对偶理论和灵敏度分析(新)
合集下载
运筹学 对偶理论和灵敏度分析

对偶理论和灵敏度分析
1.单纯形的矩阵描述
用矩阵语言描述单纯形法的关键是写出两个基本的 表达式,设线性规划的标准型为 maxz=CX AX=b X≥0
C=(CB,CN),X=(XB,XN)’,A=(B,N)
由约束条件AX=(B,N)(XB,XN)=BXB+NXN=b,可以得 到用非基变量表示基变量的表达式:
-2 -3 -1 -1 1/3 x3 -1/3 0 x1 4/3 1 x5 1/3 0 0
' ' - a 1k / alk ' ' - a 2k / alk ... ' 1 / alk ... ' ' - a mk / alk
3对偶理论
某厂生产甲乙两种产品,各自的零部件分别在A、B车间生产,最 后都需在C车间装配,相关数据如表所示: 问如何安排甲、乙两产品的产量,使利润为最大。 工时单耗 生产能力 产品 甲 乙 车间 A 1 0 8 B 0 2 12 C 3 4 36 单位产品获利 3 5 • maxZ= 3x1 +5 x2 x1 ≤8 2x2 ≤12 S.t. 3x1 +4 x2 ≤36 x1 ≥0, x2 ≥0
(4)影子价格在资源采购决策中的应用。
当资源的市场价格低于影子价格,企业买进该资源,扩 大生产,当资源的市场价格高于影子价格,企业应设法转让 该资源。
(5)利用影子价格分析工艺改变后对资源节约的收益。 例如设工厂现有钢材100吨,其影子价格为3/4,采用新 工艺后,钢材可以节约2%,则由此带来的经济收益为:
(3)影子价格在新产品开发决策中的应用。 产品 资源 A B 影子价格(万元)
钢材 煤 机时
单位利润(万元)
1.单纯形的矩阵描述
用矩阵语言描述单纯形法的关键是写出两个基本的 表达式,设线性规划的标准型为 maxz=CX AX=b X≥0
C=(CB,CN),X=(XB,XN)’,A=(B,N)
由约束条件AX=(B,N)(XB,XN)=BXB+NXN=b,可以得 到用非基变量表示基变量的表达式:
-2 -3 -1 -1 1/3 x3 -1/3 0 x1 4/3 1 x5 1/3 0 0
' ' - a 1k / alk ' ' - a 2k / alk ... ' 1 / alk ... ' ' - a mk / alk
3对偶理论
某厂生产甲乙两种产品,各自的零部件分别在A、B车间生产,最 后都需在C车间装配,相关数据如表所示: 问如何安排甲、乙两产品的产量,使利润为最大。 工时单耗 生产能力 产品 甲 乙 车间 A 1 0 8 B 0 2 12 C 3 4 36 单位产品获利 3 5 • maxZ= 3x1 +5 x2 x1 ≤8 2x2 ≤12 S.t. 3x1 +4 x2 ≤36 x1 ≥0, x2 ≥0
(4)影子价格在资源采购决策中的应用。
当资源的市场价格低于影子价格,企业买进该资源,扩 大生产,当资源的市场价格高于影子价格,企业应设法转让 该资源。
(5)利用影子价格分析工艺改变后对资源节约的收益。 例如设工厂现有钢材100吨,其影子价格为3/4,采用新 工艺后,钢材可以节约2%,则由此带来的经济收益为:
(3)影子价格在新产品开发决策中的应用。 产品 资源 A B 影子价格(万元)
钢材 煤 机时
单位利润(万元)
运筹学对偶理论与灵敏度分析

17
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1
3对偶理论与灵敏度分析解析

X ≥0
对偶的定义 min W= Y b s.t. ATY ≥ C
Y≥0
min Z’= - CX
max W’ = -Yb
s.t. - AX ≥ - b
s.t. -ATY ≤ -C
X ≥0 对偶的定义
Y≥0
__
__
(2)弱对偶性:设 X和 分Y 别是问题(P)和(D)的
可行解,则必有
__ __
n
m
C X Y b, 即 c j x j yibi
i 1
m
aij yi
c j ( j 1,2,, n)
i1
yi无符号限制(无约束)(i 1,2,, m)
例: 原问题为
max Z 2 x1 3 x2 4 x3
2 x1 3 x2 5 x3 2
3
x1
x2
7 x3 3
x1 4 x2 6 x3 5
x1 , x2 , x3 0
对偶问题的无界性。
无界
关于无界性有如下结论:
minW 4 y1 2 y2
原问题 问题无界
对偶问题 无可 行解
(D)
y1 y1
y2 y2
2 1
y1
0,
y2
0
无可 行解
问题无界
无可 行解
推论3:在一对对偶问题(P)和(D)中,若一个可行 (如P),而另一个不可行,(如D),则该可行的问 题无界。
一、问题的提出
• 对偶是什么:对同一事物(或问题),从不同 的角度(或立场)提出对立的两种不同的表述。 • 在平面内,矩形的面积与其周长之间的关系, 有两种不同的表述方法。 (1)周长一定,面积最大的矩形是正方形。 (2)面积一定,周长最短的矩形是正方形。 • 这种表述有利于加深对事物的认识和理解。 • 线性规划问题也有对偶关系。
对偶的定义 min W= Y b s.t. ATY ≥ C
Y≥0
min Z’= - CX
max W’ = -Yb
s.t. - AX ≥ - b
s.t. -ATY ≤ -C
X ≥0 对偶的定义
Y≥0
__
__
(2)弱对偶性:设 X和 分Y 别是问题(P)和(D)的
可行解,则必有
__ __
n
m
C X Y b, 即 c j x j yibi
i 1
m
aij yi
c j ( j 1,2,, n)
i1
yi无符号限制(无约束)(i 1,2,, m)
例: 原问题为
max Z 2 x1 3 x2 4 x3
2 x1 3 x2 5 x3 2
3
x1
x2
7 x3 3
x1 4 x2 6 x3 5
x1 , x2 , x3 0
对偶问题的无界性。
无界
关于无界性有如下结论:
minW 4 y1 2 y2
原问题 问题无界
对偶问题 无可 行解
(D)
y1 y1
y2 y2
2 1
y1
0,
y2
0
无可 行解
问题无界
无可 行解
推论3:在一对对偶问题(P)和(D)中,若一个可行 (如P),而另一个不可行,(如D),则该可行的问 题无界。
一、问题的提出
• 对偶是什么:对同一事物(或问题),从不同 的角度(或立场)提出对立的两种不同的表述。 • 在平面内,矩形的面积与其周长之间的关系, 有两种不同的表述方法。 (1)周长一定,面积最大的矩形是正方形。 (2)面积一定,周长最短的矩形是正方形。 • 这种表述有利于加深对事物的认识和理解。 • 线性规划问题也有对偶关系。
《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

13
2
y3
2 3
题
y1符号不限, y 2 0, y3 0
非 对 偶 形 式 旳 原对 偶 问 题
例2-4 写出下列问题旳对偶问题
max z c1x1 c2 x2 c3x3
a11x a12 x a13x3 b1
s.t.
a21x1 a31x1
a22 x2 a32 x2
a23 x3 a33 x3
出让自己旳资源?
问 题 旳 导 出
例2-1
条件:出让代价应不低于用同等数量资源由自己组织生 产活动时获取旳获利。
y1,y2,y3分别代表单位时间(h)设备A、设备B和调试工 序旳出让代价。 y1,y2,y3旳取值应满足:
6y 2
y 3
2
5y 1
2y 2
y 3
1
美佳企业用6h设备B和1h调试可 生产一件家电I,获利2元
y1, y2 , y3 0
LP1和LP2两个线性规划问题,一般称LP1为原问题, LP2为前者旳对偶问题。
max Z c1x1 c2 x2 cn xn
对 偶 问 题
s.t.
a11 a21
am1
a12 a22
am2
a1n x1 b1
a2n
x2
b2
amn xn bm
规 划 问
minW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1
a12y1
a22 y2
am2
ym
(,
)c2
题 旳 对 偶 问
a1n y1 a2n y2 amn ym (, )cn
题
y j 0(符号不限,或 0)i 1 ~ m
灵敏度分析与对偶理论

min f 300 y 1 400 y 2 250 y 3 1 y 1 2 y 2 50 y 1 y 2 y 3 100 y1 , y 2 , y 2 0
原问题:求目标函数 值最大值问题
对偶问题:求目标函数 值最小值问题
互为对偶问题
m ax z C X
m in f b Y
min f 3 x 1 9 x 2 4 x 3 x 1 2 x 2 3 x 3 180 2 x 1 3 x 2 x 3 60 5 x 1 3 x 2 240 x 1 , x 2 0 , x 3 无约束变量
max z 180 y 1 60 y 2 240 y 3
'
xB
'
0
x Bi ' x Bi ' m a x ' d ik 0 b k m in ' d ik 0 d ik d ik
例:
X5
X1
X2
X3
X4
CB 50 0
XB X1 X4
b 50 50
50 1 0
资源限制
问题2(对偶问题) 现在假设工厂准备把设 备A,B,C用于出租,确定 合理的租金?
300 400 250
设y1, y2, y3 分别为三种 设备的租金。
max z 50 x 1 100 x 2 x 1 x 2 300 2 x 1 x 2 400 x 2 250 x1 , x 2 0
j
cj CBB
1
Pj c j C B Pj
'
c j ( C B 1 ,..., C BK C K ,..., C Bm ) P j
原问题:求目标函数 值最大值问题
对偶问题:求目标函数 值最小值问题
互为对偶问题
m ax z C X
m in f b Y
min f 3 x 1 9 x 2 4 x 3 x 1 2 x 2 3 x 3 180 2 x 1 3 x 2 x 3 60 5 x 1 3 x 2 240 x 1 , x 2 0 , x 3 无约束变量
max z 180 y 1 60 y 2 240 y 3
'
xB
'
0
x Bi ' x Bi ' m a x ' d ik 0 b k m in ' d ik 0 d ik d ik
例:
X5
X1
X2
X3
X4
CB 50 0
XB X1 X4
b 50 50
50 1 0
资源限制
问题2(对偶问题) 现在假设工厂准备把设 备A,B,C用于出租,确定 合理的租金?
300 400 250
设y1, y2, y3 分别为三种 设备的租金。
max z 50 x 1 100 x 2 x 1 x 2 300 2 x 1 x 2 400 x 2 250 x1 , x 2 0
j
cj CBB
1
Pj c j C B Pj
'
c j ( C B 1 ,..., C BK C K ,..., C Bm ) P j
对偶问题与灵敏度分析

②告诉经营者以怎样的代价去取得紧缺资源。 ③提示设备出租或原材料转让的基价。 ④告诉经营者补给紧缺资源的数量,不要盲目大量补给。 ⑤借助影子价格进行内部核算。
第一讲 对偶理论
解释例1的对偶问题的数学模型
Max Z= 3x1 +5 x2
x1
≤8
S.t.
2x2 ≤12 3x1 +4 x2 ≤36
x1 , x2 ≥0
第一讲 对偶理论
一、对偶问题
• 对原企业而言,它用于出租或转让的资源收益不应 低于自行生产产品所获得的利润,才肯出租或转让。
• 在这个问题上厂长面临着两种选择:自行生产或出 租设备。首先要弄清两个问题:
①如何合理安排生产,取得最大利润? ②为保持利润水平不降低,资源转让的最低价格是多少?
• 问题 ①的最优解:x1=4,x2=6,Z*=42。
(3) 按照θ=Min{j /alj | alj<0 }= k /alk确定xk进基变量。 (4) 以alk为主元素,按单纯形法的方法进行迭代,得到新的表重复
(2).
第一讲 对偶理论
例题:使用对偶单纯形法
• Min W= 8y1+12y2+36y3
y1 + 0y2 + 3y3 ≥ 3 S.t. 0y1 + 2y2 + 4y3 ≥ 5
此时,同时达到最优解
j 1
i 1
Z bi
*
yi*
bi为第i种资源的拥有量
• 说明yi是右端项bi每增加一个单位的第i种资源对目标函数Z的贡献。 • 对偶变量 yi在经济上表示原问题第i种资源的边际价值。
• 对偶变量的值 yi*所表示的第i种资源的边际价值,称为影子价值。
第一讲 对偶理论
解释例1的对偶问题的数学模型
Max Z= 3x1 +5 x2
x1
≤8
S.t.
2x2 ≤12 3x1 +4 x2 ≤36
x1 , x2 ≥0
第一讲 对偶理论
一、对偶问题
• 对原企业而言,它用于出租或转让的资源收益不应 低于自行生产产品所获得的利润,才肯出租或转让。
• 在这个问题上厂长面临着两种选择:自行生产或出 租设备。首先要弄清两个问题:
①如何合理安排生产,取得最大利润? ②为保持利润水平不降低,资源转让的最低价格是多少?
• 问题 ①的最优解:x1=4,x2=6,Z*=42。
(3) 按照θ=Min{j /alj | alj<0 }= k /alk确定xk进基变量。 (4) 以alk为主元素,按单纯形法的方法进行迭代,得到新的表重复
(2).
第一讲 对偶理论
例题:使用对偶单纯形法
• Min W= 8y1+12y2+36y3
y1 + 0y2 + 3y3 ≥ 3 S.t. 0y1 + 2y2 + 4y3 ≥ 5
此时,同时达到最优解
j 1
i 1
Z bi
*
yi*
bi为第i种资源的拥有量
• 说明yi是右端项bi每增加一个单位的第i种资源对目标函数Z的贡献。 • 对偶变量 yi在经济上表示原问题第i种资源的边际价值。
• 对偶变量的值 yi*所表示的第i种资源的边际价值,称为影子价值。
对偶理论与灵敏度分析

对偶理论与灵敏度分析
第三章 对偶理论与灵敏度分析
第一节 对偶问题的提出
例:常山机械厂生产Ⅰ和Ⅱ两种产品。生产中需使用A、B、C三种设备进行加工,加工每件Ⅰ产品或Ⅱ产 品所需的设备机时数、利润值及每种设备可利用机时数列于下表,请问:充分利用设备机台时,工厂应生 产Ⅰ和Ⅱ产品各多少件才能获得最大利润?试列出相应的线性规划数学模型。
4x1 +2x2 - x3 20 y2 x1,x2 , x3 0 解:该问题的对偶问题: min w = 10 y1 + 20 y2 s.t. y1 + 4y2 10
y1 + 2y2 1 2 y1 - y2 2
y1,y2 0
第一节 对偶问题的提出
例:写出下列线性规划问题的对偶问题 min w = x1 + 2x2 + 3x3
解:化为对称形式。 令 x2 x2,x3 x3 x3 (x3 0, x3 0) max z c1x1 c2x2 c3x3 c3x3
s.t. a11x1 a12x2 a13x3 a13x3 b1
aaa222a111xxx2111x1 aaa222a222xx2x2222x2 aaa222a333xxx23333x3 aaa222a333xxx23333x3 bbb222b2 a3a13x11x1 a3a23x22x2 a3a33x33x3 a3a33x33x3 b3b3 x1, x2 , x3, x3 0
a21x1 + a22x2 + … + a2nxn ≤ b2 ……
am1x1 + am2x2 + … + amnxn ≤ bm xj ≥ 0 (j = 1,2,…,n)
则称下列 LP 问题
min w = b1 y1 + b2 y2 + … +bm ym s.t. a11y1 + a21 y2 + … + am1ym ≥ c1
第三章 对偶理论与灵敏度分析
第一节 对偶问题的提出
例:常山机械厂生产Ⅰ和Ⅱ两种产品。生产中需使用A、B、C三种设备进行加工,加工每件Ⅰ产品或Ⅱ产 品所需的设备机时数、利润值及每种设备可利用机时数列于下表,请问:充分利用设备机台时,工厂应生 产Ⅰ和Ⅱ产品各多少件才能获得最大利润?试列出相应的线性规划数学模型。
4x1 +2x2 - x3 20 y2 x1,x2 , x3 0 解:该问题的对偶问题: min w = 10 y1 + 20 y2 s.t. y1 + 4y2 10
y1 + 2y2 1 2 y1 - y2 2
y1,y2 0
第一节 对偶问题的提出
例:写出下列线性规划问题的对偶问题 min w = x1 + 2x2 + 3x3
解:化为对称形式。 令 x2 x2,x3 x3 x3 (x3 0, x3 0) max z c1x1 c2x2 c3x3 c3x3
s.t. a11x1 a12x2 a13x3 a13x3 b1
aaa222a111xxx2111x1 aaa222a222xx2x2222x2 aaa222a333xxx23333x3 aaa222a333xxx23333x3 bbb222b2 a3a13x11x1 a3a23x22x2 a3a33x33x3 a3a33x33x3 b3b3 x1, x2 , x3, x3 0
a21x1 + a22x2 + … + a2nxn ≤ b2 ……
am1x1 + am2x2 + … + amnxn ≤ bm xj ≥ 0 (j = 1,2,…,n)
则称下列 LP 问题
min w = b1 y1 + b2 y2 + … +bm ym s.t. a11y1 + a21 y2 + … + am1ym ≥ c1
第2章对偶理论与灵敏度分析

五.互补松弛性(松紧定理)
在线性规划问题的最优解中,如果对应某一约束
条件的对偶变量值为非零,则该约束条件取严格等式;
反之如果约束条件取严格不等式,则其对应的对偶变
量一定为零。也即:
n
若yˆi 0, 则有 aij xˆ j bi ,即xˆsi 0
n
j 1
若 aij xˆ j bi ,即xˆsi 0, 则有yˆi 0
minW=bTy
bT (12 8 16 12 )
y1 y2 y3
4x1 16 4x2 12
x1 x2 0
minW=12y1+8y2 +16y3+12y4
y4
ATy CT
AT 2140
2204
y1
CT
y2 y3
2 3
y4
2y1 +y2 +4y3 2 2y1 +2y2 +y4 3 y1 … y4 0
x (0,5,0)
对于对偶问题的可行解y (5,0)
有 80.
由弱对偶性,最优目标函数值z* *有上.下界。 25 z* * 80
互补松弛定理: 在线性规划问 题的最优解中,
一 . 对称性 :
对偶问题的对偶是原问题
二. 弱对偶性:
若x′是原问题的可行解,y′是对偶问题的可行 解。则有 cx′≤y′b
弱对偶性的三个推论
推论(1): 原问题任一可行解的目A标≦函Z数=W值是≦其B对偶
问题目标函数值的下界,反之对偶问题任一可行解的 目标函数值是其原问题目标函数值的上界。
推论(2): 若原问题(对偶问题)为无界解,则其对 偶问题(原问题)无可行解。注 : 其逆不成立。
由此y1,y2,y3的取值应满足: