landsat8地表温度反演公式
landsat遥感影像地表温度反演教程(大气校正法)

landsat遥感影像地表温度反演教程(⼤⽓校正法)基于辐射传输⽅程的Landsat数据地表温度反演教程⼀、数据准备Landsa 8遥感影像数据⼀景,本教程以重庆市2015年7⽉26⽇的=⾏列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)⼆、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,⼀是对热红外数据,⼆是多光谱数据进⾏辐射定标。
(1)热红外数据辐射定标选择Radiometric Correction/Radiometric Calibration。
在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration⾯板。
Scale factor 不能改变,否则后续计算会报错。
保持默认1即可。
(2)多光谱数据辐射定标选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral”进⾏辐射定标。
因为后续需要对多光谱数据进⾏⼤⽓校正,可直接单击Apply Flaash Settings,如下图。
注意与热红外数据辐射定标是的差别,设置后Scale factor值为0.1。
2、⼤⽓校正本教程选择Flaash 校正法。
FLAASH Atmospheric Correction,双击此⼯具,打开辐射定标的数据,进⾏相关的参数设置进⾏⼤⽓校正。
注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。
1)Input Radiance Image:打开辐射定标结果数据;2)设置输出反射率的路径,由于定标时候;3)设置输出FLAASH校正⽂件的路径,最优状态:路径所在磁盘空间⾜够⼤;4)中⼼点经纬度Scene Center Location:⾃动获取;5)选择传感器类型:Landsat-8 OLI;其对应的传感器⾼度以及影像数据的分辨率⾃动读取;6) 设置研究区域的地⾯⾼程数据;7)影像⽣成时的飞⾏过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间;注:也可以从元⽂件“LC81230322013132LGN02_MTL.txt”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:26.6336980Z;8) ⼤⽓模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择);9) ⽓溶胶模型Aerosol Model:Urban,⽓溶胶反演⽅法Aerosol Retrieval:2-band(K-T);10) 其他参数按照默认设置即可。
基于Landsat 8数据单通道算法反演地表温度——以济南市为例

基于Landsat 8数据单通道算法反演地表温度——以济南市为例夏安全;齐建国;姜振飞;马津【摘要】当前地表温度反演的遥感数据源多为Landsat TM/ETM+、MODIS数据,Landsat 8热红外数据的使用还不是很多,许多针对Landsat 8热红外数据的地表温度反演算法虽然被提出,但是否能满足不同试验区的精度要求还有待考究,同时,经验模型的使用可能会对求解地表比辐射率和大气透过率等地表温度反演参数造成不同程度的影响.因此,本研究以山东省济南市为研究区,Landsat 8数据为数据源,分别利用大气校正法、JM_SC10算法、TIRS10_SC算法,结合分类回归树(classification and regression tree,简称CART)算法与中等光谱分辨率大气透过率算法计算机模型(moderate spectral resolution atmospheric transmittance algorithm and computer model,简称MODTRAN),构建适合济南地区的温度反演参数,实现地表温度的反演,并以济南市16个气象站的温度数据为基准进行精度验证.结果表明,3种算法反演温度平均误差为1.78℃,TIRS10_SC算法反演精度最高,其次是大气校正法、JM_SC10算法.在一定误差要求下,3种算法均可应用于济南地区的地表温度反演.【期刊名称】《江苏农业科学》【年(卷),期】2017(045)020【总页数】5页(P254-258)【关键词】Landsat8;地表温度反演;单通道算法;大气透过率;地表比辐射率【作者】夏安全;齐建国;姜振飞;马津【作者单位】山东农业大学信息科学与工程学院,山东泰安271018;山东农业大学信息科学与工程学院,山东泰安271018;山东农业大学信息科学与工程学院,山东泰安271018;山东农业大学信息科学与工程学院,山东泰安271018【正文语种】中文【中图分类】S127陆地表面温度(land surface temperature,简称LST)是地表能量平衡和资源环境变化的重要参数。
基于大气校正法的Landsat8TIRS反演地表温度

基于大气校正法的Landsat8TIRS反演地表温度(2015-07-02 08:22:53)转载▼标签:分类:遥感解决方案landsat8地表温度热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
对于ETM+,K1=666.09 W/(m2*µm*sr),K2 =1282.71K。
对于TIRS Band10,K1= 774.89 W/(m2*µm*sr),K2 = 1321.08K。
基于Landsat-8数据的合肥市主城区地表温度反演研究

基于Landsat-8数据的合肥市主城区地表温度反演研究作者:陶旭来源:《南方农业·中旬》2020年第08期摘要基于2019年3月12日Landsat-8 TIRS遥感影像数据,通过大气校正法,在ENVI和ArcGIS软件的支持下,对合肥市主城区进行地表温度反演,并通过叠加矢量数据分析。
结果表明:运用Landsat-8 TIRS遥感影像数据进行地表温度反演方法可行;工业生产强度与城市地表温度高低可能呈正相关性;各地物类型表面温度由高到低排序依次是建筑物、道路、裸地、植被和水体;合肥市主城区地表温度由市中心向外逐渐降低。
关键词 Landsat-8数据;大气校正法;地表温度;合肥市中图分类号:F302.1 文献标志码:B DOI:10.19415/ki.1673-890x.2020.23.085地表温度(Land surface temperature,LST)是地球能量交换和水汽循环过程中的重要参数。
卫星热红外遥感为快速、大面积地获取地表温度提供了有效途径[1]。
Landsat-8卫星是美国陆地探测系列的后续卫星,其装备有陆地成像仪(简称OLI)和热红外传感器(简称TIRS),因其方便获取、时间序列跨度长、数据质量高等优点而在全世界被广泛使用,通过Landsat-8 TIRS所获得的TIRS10和TIRS11来进行地表温度反演是当前的研究热点[2]。
因此,基于Landsat-8 TIRS数据和安徽省合肥市矢量数据,在ENVI和ArcGIS软件支持下,运用大气校正法对合肥市主城区2019年3月12日的地表温度进行反演,以期证明反演的可行性并且分析当日合肥市地表温度变化情况以及分布情况。
1 材料与方法1.1 研究区概况合肥市位于安徽省中部,位于北纬30°57′~32°32′、东经116°41′~117°58′,海拔平均20~40 m。
合肥地处中纬度地带,属亚热带季风性湿润气候,季风明显,四季分明,气候温和,雨量适中。
基于Landsat8影像和劈窗算法的济南地区地表温度反演

基于Landsat8影像和劈窗算法的济南地区地表温度反演作者:王菲来源:《绿色科技》2015年第08期摘要:地表温度是表征地表能量和资源环境变化的重要参数,通过地面观测站获得大面积地表参数并不现实。
遥感影像以其面积广、更新快、数据廉价的特点广泛应用于地表参数的求取。
利用Landsat8卫星影像,采用劈窗算法,对地表比辐射率和大气透过率进行了估算,实现了对济南地区地表温度的反演。
利用同日的MODIS温度产品对反演结果进行了验证,结果表明:反演结果能较真实地反映济南地区地表温度的分布规律。
关键词:济南地区;地表温度;Landsat8;劈窗算法中图分类号:TP79文献标识码:A文章编号:16749944(2015)080015041引言地表温度能清晰地表征地表能量平衡和资源环境变化,是一个重要的地表参数。
地面监测站虽然可以实时观测某些点的温度,但无法实现大面积获取该地区的地表温度参数。
遥感影像面积广、更新快,可以方便快捷地获得大面积地表温度参数。
不少学者曾针对地表温度反演做过大量工作[1~5]:覃志豪等使用陆地卫星TM6数据进行地表温度单窗算法反演,并针对TM6热红外波段特征给出地表比辐射率和大气参数的估算[1~3];毛克彪等人利用MODIS数据和劈窗算法对山东地区的地表温度进行了反演,结果较合理[4];陈云以Landsat8其中一个热红外通道—第11波段为数据源,利用单窗算法对厦门市的地表温度和热岛效应进行了求算和研究,得到较好结果[5]。
劈窗算法的数据源多选用MODIS、NOAA-AVHRR等拥有两个热红外通道的遥感影像。
MODIS数据反演地温效果较理想,但由于MODIS等数据的空间分辨率太低,因此MODIS等中低分辨率的数据比较适合反映大区域的温度变化规律。
针对于小区域的地表温度反演,目前多以TM、ETM、中巴资源卫星、HJ-1B等中高分辨率影像为数据源,利用单窗算法反演地表温度。
Landsat8影像数据源较新,两个热红外通道波谱范围与MODIS数据相近。
219389901_基于Landsat8OLI的地表温度反演-以石家庄为例

2014~2020 年建 设 用 地 的 面 积 不 断 增 加,由 2014 年 的 21.
20% 增 加 到 2020 年 的 27.
44% ,林 地 的 面 积 在
2016 年有所增加,但其余时期逐渐减小;耕地面积由 2016 年的 46.
0110
式中,T0 为近地面气温(
K)。
2.
2.
2 地表亮度温度
地表亮度温度 T10 的计算公式如下:
K2
T10 =
æK1
ö
l
nç
+1÷
èL10
ø
Copyright©博看网. All Rights Reserved.
(
4)
(
5)
第3期
王玉渲,等:基于 Lands
a
t8OLI的地表温度反演—以石家庄为例
中图分类号:
P237 文献标识码:
A
近年来,随着现代化进程的不断加快,大量的农村人口不断涌入城镇,加快了城镇的建设,在建设过程中
土地覆盖类型会发 生 变 化。 因 此,国 内 外 的 许 多 学 者 通 过 遥 感 影 像 对 地 表 温 度 进 行 分 析,例 如 冯 鹏 利 用
[]
Lands
a
t8OLI数据对哈尔滨主城区进行地表温度反演,发现哈尔滨主城区有显著的热岛 效 应 1 ;童 新 华 等
NASA 公布的网站(
h
t
t
tmc
o
r
r.
f
c.
na
s
a.
ps:
gs
gov/)查询,输入研究区域的经纬度坐标和过境时间。
2.
2.
4 地表比辐射率
地表比辐射率是物体与黑体在同温度、同波长下的辐射度的比值,是计算地表温度的重要参数之一。该
landsat8evi计算公式中的参数

landsat8evi计算公式中的参数Landsat 8 EVI(增强型植被指数)的计算公式通常包含以下几个参数:ρNIR:近红外波段的反射率,对应于Landsat 8 OLI传感器的Band 5。
ρRed:红色波段的反射率,对应于Landsat 8 OLI传感器的Band 4。
ρBlue:蓝色波段的反射率,对应于Landsat 8 OLI传感器的Band 2。
在某些EVI计算中可能不包括此参数,但在某些改进的版本中可能会使用到。
L:土壤调节系数,用于调整土壤背景对植被指数的影响。
这个值通常是通过经验确定的,并且可以根据研究区域和植被类型进行调整。
C1、C2:大气修正系数,用于校正大气对传感器测量的影响。
这些系数通常是基于大气模型和传感器特性进行计算的。
请注意,具体的计算公式可能会因研究目的、数据源和处理软件的不同而有所变化。
例如,在ENVI软件中,可以使用Band Math工具来计算EVI,并且可以根据需要自定义公式中的参数。
标准的EVI计算公式如下:EVI = 2.5 * ((ρNIR - ρRed) / (ρNIR + C1 * ρRed - C2 * ρBlue + L))其中,C1和C2是常数,通常取值为6和7.5,L值通常取1。
但在某些情况下,这些值可能会根据具体的研究需求进行调整。
然而,请注意这个公式中包含了蓝色波段的反射率ρBlue,这实际上并不是标准EVI公式的一部分。
标准EVI公式实际上是这样的:EVI = 2.5 * ((ρNIR - ρRed) / (ρNIR + 6 * ρRed - 7.5 * ρBlue + 1))但上面的公式中的ρBlue应该是一个错误,因为在标准的EVI公式中并不包含蓝色波段的反射率。
正确的标准EVI公式应该是:EVI = 2.5 * ((ρNIR - ρRed) / (ρNIR + 6 * ρRed - 7.5 * 1 + 1))或者更简化一些:EVI = 2.5 * ((ρNIR - ρRed) / (ρNIR + ρRed + 1))但请注意这个简化公式也并不完全正确,因为它省略了原公式中的常数项(即-7.5 * 1 + 1部分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
landsat8地表温度反演公式
对于Landsat 8卫星影像的反演,可以使用单窗算法(Mono-window Algorithm)。
这是一种由覃志豪(2004)等根据地表热辐射传导方程,推导出的利用Landsat TM /ETM+第六波段数据反演地表温度的算法。
其计算公式如下:
TS=[a(1- C- D)+(b(1- C- D)+C+D) T6- DTa]/C ()
式中,TS为地表真实温度(K);a和b是常量,分别为-和;C和D是中间变量,C=ετ,D=(1-τ) ([1+(1-ε) τ],其中,ε是地表比辐射率,τ是大气透射率;T6是卫星高度上传感器所探测到的像元亮度温度(K);大气平均作用温度(Ta)与地面附近(一般为2 m处)气温(T0)存在如下线性关系(Ta与T0的单位为K):热带平均大气(北纬15°,年平均)Ta= + T0。
请注意,这些公式都是理论公式,实际应用时需要结合具体的数据和情境进行调整。