 3=214S △ABC …; ∴S n =21(1)n +S △ABC =21(1)n +×12ab =22(1)ab n +. 故答案为:12b ,22(1)ab n +.【点睛】此题主要考查相似三角形的判定与性质和三角形的重心等知识,解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.也考查了重心的性质即三角形三边中线的交点到顶点的距离等于它到对边中点距离的两倍.15.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:3【分析】根据三角形重心的性质可得AD=BD=1632AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心, ∴AD=BD=1632AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB ,∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 16.4:1;【分析】(1)由三角形中位线定理可得A2B2∥A1B1A2B2=A1B1=可证△C2B2A2∽△C1A1B1由相似三角形的性质可求解;(2)由三角形的中位线定理可求△AnBnCn 的边长为由等解析:4:1;22n 【分析】(1)由三角形中位线定理可得A 2B 2∥A 1B 1,A 2B 2=12A 1B 1=12,可证△C 2B 2A 2∽△C 1A 1B 1,由相似三角形的性质可求解; (2)由三角形的中位线定理可求△A n B n C n 的边长为112n -⎛⎫ ⎪⎝⎭,由等边三角形的性质可求解.【详解】(1)∵A 2,B 2,C 2分别是等边三角形三边B 1C 1,C 1A 1,A 1 B 1的中点, ∴A 2B 2∥A 1B 1,A 2B 2=12A 1B 1=12,△C 2B 2A 2也是等边三角形, ∴222C B A ∽△111C A B , ∴22211114C B A C A B SS =, ∴△111C A B 与222C B A 的面积比为=4:1; 故答案为:4:1;(2)由题意得,△A 2B 2C 2的边长为12, △A 3B 3C 3的边长为212⎛⎫ ⎪⎝⎭, △A 4B 4C 4的边长为312⎛⎫ ⎪⎝⎭, ,∴△A n B n C n 的边长为112n -⎛⎫ ⎪⎝⎭,∵边长是1的等边三角形的面积=,∴等边三角形△A n B n C n的面积2121422nn-⎡⎤⎛⎫==⎢⎥⎪⎝⎭⎢⎥⎣⎦,【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,三角形中位线定理,根据规律求出第n个等边三角形的边长是解题的关键.17.18【分析】根据平行四边形的性质可得BC∥AD进而可判定△ADF∽△EBF 然后用相似三角形面积的比等于相似比的平方即可求出△AFD的面积【详解】解:∵ABCD是平行四边形∴AD∥BCAD=BC∴△A解析:18【分析】根据平行四边形的性质可得BC∥AD,进而可判定△ADF∽△EBF,然后用相似三角形面积的比等于相似比的平方即可求出△AFD的面积.【详解】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADF∽△EBF,∵EC=2BE,∴BC=3BE,即AD=3BE,∴S△AFD=9S△EFB=18.故答案为:18.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.18.【分析】由EC∥ABEB∥DC可得∠A=∠CED∠AEB=∠D证得△ABE与△ECD 相似由△ABE的面积为5△CDE的面积为1可得AB:CE=:1又由EC∥AB可得△ABE与△BCE等高然后由等高三【分析】由EC∥AB,EB∥DC,可得∠A=∠CED,∠AEB=∠D,证得△ABE与△ECD相似,由△ABE的面积为5,△CDE的面积为1,可得AB:1又由EC∥AB,可得△ABE与△BCE等高,然后由等高三角形的面积比等于对应底的比,求得△BCE的面积.【详解】∵EC∥AB,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD , ∴22ABE ECD 551S BE AB CD CES ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭, ∴AB CE =AB =, ∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等,∴ABEBCE S AB S CE ==BCE S ∴==【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.19.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键. 20.10【分析】延长BQ 交射线EF 于点M 先证明△BCQ ∽△MEQ 然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ 交射线EF 于点M ∵EF 是ABAC 的中点∴EF 是△ABC 的中位线∴EF ∥BC ∴∠解析:10【分析】延长BQ 交射线EF 于点M ,先证明△BCQ ∽△MEQ ,然后可得EM BC=2EQ CQ =,根据EM=20,即可得出答案.【详解】解:如图,延长BQ 交射线EF 于点M ,∵E ,F 是AB ,AC 的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ ,∴EM BC=2EQ CQ =, ∵EM=20,∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.三、解答题21.(1)①BG DE =,BG DE ⊥.②BG DE =,BG DE ⊥仍然成立.详见解析;(2)BG DE ⊥成立,BG DE =不成立,详见解析;(3)654. 【分析】(1)①利用正方形的性质,证明BCG DCE ≌△△,利用全等三角形的性质可得:BG=DE ,∠CBG=∠CDE ,再证明:∠EDC+∠DGO=90°,从而可得结论;②同①,先证明:BCG DCE ≌△△,利用全等三角形的性质可得:BG DE =,CBG CDE ∠=∠,再证明:90CDE DHO ∠+∠=︒,从而可得结论;(2)利用矩形的性质,证明BCG DCE △∽△,可得:CBG CDE ∠=∠,再证明90CDE DHO ∠+∠=︒,从而可得结论;(3)连接,,BD GE 利用BG DE ⊥,结合勾股定理证明:2222BE DG BD GE +=+,再把3a =,2b =,12k =代入,即可得到答案. 【详解】解:(1)①BG DE =,BG DE ⊥.理由如下:如图1,延长BG 交DE 于O ,∵四边形ABCD 、CGFE 是正方形,∴BC=CD=AB ,CG=CE ,∠BCD=∠ECD=90°,∵在BCG 和DCE 中BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩,∴BCG DCE ≌△△,∴BG=DE ,∠CBG=∠CDE ,∵∠CBG+∠BGC=90°,又∵∠DGO=∠BGC ,∴∠EDC+∠DGO=90°,∴∠DOG=1809090︒-︒=︒,∴BG ⊥DE ,即BG=DE ,BG ⊥DE ;②BG DE =,BG DE ⊥仍然成立.如图2,∵四边形ABCD 、四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD ECG ∠=∠=︒,∴BCG DCE ∠=∠,∵在BCG 与DCE 中,,BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴BCG DCE ≌△△,∴BG DE =,CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.(2)BG DE ⊥成立,BG DE =不成立.如图5,∵四边形ABCD 、四边形CEFG 都是矩形,且AB CD a ==,BC b =,CG kb =,(),0CE ka a b k =≠>, ∴BC CG b DC CE a==,90BCD ECG ∠=∠=︒, ∴BCG DCE ∠=∠, ∴BCG DCE △∽△,∴CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.显然:.BG DE ≠(3)如图5,连接,,BD GE∵BG DE ⊥,∴222OB OD BD +=,222OE OG GE +=,222OB OE BE +=,222OG OD DG += ∴22222222BE DG OB OE OG OD BD GE +=+++=+,又∵3a =,2b =,12k =,CE ka =,CG kb =, 2222222211323321222BD GE ⎛⎫⎛⎫⎛⎫∴=+=⨯+⨯=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ∴22222236523124BD GE ⎛⎫+=+++= ⎪⎝⎭, ∴22654BE DG +=. 【点睛】本题考查的是勾股定理的应用,正方形,矩形的性质,三角形全等的判定与性质,三角形相似的判定与性质,掌握以上知识是解题的关键.22.(1)BF DE =,BF DE ⊥;(2)(1)中结论仍然成立,理由见解析;(3)2BF DE =,BF DE ⊥,理由见解析;(4)22BE FD +的值为25.【分析】(1)先证FBC EDC ∆∆≌,便可证得BF=DE ,∠BFC=∠CED ,再根据直角三角形两锐角互余及直角三角形判定不难证得BF ⊥DE ;(2)方法同(1),问题易证;(3)利用CED ∆∽CFB ∆证得∠BFC=∠CED ,再根据直角三角形两锐角互余及、对顶角相等及直三角形的判定即可证得结论成立;(4)延长ED 交BF 于点G ,根据勾股定理求出EB 2,FD 2,FE 2,不难求出结果.【详解】解:(1)在矩形ABCD 中,∠BCD =90︒ ,BC=CD ,在Rt CEF △,∠FCE=90︒,FC=CE ,∴∠BCD=∠FCE ,∴FBC EDC ∆∆≌,∴BF DE =,∠BFC=∠DEC∵∠BFC+∠FBC=90︒,∴∠FBC+∠DEC=90︒,∴BF DE ⊥故答案为:BF=DE ,BF DE ⊥(2)(1)中结论仍然成立.理由如下:如图,延长ED 交FB 于点G ,交FC 于点H ,四边形ABCD 是矩形,90BCD ∴∠=︒,AD BC =,90BCF FCD ∴∠+∠=︒,90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.AD CD =,BC CD ∴=,在FBC ∆和EDC ∆中,BC DC =,BCF DCE ∠=∠,CF CE =,()FBC EDC SAS ∴∆≅∆.BF DE ∴=,BFC DEC ∠=∠.90FCE ∠=︒,90DEC CHD ∴∠+∠=︒,FHG CHD ∠=∠,90BFC FHG ∴∠+∠=︒,90FGE ∴∠=︒,BF DE ∴⊥.∴(1)中结论仍然成立.(3)2BF DE =,BF DE ⊥.如图,延长ED 交CF 于M ,交FB 于N .四边形ABCD 是矩形,90BCD ∴∠=︒,90BCF FCD ∴∠+∠=︒,90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.2CF CE =,2CB CD =,12CE CD CF CB ∴==.CED CFB ∴∠=∠,12DE BF =. 2BF DE ∴=.90CME CED ∠+∠=︒,90CME CFB ∴∠+∠=︒.CME FMN ∠=∠,90FMN CFB ∴∠+∠=︒.90FNE ∴∠=︒.BF DE ∴⊥.(4)如图,延长ED 交BF 于点G ,则EG ⊥BF 于G ,∵22CE CD ==,2CF CE =,2CB CD =∴CD=1,CF=4,BC=2,∵在RtFGD 中,GF 2+GD 2=FD 2,在RtGBE 中,GE 2+GB 2=BE 2,∴BE 2+FD 2=(GF 2+GE 2)+(GB 2+GD 2)=22EF BD +连接BD ,则BD 2=225BC CD += ,∵在Rt △FCE 中,EF 2=22222420CF CE +=+=∴BE 2+FD 2=20+5=25.【点睛】本题考查了正方形的性质,直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质及旋转变换等知识,侧重考查了对知识的综合应用.23.(1)①见解析;②BH CE =,证明见解析;(2)①存在,点P 是边BC 的中点;3【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P 为直线HE 与BC 的交点;②通过△BPM ∽△BAP 问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.24.(1)见详解;(2)63【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,43BC+43解得BC=23∴BE=BC+CE=∴AB=BE=【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.25.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.26.(1)证明见解析;(2)4.【分析】(1)根据平行线的性质可得∠A =∠CEF ,∠AED =∠C ,即可得结论;(2)根据线段的和差关系可得BD 的长,由DE //BC ,EF //AB 可得四边形DBFE 是平行四边形,根据平行四边形的性质可得EF 的长,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】(1)∵DE//BC ,EF//AB ,∴∠A =∠CEF ,∠AED =∠C ,∴△ADE ∽△EFC .(2)∵AB =6,AD =4,∴DB =6-4=2,∵DE//BC ,EF//AB ,∴四边形DBFE 是平行四边形,∴EF =DB=2,∵△ADE ∽△EFC ,224()()42∆∆===ADE EFC S AD S EF . 【点睛】本题考查平行线的性质、平行四边形的判定与性质及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;相似三角形的面积比等于相似比的平方;熟练掌握相关判断定理及性质是解题关键.。

新人教版九年级第二单元测试题附答案精编版

新人教版九年级第二单元测试题附答案精编版

新人教版九年级第二单元测试题附答案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】新人教版九年级第二单元测试题附答案Unit 2I think that mooncakes are delicious!(时间:100分钟,满分:100分)Ⅰ.单项选择。

(每小题1分,共15分) X k B 1 . c o m( )1. My brother often helps me with my study,although he is quite busy with his ________ every day.A. businessB. treatC. poundD. present( ) 2. —Could you tell me something about the boy who helped you just now?—Sorry,I know nothing about him. We are ________.A. friendsB. neighborsC. classmatesD. strangers( ) 3. —Do you have ________ in Beijing?—Yes. My aunt and uncle live there.A. classmatesB. cousinsC. partnersD. relatives( ) 4. We bought Lucy an e-dictionary and ________ ,she worked harder than before.A. for exampleB. compared withC. as a resultD. in fact( ) 5. My father has ________ me about my homework. I have to be more careful.A. warnedB. helpedC. followedD. took( ) 6. —________ lovely day it is today!—Yes. Let's go out and enjoy the sunshine!A. How aB. What aC. HowD. What( ) 7. —________ do you like best about the Lantern Festival?—I like the lanterns. I think they are fun ________.A. What;to watchB. What;watchingC. How;to watchD. How;watching( )8.—The dragon boat races are so exciting, but our boat is still behind.—Don't worry. I am sure ________ our team will win!A. ifB. thatC. whetherD. why( ) the help of the doctor,the boy ________ a healthy child.A. came outB. ended upC. put onD. took off( ) 10. Do you know ________ Hangzhou or not tomorrow?A. whether are they leaving forB. whether they are leaving forC. if they are leaving forD. if are they leaving for( ) 11.—Why did your teacher ________ Mike?—Because he made too many mistakes in his homework.A. seeB. tellC. saveD. punish( ) 12. After a 3-week winter vacation, students usually ________ some weight when they return to school.A. put awayB. put upC. put inD. put on( ) 13. When she came back a few days later, she found that all things still ________ where she had ________ them.A. lay;laidB. laid;laidC. lay;lainD. lying;lain( ) 14. On Christmas Eve, my father often ________ as Father Christmas and gives us gifts.A. dresses upB. lays outC. ends upD. calls out( ) 15. —I am going to the USA to spend my holidays next month.—________.A. Yes,that's trueB. No,not at allC. Don't waste timeD. Sounds like funⅡ.完形填空。

(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)(4)

(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)(4)

一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:4 3.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-154.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =6,则线段AC 的长为( )A .12B .18C .24D .305.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有( )A .1个B .2个C .3D .4个6.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .367.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个8.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512 B .512 C .1 D .29.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( ) A .5B .5+1) C .5D .510.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1611.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个 12.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图,在Rt ABC 中,90ACB ︒∠=,5AC =,12BC =,D 、E 分别是边BC 、AC 上的两个动点,且8DE =,P 是DE 的中点,连接PA ,PB ,则13PA PB +的最小值为________.15.如图圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则:ABM AFM S S =△△___________.16.已知线段=AB 6,点c 是线段AB 的黄金分割点,AC BC >.那么AC BC -=________.17.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.18.如图,一个半径为2的圆P 与x 正半轴相切,过原点O 作圆P 的切线OT ,切点为T ,直线PT 分别交x y ,轴的正半轴于A B 、两点,且P 是线段AB 的三等分点,则圆心P 的坐标为__________.19.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.20.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.三、解答题21.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .22.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,交AC 于点O ,分别连接AF 和CE .(1)求证:四边形AFCE 是菱形;(2)过E 点作AD 的垂线EP 交AC 于点P ,求证:2AE 2=AC •AP ;(3)若AE =10cm ,△ABF 的面积为24cm 2,求△ABF 的周长.23.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==,求AB 的长.24.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当x 为何值时,PQ //BC ;(2)当13BCQABC S S ∆∆=时,求S △BPQ :S △ABC 的值; (3)△APQ 能否与△CQB 相似?若能,求出时间x 的值;若不能,说明理由. 25.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,(1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.26.如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,DE //BC ,EF //AB .(1)求证:ADE ∆∽EFC ∆;(2)如果6AB =,4=AD,求ADE EFCS S ∆∆的值.【参考答案】***试卷处理标记,请不要删除一、选择题1. C 解析:C 【分析】根据题意易得ADF AEGABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC , ∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==.故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键.2.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 3.C解析:C【分析】 设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】 解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.4.C解析:C【分析】根据已知图形构造相似三角形,进而得出△ABD ∽△ACE ,即可求出AC 的长.【详解】解:如图所示:过点A 作平行线的垂线,交点分别为D ,E ,可得:△ABD ∽△ACE , 则AB AD AC AE =, 即628AC =, 解得:AC=24,故选:C .【点睛】此题主要考查了相似三角形的应用,根据题意得出△ABD ∽△ACE 是解题关键. 5.C解析:C【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】矩形的原图与外框不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件;菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件. 综上,外框与原图一定相似的有3个,故选:C .【点睛】本题主要考查了相似图形的概念,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.6.D解析:D【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可.【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△.设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =,整理得()()223,4,b x x a x x x AC ab =+=+⋅=, ()()()22222227342x x x x x a b x AC +++===, 解得5x =,12AB ∴=,AC BC ∴== 1362ABC S ∴=⨯=△, 故选:D .【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键. 7.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.8.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC =,然后列方程求解即可. 【详解】解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC∴△ABC ∽△DAC ∴AB BC DA AC = ∴11a a a += 解得,15a +=或152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题. 9.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ =AQ +PB -AB 即可求出PQ 的长度.【详解】解:如图,根据黄金分割点的概念,可知512PB AQ AB AB ==, ∴AQ =PB ,AB =10,∴AQ =PB 5110555-=, ∴PQ =AQ +PB -AB =555555101052010(52)+-==.故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.10.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.11.B解析:B【分析】根据相似三角形的判定逐个判断即可得.【详解】①在ADE 和ACB △中,AED B A A∠=∠⎧⎨∠=∠⎩, ADEACB ∴,则条件①能满足; ②//DE BC ,ADE ABC ∴,则条件②不能满足;③在ADE 和ACB △中,AD AE AC AB A A⎧=⎪⎨⎪∠=∠⎩,ADE ACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DE AC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足;综上,能满足的条件有2个,故选:B .【点睛】 本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.12.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.二、填空题13.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211,∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】 此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.14.【分析】在BC 上截取CF =连接PFCPAF 通过证明△ACP ∽△PCF 可得则PA+PB =PA+PF 当点A 点P 点F 共线时PA+PB 的最小值为AF 由勾股定理可求解【详解】解:如图:在BC 上截取CF =连接P解析:2413 【分析】 在BC 上截取CF =43,连接PF ,CP ,AF .通过证明△ACP ∽△PCF ,可得31=PF BP ,则PA 13+PB =PA+PF ,当点A 点P ,点F 共线时.PA+13PB 的最小值为AF ,由勾股定理可求解.【详解】 解:如图:在BC 上截取CF =43,连接PF ,CP ,AF .∵DE =8,P 是DE 的中点,∴CP =12DE =4 ∵5AC =,12BC =,∵41132==CP BC ,41334==CF CP ; ∴=CP CF BC CP,且∠FCP =∠BCP ∴△PCF ∽△BCP ,∴13==PF CF BP CP , ∴PF =13BP , ∵PA+13PB =PA+PF , 当点A 、点P 、点F 共线时,PA+13PB 的最小值为AF∴AF 3.故答案为:3. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,添加恰当的辅助线是解答本题的关键. 15.【分析】根据正六边形的性质判断出△AMB ∽△BAF 再根据相似三角形的性质求解即可【详解】由题意可知∠AFB=∠ABF=∠CAB=30°则△AMB ∽△BAF 且在△BAF 中∠BAF=120°∴△BAF 是 解析:12【分析】根据正六边形的性质,判断出△AMB ∽△BAF ,再根据相似三角形的性质求解即可.【详解】由题意,可知∠AFB=∠ABF=∠CAB=30°,则△AMB ∽△BAF ,且在△BAF 中,∠BAF=120°,∴△BAF 是顶角为120°的等腰三角形,作AP ⊥BF ,∵∠ABF=30°,∴AB=2AP ,,AP , ∴AB BF =, ∴△AMB ∽△BAF∴:1:3ABM AFB S S =△△ ∴1:1:22ABM AFM S S ==, 故答案为:12.【点睛】本题考查正多边形的性质及相似三角形的判定与性质,准确推断出相似三角形,且注意相似三角形的面积比等于相似比的平方是解题关键.16.【分析】根据黄金比值为进行计算即可得到答案【详解】解:∵点C 为线段AB 的黄金分割点AB=6∴AC=×6=3-3BC=6-(3-3)=9-3AC-BC=3-3-(9-3)=6-12;故答案为:【点睛】 解析:512【分析】 51-进行计算即可得到答案. 【详解】解:∵点C 为线段AB 的黄金分割点,AB=6,∴51-5, BC=6-(5)5, 5(55; 故答案为:6512【点睛】本题考查的是黄金分割的知识和二次根式的计算,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.17.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则BH =,DH = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.18.或【分析】分两种情况①当AP=2BP 时当BP=2AP 时讨论解答即可【详解】解:P 是线段AB 的三等分点有两种情况:连接OP 过点P 作PC ⊥y 轴设OD=x 则CP=x①当AP=2BP 时∵PD ∥OB ∴∴AD=解析:或2)【分析】分两种情况①当AP=2BP 时,当BP=2AP 时讨论解答即可.【详解】解:P 是线段AB 的三等分点,有两种情况:连接OP ,过点P 作PC ⊥y 轴,设OD=x ,则CP=x ,①当AP=2BP 时,∵PD ∥OB , ∴=2AP AD PB DO=, ∴AD=2DO ,即AD=2x ,在RT △ADP 中,==, ∵23AP PD AB OB ==,PD=2, ∴OB=3, ∵1122BOP S BO CP BP OT =⋅=⋅,∴x ,解得1x =2x =-舍去),∴P(2);②当BP=2AP 时,∵PD ∥OB , ∴1=2AP AD PB DO =, ∴AD=12DO ,即AD=12x , 在RT △ADP 中,== ∵13AP PD AB OB ==,PD=2, ∴OB=6, ∵1122BOP S BO CP BP OT =⋅=⋅, ∴6x ,解得1x =2x =-(舍去),∴P(22,2);故答案为:P(22,2)或P(22,2).【点睛】本题考查了切线的性质、平行线分线段成比例及勾股定理,解题的关键是分情况讨论. 19.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC=解析:13【分析】 根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC ,∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9, S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.20.5【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正 解析:5【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得到32CD DE ==,根据勾股定理得到22BE BD DE =-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴==52DB = 4BC BD CD ∴=+= 22BE BD DE ∴=-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭90,C DEB B B ︒∠=∠=∠=∠BDE BAC ∴∆∆ BC BE BD AB∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题21.这座建筑物的高BC 为 14米【分析】根据两组相似三角形ACF EDF ∆∆∽和BCG EDG ∆∆∽,利用对应边成比例,列出CD 和BC 的关系式,然后解方程求出BC 的长.【详解】解:由题意可得90ACF EDF AFC EFD ︒∠∠∠∠==,=,ACF EDF ∴∆∆∽,AC CF ED DF∴=, 即3545BC CD ++=, 554BC CD -∴=, 由题意可得,90BCG EDG BGC EGD ︒∠∠∠∠==,=,BCG EDG ∴∆∆∽,BC CG ED DG ∴=, 即5 1.545 1.5BC CD ++=+, 6.54( 6.5)BC CD ∴+=,556.54264BC BC -∴=⨯+, 14BC ∴=,∴这座建筑物的高BC 为 14米.【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形对应边成比例的性质列式求边长.22.(1)见解析;(2)见解析;(3)24cm【分析】(1)求出∠AOE=∠COF=90°,OA=OC ,∠EAO=∠FCO ,证△AOE ≌△COF ,推出OE=OF 即可;(2)证△AOE ∽△AEP ,得出比例式,即可得出答案;(3)设AB=xcm ,BF=ycm ,根据菱形的性质得出AF=AE=10cm ,根据勾股定理求出x 2+y 2=100,推出(x+y )2-2xy=100①,根据三角形的面积公式求出12xy=24.即xy=48 ②.即可求出x+y=14的值,代入x+y+AF 求出即可.【详解】解:(1)证明:当顶点A 与C 重合时,折痕EF 垂直平分AC ,∴OA=OC ,∠AOE=∠COF=90°,∵在矩形ABCD 中,AD ∥BC ,∴∠EAO=∠FCO ,在△AOE 和△COF 中,AOE COF OA OCEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴OE=OF ,∵OA=OC ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴平行四边形AFCE 是菱形.(2)证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP ,∴△AOE ∽△AEP , ∴AE AO AP AE=, 即AE 2=AO•AP , ∵AO=12AC , ∴AE 2=12AC•AP , ∴2AE 2=AC•AP .(3)设AB=xcm ,BF=ycm .∵由(1)四边形AFCE 是菱形,∴AF=AE=10cm .∵∠B=90°,∴x 2+y 2=100.∴(x+y )2-2xy=100①∵△ABF 的面积为24cm 2, ∴12xy=24,即xy=48 ②, 由①、②得(x+y )2=196.∴x+y=14或x+y=-14(不合题意,舍去).∴△ABF 的周长为:x+y+AF=14+10=24(cm ).【点睛】本题综合考查了相似三角形的性质和判定,勾股定理,三角形的面积,全等三角形的性质和判定,平行四边形的性质和判定,菱形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.23.(1)见详解;(2)63【分析】(1)根据四边形ABCD内接于O,∠BCD+∠ECD=180°,得出∠BAD=∠ECD,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,即为12解得BC=∴BE=BC+CE=∴AB=BE=【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.24.(1)103x =;(2)29;(3)109x =或x=5. 【分析】(1)当PQ ∥BC 时,根据平行线分线段成比例定理,可得出关于AP ,PQ ,AB ,AC 的比例关系式,我们可根据P ,Q 的速度,用时间x 表示出AP ,AQ ,然后根据得出的关系式求出x 的值.(2)我们先看当13BCQABC S S ∆∆=时能得出什么条件,由于这两个三角形在AC 边上的高相等,那么他们的底边的比就应该是面积比,由此可得出CQ :AC=1:3,那么CQ=10cm ,此时时间x 正好是(1)的结果,那么此时PQ ∥BC ,由此可根据平行这个特殊条件,得出三角形APQ 和ABC 的面积比,然后再根据平行得出 AP :PB 的值,从而得出三角形PBQ 与三角形APQ 的面积,即可求解.(3)本题要分两种情况进行讨论.可以证明∠A 和∠C 相等,那么就要分成AP 和CQ 对应成比例以及AP 和BC 对应成比例两种情况来求x 的值.【详解】(1)当AP AQ PB QC=时,PQ//BC 43032043x x x x-∴=- 180600x ∴= 解得:103x =(2)当13BCQABC S S ∆∆=时 13CQ AC = 13CQ AC ∴= 13303x =⨯103x ∴= 由(1)得103x =时, 20,10AQ CQ ==202303AQ AC == AQP ACB ∆∆49AQPACB S S ∆∆∴= 设4AQP S a ∆=则9ACB S a ∆=2AP PB =122BPQ AQP S S a ∆∆∴== 22:99BPQ ABC a S S a ∆∆∴==. (3)当APQ CQB ∠=∠时∵AB=BC,∴∠A=∠C,∴APQ CQB ∆∆AQ AP BC CQ ∴= 3034203x x x-∴= 解得109x =当CBQ APQ ∠=∠时 ∵AB=BC,∴∠A=∠C,∴CBQ APQ ∆∆CQ BC AQ AP ∴= 3203034x x x∴=- 解得:125,10x x ==-(舍去)经检验,x=5是原分式方程的解.综上所述,当109x =或x=5时相似. 【点睛】 本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.25.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE ,∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE , ∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.26.(1)证明见解析;(2)4.【分析】(1)根据平行线的性质可得∠A =∠CEF ,∠AED =∠C ,即可得结论;(2)根据线段的和差关系可得BD 的长,由DE //BC ,EF //AB 可得四边形DBFE 是平行四边形,根据平行四边形的性质可得EF 的长,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】(1)∵DE//BC ,EF//AB ,∴∠A =∠CEF ,∠AED =∠C ,∴△ADE ∽△EFC .(2)∵AB =6,AD =4,∴DB =6-4=2,∵DE//BC ,EF//AB ,∴四边形DBFE 是平行四边形,∴EF =DB=2,∵△ADE ∽△EFC ,224()()42∆∆===ADE EFC S AD S EF . 【点睛】本题考查平行线的性质、平行四边形的判定与性质及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;相似三角形的面积比等于相似比的平方;熟练掌握相关判断定理及性质是解题关键.。

(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(有答案解析)(1)

(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(有答案解析)(1)

一、选择题1.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.122.如图所示,在矩形ABCD中,AB=2,BC=2,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.2B.3C.1 D.1.53.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12 B.18 C.24 D.304.如图,在△ABC中,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.125.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为()A.B.C.D.6.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.BC ACEF DF=且∠B=∠DC.AB BC ACDE EF DF==D.AB ACDE DF=且∠A=∠D7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1: 4 B.1:5 C.1:6 D.1: 78.△ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A.1 B.2﹣2 C.3 2 D.6﹣49.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD沿EF对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB 等于( )A .2B .22C .512-D .2 10.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:511.已知四个数2,3,m ,3成比例的线段,那么m 的值是( )A .3B .233C .2D .23 12.已知线段a 、b 有52a b a b +=-,则:a b 为( ) A .5:1 B .7:2 C .7:3 D .3:7二、填空题13.如图,点D 是ABC 的边AB 上的一点,//DE BC 交AC 于点E ,作//DF AC 交BC 于点F ,分别记ADE ,BDF ,平行四边形DFCE ,ABC 的面积为1S ,2S ,3S ,S 有以下结论:①若12S S ,则DE 为ABC 的中位线;②若13S S =,则23BC DE =;③212S S S =; ④3122S S S =.其中正确的是______.(把所有正确结论的序号都填上)14.已知b c c a a b k a b c+++===,0a ≠,0b ≠,0c ≠;则k =________.15.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.16.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.17.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。

新人教版初中数学九年级数学下册第二单元《相似》测试(答案解析)(1)

新人教版初中数学九年级数学下册第二单元《相似》测试(答案解析)(1)

一、选择题1.如图,直线////a b c,直线m分别交直线a,b,c于点A,B,C,直线n分别交直线a,b,c于点D,E,F,若23=ABBC,则DEDF的值为()A.13B.23C.25D.352.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若()0,8A,4CF=,则点E的坐标是()A.()8,4-B.()10,3-C.()10,4-D.()8,3-3.如图,ABC中,DE∥BC,AD:BD=1:3,则OE:OB=()A.1:3 B.1:4 C.1:5 D.1:64.如图,在Rt△ABC中,∠B=90⁰,34BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A .23B .34C .49D .9165.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =6,则线段AC 的长为( )A .12B .18C .24D .306.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个7.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512 B .512C .1D .28.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 9.已知如图,DE 是△ABC 的中位线,AF 是BC 边上的中线,DE 、AF 交于点O .现有以下结论:①DE ∥BC ;②OD =14BC ;③AO =FO ;④AOD S =14ABC S .其中正确结论的个数为( )A .1B .2C .3D .410.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 11.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似12.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.15.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.16.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)17.如图,直线////a b c ,直线m ,n 分别与a ,b ,c 相交于点A ,B ,C ,D ,E ,F ,若2AB =,3BC =,3DE =,则EF =_______.18.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,AH交OB 于点E,若OB=4,S菱形ABCD=24,则OE的长为_____.19.如图,点A在反比例函数kyx=(k≠0)的图像上,点B在x轴的负半轴上,直线AB交y轴与点C,若12ACBC=,△AOB的面积为12,则k的值为_______.20.如图,在△ABC中,AE AFEB FC=,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=13CE时,EP+BP=20,则BC的长为________.三、解答题21.如图,在每个小正方形的边长为1的网格中,△ABC的项点A,B,C均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)22.下图是由边长为1的小正方形组成的5×4网格,A 、B 、C 、D 、E 、F 、P 、Q 均为网格格点,请用无刻度直尺作图,保留作图痕迹,不写画法.(1)在线段AB 上找到一点M ,使△AQM ≌△BPM.(2)在线段CD 上找点N ,使△ECN ∽△FDN.23.如图,AB 是O 的直径,C ,D 是O 上两点,且AD 平分CAB ∠,作DE AB⊥于E .(1)求证://AC OD ;(2)求证:12OE AC =. 24.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2.(2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .25.如图是一块三角形钢材ABC ,其中边60cm BC =,高40cm AD =,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?26.△ABC 在边长为1的正方形网格中如图所示.(1)以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C 1,使其位似比为1:2.且△A 1B 1C 1位于点C 的异侧,并表示出A 1的坐标.(2)作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.2.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.3.B解析:B【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DE AB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC , ∴ODE ∽OCB , ∴1=1:44OE DE OB CB ==. 故选:B .【点睛】 本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.4.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.5.C解析:C【分析】根据已知图形构造相似三角形,进而得出△ABD ∽△ACE ,即可求出AC 的长.【详解】解:如图所示:过点A 作平行线的垂线,交点分别为D ,E ,可得:△ABD ∽△ACE , 则AB AD AC AE =, 即628AC =, 解得:AC=24,故选:C .【点睛】此题主要考查了相似三角形的应用,根据题意得出△ABD ∽△ACE 是解题关键. 6.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.7.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC∴△ABC ∽△DAC ∴AB BC DA AC= ∴11a a a +=解得,12a +=或152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题. 8.A解析:A【分析】 根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.9.C解析:C【分析】①根据三角形中位线定理进行判断;②根据三角形中位线定理进行判断;③根据三角形中位线定理进行判断;④由相似三角形△ADO ∽△ABF 的面积之比等于相似比的平方进行判断.【详解】∵DE 是△ABC 的中位线,∴DE ∥BC ,故①正确;∴DE=12BC , ∴OD=12BF , ∵AF 是BC 边上的中线,∴BF=12BC , ∴OD=12BF=14BC ,故②正确; ∵DE 是△ABC 的中位线,∴AD=DB ,DE ∥BC ,∴AO =FO ,故③正确;④∵DE ∥BC ,即DO ∥BF ,∴△ADO ∽△ABF , ∴22ADO ABF 1124S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 又∵AF 是BC 边上的中线,∴ABF ABC 12SS =, ∴ADO ABC18S S =,故④错误. 综上所述,正确的结论是①②③,共3个.故选:C .【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质.本题利用了“相似三角形的面积之比等于相似比的平方”的性质.正确的识别图形是解题的关键.10.C 解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.11.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.12.A解析:A【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC , ∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A .【点睛】 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.15.【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】即解得:即路灯的高度为48米【点睛】本题考查了相似三角形的应用把实际问题抽象到相似三角形中利用相似三角形的 解析:4.8m【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】//CE AB,ADB EDC∴∽,::AB CE BD CD∴=,即:1.67.5:2.5AB=,解得: 4.8mAB=.即路灯的高度为4.8米.【点睛】本题考查了相似三角形的应用.把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.16.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解.17.【分析】根据平行线分线段成比例定理得到然后根据比例的性质求EF的长【详解】解:∵直线a∥b∥c∴即∴EF=故答案为:【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线所得的对应线段成比例解析:9 2【分析】根据平行线分线段成比例定理得到AB DEBC EF=,然后根据比例的性质求EF的长.【详解】解:∵直线a∥b∥c,∴AB DE BC EF,即23=3EF , ∴EF=92. 故答案为:92. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 18.225【分析】依据菱形的面积即可得到AH=48进而得出BH 的长再根据相似三角形的对应边成比例即可得到BE 的长进而得出OE 的长【详解】解:∵菱形ABCD 的对角线ACBD 相交于点OOB =4∴BD =8又∵解析:2.25【分析】依据菱形的面积,即可得到AH=4.8,进而得出BH 的长,再根据相似三角形的对应边成比例,即可得到BE 的长,进而得出OE 的长.【详解】解:∵菱形ABCD 的对角线AC ,BD 相交于点O ,OB =4,∴BD =8,又∵S 菱形ABCD =24, ∴2241BD AC ,∴AC =6,CO =3,∴Rt △BCO 中,BC =5,又∵AH ⊥BC ,∴24BC AH,∴ 4.8AH , ∴Rt ABH 中,2222548 1.4BHAB AH ., ∵∠EBH =∠CBO ,∠BHE =∠BOC =90°, ∴△BEH ∽△BCO , ∴BHBE BO BC ,即1.445BE , ∴ 1.75BE, ∴4 1.75 2.25EO BO BE ,故答案为:2.25.【点睛】本题主要考查了菱形的性质以及相似三角形的判定与性质,利用相似三角形的性质是解决问题的关键.19.12【分析】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC 由线段的比例关系求得△AOC 和△ACD 的面积再根据反比例函数的k 的几何意义得结果【详解】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC ∴∵△AOB 的解析:12【分析】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,由线段的比例关系求得△AOC 和△ACD 的面积,再根据反比例函数的k 的几何意义得结果.【详解】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,∴12DC AC OC BC , ∵12AC BC =,△AOB 的面积为12, ∴S △AOC =13S △AOB =4, ∴S △ACD =12S △AOC =2, ∴△AOD 的面积=6, 根据反比例函数k 的几何意义得,12|k|=6, ∴|k|=12,∵k >0,∴k =12.故答案为:12.【点睛】本题主要考查了反比例函数的k 的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形.20.10【分析】延长BQ 交射线EF 于点M 先证明△BCQ ∽△MEQ 然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ 交射线EF 于点M ∵EF 是ABAC 的中点∴EF 是△ABC 的中位线∴EF ∥BC ∴∠解析:10【分析】延长BQ 交射线EF 于点M ,先证明△BCQ ∽△MEQ ,然后可得EM BC =2EQ CQ=,根据EM=20,即可得出答案.【详解】解:如图,延长BQ 交射线EF 于点M ,∵E ,F 是AB ,AC 的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ , ∴EM BC =2EQ CQ=, ∵EM=20, ∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.三、解答题21.(I 29II )见解析.【分析】(I )利用勾股定理即可解决问题.(2)连接AP ,想办法在AP 上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I )222529AC =+=.故答案为29.(II )如图,点B′即为所求.取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)见解析(2)见解析【分析】(1)连接PQ,AB 交点即为所求; (2)找到F 点关于CD 的对称点F’,连接CD,EF’,交点即为所求.【详解】(1)如图,M 点为所求;(2)如图,N 点为所求.【点睛】此题主要考查网格中作图,解题的关键是熟知熟知网格的特点、对称性、全等三角形与相似三角形的判定方法.23.(1)证明见解析;(2)证明见解析.【分析】(1)先根据圆的性质、等腰三角形的性质可得OAD ODA ∠=∠,再根据角平分线的性质可得OAD CAD ∠=∠,从而可得ODA CAD ∠=∠,然后根据平行线的判定即可得证; (2)如图(见解析),先根据圆周角定理可得90ACB ∠=︒,再根据垂直的定义可得90OED ∠=︒,然后根据平行线的性质可得DOE BAC ∠=∠,最后根据相似三角形的判定与性质即可得证.【详解】(1)12OA OD AB ==, OAD ODA ∠=∠∴,AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//AC OD ∴;(2)如图,连接BC ,由圆周角定理得:90ACB ∠=︒,DE AB ∵⊥,90OED ∴∠=︒,由(1)已证://AC OD ,DOE BAC ∴∠=∠,在DOE △和BAC 中,90OED ACB DOE BAC ∠=∠=︒⎧⎨∠=∠⎩, DOE BAC ∴~,12OE OD AC AB ∴==, 12OE AC ∴=.【点睛】本题考查了圆周角定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键. 24.(1)画图见解析;(2)11//CD C D【分析】(1)根据位似图形的性质可以得解;(2)根据位似图形的性质可得解.【详解】(1)如图△A 1B 1C 1就是所求作的图形.分别在射线AO 、BO 、CO 上截取1112OA OA OB OB OC OC ===,,,连结 111,,A B C 即得所作图形;(2)∵在(1)中所画的图形中,△ABC 的中线CD 与111A B C 的中线 11C D 是对应线段, ∴由“位似图形中不经过位似中心的对应线段平行”的性质可以得到:CD ∥11C D .【点睛】本题考查位似图形的应用与作图,熟练掌握位似图形的意义和性质是解题关键. 25.24cm【分析】设正方形零件的边长为cm x .则 c m EG EF x ==,由题意易得KD EG x ==,进而可得AEF ABC ∽,然后根据相似三角形的性质可求解.【详解】解:设正方形零件的边长为cm x .则 c m EG EF x ==,由题可知,四边形KEGD 是矩形,∴KD EG x ==,∵AD AK KD =+,40AD =,∴40AK x =-,∵AD BC ⊥,∴90ADB ∠=︒,∵四边形EGHF 为正方形,∴//BC EF ,∴90AKE ∠=︒,∴AK EF ⊥,∵//BC EF ,∴AEF ABC ∽, ∴EF AK BC AD =,∴406040x x -=, 解得24x =.即()24cm EG =,答:正方形零件的边长为24cm .【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键. 26.(1)图见解析;(3,﹣3);(2)图见解析.【分析】(1)首先找到A 、B 、C 点对应点A 1、B 1、C 1,然后连接即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2即可【详解】解:(1)如图,△A 1B 1C 1所作,点A 1的坐标为(3,﹣3);(2)如图,△A 2B 2C 2为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.。

人教版九年级英语第二单元Unit 2 I think that mooncakes are delicious 测试题带答案

人教版九年级英语第二单元Unit 2 I think that mooncakes are delicious 测试题带答案

Unit 2 I think that mooncakes are delicious! 单元测试姓名:__________ 班级:__________ 学号:__________一、单项选择题:(共15分)1.Their house is very similar ________ours, but ours is bigger。

A. onB. toC. withD. in2.He ate a lot and did little exercise, so he ____ 10 pounds.A. put onB. put awayC. put outD. put off3. — ____ will your father come back from Beijing?—In two days.A. How oftenB. How longC. How farD. How soon4. ______ weather it is!We can go boating on the Dongchang Lake.A. How badB. How goodC. What goodD. What bad5. —Could you tell me something about the boy who helped you just now?—Sorry, I know nothing about him. We are _______.A. friendsB. neighborsC. classmatesD. strangers6. honest man he is!A. WhatB. What anC. HowD. How an7. exciting our life will be in the future with so many wonderful inventions!A. WhatB. HowC. What aD. What an8. --- the little girl looks!--- That's true. She can't find her Teddy Bear.A. How sadB. What sadC. What sadlyD. How sadly9. --- Is the hen old enough to eggs?--- Yes, it has a lot.A. lay; laidB. lie; lainC. lie; laidD. lay; lain10. H e is Tom, because they both enjoy playing basketball.A. same asB. similar toC. the same asD. the similar to11. W e never doubt Bill is honest. Because he never tell lies.A. thatB. ifC. whetherD. that if12. I believe our game will win the match.A. ifB. whichC. thatD. whether13. I've decided to go to London next weekend. I was wondering you could go with me.A. ifB. whenC. thatD. where14. D addy and Mummy, you are back from the supermarket. Can you tell me ?A. how you go thereB. how many pieces of bread you buyC. how much milk did you buyD. if you bought my favourite ice cream15. exciting sport it is to climb the mountains!A. HowB. WhatC. What aD. What an二、完形填空(共10分)People all over the world celebrate the New Year. However, not all countries celebrate in the same way,and in some countries, the new year doesn't begin on the 1 day every year.In many countries, the New Year begins on 1st January, but people start celebrating on 31st December, New Year's Eve. In New York many people go to celebrate in Times Square. 2 they're waiting for the New Year, they listen to music, sing traditional songs and have fun. Just before 12 o'clock, everyone 3 down from 10: 10, 9, 8… As soon as it's 12 o'clock, everyone shouts very 4 , “Happy New Year!”New Year's Day is often a family day. Some families get together for a special meal. When the weather is fine, many families go out for a 5 .On New Year's Day, many people make resolutions for the new year. They 6 a list of things, such as “I will help out more with housework. I will work 7 at school than others.” or “I won't spend so much time playing video games.” When they have made their 8 , they read it to their family or friends and promise to 9 their resolutions(办法).So it doesn't matter how they celebrate. 10 people in countries all over the world, it's a time to say goodbye to the old year, and to welcome the new.1. A. familiar B. important C. same D. normal2. A. If B. Even though C. Before D. While3. A. counts B. turns C. looks D. comes4. A. quietly B. loudly C. sadly D. safely5. A. secret B. walk C. job D. treatment6. A. put on B. take away C. write down D. look after7. A. harder B. hard C. quickly D. hardly8. A. promise B. mistake C. list D. money9. A. follow B. make C. do D. give10. A. By B. For C. With D. From三、阅读理解:(共20分)ACompared with other European countries, lifestyle in Italy is slower and more relaxing in its own way. Italians love to chat over a cup of coffee, go out for a walk in the middle of the day, and enjoy long lunches and dinners.Family is important to Italians. They can't think of spending a day without asking about their parents or children, and a weekend without a family lunch or dinner. Italians living outside their country also miss their family a lot.Italians like simple life. Their days start and end with a cup of coffee. A cup of coffee after every meal is a must. Italians love to spend time over a hot cup of coffee and even hotter conversation with friends. Topics are usually about family, football and politics(政治).Sport is a very important part in the lives of many Italians. Football is their favorite sport. There are hundreds of football clubs with top soccer teams in Italy. Also, many top players from all over the world play in Italy. Volleyball is also popular and so is rugby(橄榄球), with the top rugby team playing for the European Challenge Cup.Every Italian province, city, town and street has a historical(历史的) even that took place there and the Italian calendar is filled with national holidays that they love to celebrate(庆祝).1. We can learn from the first paragraph that .A. most European countries have slow and relaxing lifestylesB. the lifestyle in Italy isn't much like that of the other countries in EuropeC. Italians enjoy chatting over a cup of tea and long dinnersD. Italians love to walk in the middle of the night2. What does the writer want to tell us in the second paragraph?A. Friends are very important to EuropeansB. Italians can't spend a day without their parentsC. Italians will never go to another country because they will miss their childrenD. Family is more important to Italians than any other things3. Which of the following sports is loved most by Italians?A. FootballB. BasketballC. VolleyballD. Rugby4. Which of the following is TRUE according to the passage?A. Italians love to spend national holidays, but there aren't so manyB. Italians never talk about politics with their familyC. Italians like drinking coffee after every mealD. Soccer is not very popular in Italy5. What's the passage mainly about?A. Italian familyB. Italian lifeC. Italian sportD. Italian historyBThe Lantern Festival falls on the 15th of the first month of the lunar calendar. This day is always the first full moon in the new year. Ancient people also called it Shangyuan Festival. Celebrations and traditions on this day began from the Han Dynasty and became popular in the Tang Dynasty.Watching the red lanterns is one of the main traditions. Lanterns of different shapes and sizes are usually put on trees,or along river banks on show. It is said that sky lanterns were first used by Zhuge Kongming to ask for helpwhen he was in trouble. Today,when the lanterns slowly rise into the air,people make wishes.Another tradition is guessing lantern riddles. The riddles are usually short,wise,and sometimes humorous. The answer to a riddle can be a Chinese character(汉字),a famous person's name,or a place name.The most important thing is to eat sweet dumplings with different tastes. In northern China,they are called yuanxiao while in southern part they're named tangyuan. Because making sweet dumplings is like a game or an activity,they are usually done happily by a group of friends or family members.In old times,the Lantern Festival was also romantic(浪漫的).Watching lanterns gave young people a chance to meet each other. A line from Xin Qiji,a poet during the Song Dynasty,shows this:Hundreds and thousands of times I searched for her in the crowd. Suddenly I turned,and there she stood,in the dim(昏暗的) light.6.The traditional festival talked about in this passage is called “________” in Chinese.A.春节B.元宵节C.端午节D.下元节7.When did celebrations and traditions of the Lantern Festival start from?A.The Han Dynasty. B.The Tang DynastyC.The Song Dynasty. D.The Qing Dynasty.8.What were sky lanterns first used for by Zhuge Kongming in ancient times?A.Making wishes. B.Celebrating birthdays.C.Asking for help. D.To set fire.9.Which of the following is NOT true about sweet dumplings?A.They have different tastes.B.They are named yuanxiao all over the country.C.People enjoy the process of making them.D.Chinese eat sweet dumplings on the Lantern Festival.10.The line from Xin Qiji in the passage shows the Lantern Festival was ________ in old times.A.boring B.humorous C.romantic D.interesting四、词汇运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版)九年级语文下册第二单元测试题(满分120分,时间100分钟)一、积累运用(25分)1.下列黑体字的读音都正确的一组是 ( ) (3分)A.蘸水(zhàn)名讳(huì)吮吸(shǔn)奄奄一息(ān)B.掂量(diān)戏谑(xuè)咀嚼(jǔ)契诃夫(kē)C.荣膺(yīng)阔绰(chuò)绽裂(zhàn)吹毛求疵(cī)D.腻歪(nì)颓唐(tuí)骸骨(hāi)滑稽可笑(jī)2.下列词语中各有四个错别字,请分别找出来,并改正。

(4分)海市蜃楼媚上欺下妙手回春天伦之乐不屑置辨见风使舵断壁残恒鹰啼燕啭迟钝麻木转瞬即逝束手无册3.把关联词语依次填入下列句子中的横线上,恰当的一项是()。

(3分)(1)掌柜是一副凶脸孔,主顾也没有好声气,教人活泼不得;孔乙己到店,可以笑几声,所以至今还记得。

(2)他很冷静,很沉着。

身体衰弱已极,并没有痛苦的感觉。

他一点也不饿。

A.只有才虽然但是B.因为就因为所以C.只要就不仅而且D.如果就因为所以4.对下列句子所用修辞手法判断正确的一项是()。

(3分)A.窃书!……读书人的事,能算偷吗?(反问)B.何满子是一丈青大娘的心尖子,肺叶子,眼珠子,命根子。

(比喻)C.有时候,疲倦的浪潮涌上来,淹没了他。

(夸张)D.商店和饭馆的门无精打采的敞着,面对着上帝创造的这个世界,就跟许多饥饿的嘴巴一样:门口连一个乞丐也没有。

(比喻、拟人)5.从《变色龙》和《热爱生命》中任选一篇,仿写句子。

(3分)阅读文学作品不但能够提高我们的语文能力,还能够充实我们的生活,开阔我们的视野。

读鲁迅的《孔乙己》,我们看到了封建科举制度的腐朽;读刘绍棠的《差半车麦秸》,我们触摸到了一个仗义疏财的何大学问形象;,。

6.根据语境品味下面加点字的表达效果。

(4分)(1)只有穿长衫的,才踱进..店面隔壁的房子里,要酒要菜,慢慢地坐喝。

(2)他不回答,对柜里说,“温两碗酒,要一碟茴香豆。

”便排出..九文大钱。

7.文学常识填空。

(5分)(1)契诃夫是(国别)作家,代表作有小说《》、剧本《》等。

(2)《热爱生命》的作者是,他是(国别)小说家。

二、综合性学习(10分)8.学习《孔乙己》一文后,为了进一步加深同学们对鲁迅及其作品的理解,某校开展以“走近鲁迅”为主题的综合性学习活动,请你积极参与进来。

(1)某班同学提出了下面几个选题,请你选出不适合的一项是( )(3分)A.鲁迅战斗的一生 B.鲁迅小说的艺术特色C.鲁迅散文中的童年生活 D.有人说韩寒会成为下一个鲁迅,比较鲁迅与韩寒的个性。

(2)你们小组的综合性学习报告题目为“鲁迅笔下的知识分子形象”,有同学把他们分为三类陈述如下,请你补充完整。

(3分)①封建制度的受害者,如。

②封建制度的维护者,如。

③封建制度的反抗者,如。

(3)有同学说:“鲁迅是伟大的文学家,我们初中生研究他是不是有点自不量力呀?”请你针对这一观点,进行反驳:“_________________________________________________。

”(4分)三、阅读理解(55分)(一)变色龙(节选)(18分)契诃夫警官奥楚蔑洛夫穿着新的军大衣,提着小包,穿过市场的广场。

他身后跟着一个火红色头发的巡警,端着一个筛子,盛满了没收来的醋栗。

四下里一片沉静。

广场上一个人也没有。

商店和饭馆的门无精打采地敞着,面对着上帝创造的这个世界,就跟许多饥饿的嘴巴一样;门口连一个乞丐也没有。

“哎呀,天!他是惦记他的兄弟了……可我还不知道呢!这么说,这是他老人家的狗?高兴得很……把它带走吧。

这小狗还不赖,怪伶俐的,一口就咬破了这家伙的手指头!哈哈哈……得了,你干什么发抖呀?呜呜……呜呜……这坏蛋生气了……好一条小狗……”普洛诃尔喊一声那条狗的名字,带着它从木柴厂走了。

那群人就对着赫留金哈哈大笑。

“我早晚要收拾你!”奥楚蔑洛夫向他恐吓说,裹紧大衣,接着穿过市场的广场径自走了。

9.从小说三要素的角度来看,第一段文字交代了。

(3分)10.如何理解“上帝创造的这个世界”?(4分)11.奥楚蔑洛夫一出场就显得威风凛凛,但他后面只跟着一个巡警,还端着一个筛子,这就起到了讽刺的效果。

请你阅读第二段文字后,说说作者是如何讽刺这个人物的?(4分)12.“那群人就对着赫留金哈哈大笑”,他们为什么没有对多变的奥楚蔑洛夫大笑呢?(4分)13.假如这时你也在场,你会对受害还被恐吓的赫留金说些什么呢?(3分)(二)青云楼主(18分)冯骥才青云楼主,海河边一小文人的号。

嘛叫小文人?就是在人们嘴边绝对挂不上号,可提起他来差不多还都知道的那类文人。

此君脸窄身簿,皮黄肉干,胳膊大腿又细又长,远瞧赛几根竹竿子上凉着的一张豆皮。

但人不可貌相,海不可斗量。

他能写能画,能刻图章,连托裱的事也行;可行家们说他——-手糙了点儿。

因故,天津卫的买卖没他写的匾,饭庄药铺的墙上不挂他的画。

他于书画这行,是又在行里,又在行外。

文人落到这步,那股子“怀才不遇”的滋味,是苦是酸,还是又苦又酸,只有他自己知道了。

于是,青云楼这斋号就叫他想出来了。

他自号青云楼主,还写了一副对子挂在迎面墙壁上:“人在青山里,心卧白云中”。

他常常自言自语念这对子。

每每念罢,闭目摇肩,真如隐士。

然而,天津卫是个凡夫俗子的花花世界,青云楼就在大胡同东口,买东西的和卖东西的挤成个团儿。

再说他隔墙就是四季春大酒楼,整天鱼味肉味葱味酱味换着样儿往窗户里边飘。

关上窗户?那管屁用,窗玻璃拦得住鱼鲜肉香,却拦不住灯红酒绿。

一位邻居对他说:“你这青云楼干脆也改成饭馆算了。

这青云楼三字听着还挺好听,一叫准响!”这话。

乾旋地转,运气有变。

一天,有个好事的小子陈八,带来一位美国人拜访他。

这人五十多岁,秃头鼓眼大胡子,胡子里头瞧不见嘴。

陈八说这老美喜欢中国的老东西,尤其是字画。

青云楼主头一回与洋人会面,脑子发乱,手脚也忙,踩凳子挂画时,差点来个人“仰马翻”。

那老美并没注意到他,只管去瞧墙上的画,每瞧一幅,就哇啦哇啦叫一嗓子,好赛洗屁股时叫水烫着了。

然后,嘬起嘴啧啧赞赏一翻。

这一嘬嘴,就见有一个樱桃样的东西,又湿又红,从他的胡子中间拱出来。

青云楼主定神一看,原是这老美的嘴唇。

最后他用中文一个字一个字对青云楼主说:“我、太、高、兴、了、谢、谢——我、太、高、兴、了、谢、谢——”他大概只学了这几个字,反反复复地说,一直告辞而去。

青云楼主高兴得要疯。

他这辈子,头次叫人这么崇拜。

两个月后,他收到一封洋文写的信。

他拿到《大公报》的报馆去找懂洋文的朱先生。

朱先生一看就笑了,对他说:“你用嘛法子,把人家老美都折腾出神经病来了?他说他回国后天天眼睛里都是你写的字,晚上做梦也是你的字,还说他感到中国的艺术家绝对都是天才!”青云楼主如上青云,身子发飘,一夜没睡,天亮时,忽来灵感,挥笔给那老美写了“宁静致远”四个大字,亲手裱成横披,送到邮局寄去。

邮件里还附一张信纸,提个要求,要人家把字挂在墙上后,无论如何站在这字前面,照张照片寄来。

他想,他要拿这照片给人看。

给亲友看,给街坊邻居看,给那些小看他的人看,再给买卖家那几个大老板看,给报馆的编辑们看,最后在报上刊登出来。

都看吧!瞪圆你们的狗眼看看吧!你们不认我,人家老美认我!他在青云楼中坐等三个月,直等到有点疑惑甚至有点泄气时,一封外皮上写着洋文的信终于寄来了。

他忙撕开,抻出一封信,全是洋文,他不懂,里边并没照片。

再看信封,照片竟卡在里边,他捏住照片抻出来一瞧,有点别扭,不大对劲,他再细瞧,竟傻了。

那老美倒是站在他那字的前边照了像,可是字儿却挂倒了,全朝下了!14.根据你对课文的理解,划横线处应补出的恰当的句子是()(3分)A.当时差点叫他死过去。

B.他认为也在理。

C.让他犹豫了好一阵子。

D.让他听了很是生气。

16.本文写人,生动形象,幽默传神。

试从文中任找一处人物描写,体会它的好处。

(4分)例句:好处:17.结尾说“那老美倒是站在他那字的前边照了像,可是字儿却挂倒了,全朝下了”,之所以出现这一结果,前文中已做了铺垫,请把这个句子找出来。

(3分)18.本文给了你什么启示?(4分)(三)狗事(19分)刘会然“校长家的狗……”“不!是校长家的狼狗!”我还没有说完,办公室里的一位同事就狠狠地纠正道。

嗨,这是我第N次被同事纠正错误了。

校长家的狗的确是“狼狗”,不是什么狗。

我们学校在近郊,上次学校整顿校园环境时,由于学校狗猫成群,严重影响校容校貌,还有学校接二连三有学生被狗咬伤。

学生家长对狗患成灾的意见都很大,也多次派人来要求学校解决校园内狗咬人的问题。

对狗咬人这种现象,学校召开了好几次教职工会议,大家对这个问题的看法很一致:为了教师和学生的安全,学校不得养狗。

学校的教职工家里有狗的要自己处理掉,外面来的狗一律捕杀。

为此,学校专门成立了打狗队,管政教的副校长为组长。

经过一周的综合整治,狗咬人的问题终于解决了,学校里再也看不到狗的身影了。

有一天,不知谁送了一只叫“乖乖”的狼狗给校长。

这狼狗可高大,脊背上的黑毛油亮亮的,活像闪光的缎子,两侧的毛则根根竖起。

它两耳宽大,双目圆睁,四肢矫健,动作也敏捷,其他的狗远远地看到它就会拼命地躲。

校长走到哪里,这“乖乖”也鞍前马后地跟到哪里。

看到跟在校长身边的狼狗,学校老师会拼命地给“乖乖”喂上最好吃的食物。

现在问题又来了,校长这只狼狗是不是捕杀对象?这时,连打狗队组长,管政教的副校长一时间也为难了。

为此,学校专门开了一个会,讨论“狼狗是不是狗”的问题。

许多老师认为狼狗不是狗,狼狗虽然带有一个狗字,但更多是狼的特性,不应该是狗。

一位生物老师先站起来说:“从达尔文生物进化论的角度来看,狼狗不是狗,狼狗是狼和狗共同进化……”生物老师还没有讲完,一位政治老师就“呼”地站起来说:“狼狗来源于狗,不错,但它又高于狗,就像‘人’来源于动物又高于动物一样,能够简单地说人是动物吗?要说也应该说人是‘高级动物’哇!”有位女老师更是娇滴滴地说:“你们看,人家‘乖乖’多聪明!多可爱!你们在哪里看到过这样聪明可爱的狗?”边说边不断地把手里正吃着的苹果喂向“乖乖”……最后在“狼狗是不是狗”的问题上,以一致意见——狼狗不是狗——而告终。

既然狼狗不是狗,校长家的狗就可以在校园内出入自由了。

不久,校长由于种种原因内退了,但他还住在学校。

内退还不到一个星期,校长家的狼狗“乖乖”就被人打死在他家门口。

一查,竟然是学校打狗队干的!为此,老校长恼羞成怒,急忙找到新来的校长讨个说法。

他当面质问新来的校长:“我们学校不是讨论过‘狼狗不是狗’吗?怎么我家‘乖乖’还是被你们打狗队打死了?”新校长说:“根据很多老师的意见,我们昨天又举行了个会议。

”“又举行了会议?”“对!在会议上,大家一致认为:狼狗就是‘狗’!”19.“四肢矫健,动作也敏捷”中的“矫健”与“敏捷”能否互换?请说说你的理由。

相关文档
最新文档