渗流力学——油水两相渗流的理论基础
油水两相渗流理论

原始油水界面垂直于流线, 含油区束缚水饱和度为常数。 如右图
以距离为横坐标,以含水饱 和度为纵坐标 在两相区的前缘上含水饱和 度突然下降,这种变化称为 “跃变” (忽略重力、毛管力)
Sor So Sw
Swc Swf
饱和度随时间变化:
水继续渗入,两相区不断扩大,除了两相区范围扩大外,原 来两相区范围内的油又被洗出一部分,因此两相区中含水饱和 度逐渐增加,含油饱和度则逐渐减小。
前缘含水饱和度:
r1
r 3 r 2 r1
r 2
Swf基本保持不变 ,大小取 决于岩层的微观结构和地 下油水粘度比
r 3
r o / w
在进入油区的累积水量一定的条件下,油水粘度比越大,形 成的两相区范围越大,因此,注入累积水量相同时,油水粘度 比大的岩层中井排见水时间早。在油田开发中井排见水前的采 油阶段称为水驱油的第一阶段或无水采油期;第一阶段的累积 产油量称为无水产油量。在开发油田的实践中可采用注稠化水 驱油的办法以缩小油水粘度差别,从而提高无水产油量和无水 期采收率。
实 际 含 水 饱 和 度 分 布:
两相区中含水饱和度分布曲线的前缘并不完全毛管力仅仅影响前缘饱和度的分布形态,因而如在计算中不考虑 油水重力差和毛管力的作用将不会带来过大的误差
二、油水两相渗流理论—贝克莱列维尔特驱油理论
分流量方程 等饱和度面移动方程 水驱油前缘含水饱和度Swf和前缘位置xf 两相渗流区中平均含水饱和度的确定 井排见水后两相渗流区中含水饱和度变化
井排见水后两相渗流区平均含水饱和度
1.含水率和含油率(分流量方程) 在油水两相渗流区中,油水同时流动,而且都服从达西线性渗流定律 时,若不考虑油水重力差和毛管力的作用,则
K w dP vw w dx
第6章 两相渗流理论基础

9
10
11
※ 上式即为考虑毛管力的油水两相渗流的数学模型
2. 不考虑毛管力的油水两相渗流的数学模型
<1>运动方程
油相: 水相: vo K o (s ) grad P o K w (s ) grad P w 1 2
vw
<2>连续性方程
油相: ( v ox v oy v oz So ) x y z t 3
(6)
q(t ) g sin A( x)k (C1 w C2 o ) p x (C1 C2 )kA( x)
式中
C1
krw
w
; C2
kro
o
将(6)代入(1)式:
q(t ) g sin A( x)k (C1 w C2 o ) qw kC1[ w g sin ] A( x) kA( x)(C1 C2 ) C1 C1C2 q(t ) A( x)kg sin C1 C2 C1 C2 f ( S )q(t ) f1 ( S ) A( x) V
由 7 式: P q(t ) C2 S ' w Pc ( s) x KA( x)(C1 C2 ) C1 C2 x
7
8
由 8 式代入 1 式: C1q(t ) C1 C2 ' S qw KA( x) Pc ( s) C1 C2 C1 C2 x
活塞式水驱油
活塞式水驱油:假设水驱油过程中,油水间有明显的分界面,且分 界面垂直于液流方向向井排移动,并把油全部驱走,就像活塞一样 向井排移动,称活塞式水驱油。
一、考虑油水粘度差异的单相渗流
Le
如图 为均质等厚油藏, 且认为液体不可压缩且不考 虑液体密度差。设供液压力
渗流5---两相渗流

C1
K r w (s)
w
;
C2
K r o (s)
o
张凯
;
Pc '( s )
s
Pc ( s )
渗流力学
7
第五章 两相渗流理论基础
Pw C2 q (t ) s Pc '( s ) x KA( x)(C1 C2 ) C1 C2 x
代入到
KKrw (s) P w qw A(x) w x
(对气相)
13
第五章 两相渗流理论基础
将(1)式代入(2)式就得到油、气两相渗流的数学模型 式就得到油 气两相渗流的数学模型 Ko,Kg分别用Ko=Kro(S)K、Kg=Krg(S)K表示 与压力有关的函数表示为
g C ( P); og
o P
Bo ( P)
; G
P
Bo ( P)
运动方程
vo
K o ( s)
o
gradP
vw
K w ( s)
w
gradP
vox voy voz So 连续性方程 x y z t
vwx vwy vwz Sw x y z t Ko (s) So P t o
第五章 两相渗流理论基础
第二节 活塞式水驱油
考虑油水粘度差别的单向渗流 考虑油水粘度差别的平面径向渗流
渗流力学
张凯
16
第五章 两相渗流理论基础
地层均质、等厚、水平,流体为不可压缩且不考虑油水在密度上的差别
一、考虑油水粘度差别的单向渗流
1.产量公式 1. 产量公式 水区的阻力 油区的阻力
8第七章油水两相渗流理论

置。
第三节.平面单向等饱和度平面移动方程 的应用
一.确定前缘含水饱和度及前缘位置
设从两相区形成开始,生产井排(或注水井排)的生产时 间为t,则在0~t时间内两相区内含水量的增加应该等于该区 域含水饱和度的增量。
0~t时间内两相区内含水量的增加:
t
Qw 0q(t)dt
0~t时间内两相区内含水饱和度的增量:
又K oovoP xoogsin K w wvwPxwwgsin
两式相减得:
K w wvw K o ovo ( P x w P x o)( w o)gsi n
PCPoPw
P CP oP w (P wP o) x x x x x
设: wo vt vwvo
得: K w wvwK o o(vtvw ) P x c gsi n
② 若为一维流动,则:
vox So x t
vwx Sw x t
二.运动方程
1.不考虑重力和毛管压力的运动方程
vo
Ko o
Po x
vw
Kw w
Pw x
2.考虑重力和毛管压力的运动方程
voK oo(P xoogsin )
vwK w w(P xwwgsi n)
三.分流方程式:
fwq w q w q ov w v w v ov v w t(v tv ov w )
一.连续性方程
在地层中取一微小的六面体,三边长分别为dx、dy、dz,
设在 M 点出油、水在 x 方向的质量分速度分别
为 0vox ,wvwx ,则:
z A B
dz
MA•
•
M
•M B
dy
A dx B
x
y
AA′面上的MA点油、水相的质量分速度为:
油藏油水两相渗流特征研究

油藏油水两相渗流特征研究油藏油水两相渗流特征研究指的是对具有油水两种相的地下储层中流体运移过程进行分析和研究,以解析油藏中油水相间的相互作用及其对油藏开发和生产的影响。
下面将从原理、特征及影响等方面进行详细介绍,以期更好地理解油藏油水两相渗流特征。
首先,油藏油水两相渗流的原理是基于多相流理论。
地下油藏中油水两相存在共存,每个相都受到渗流过程中的岩石孔隙结构和岩石表面张力等影响。
油水两相的运动会相互干扰,从而影响油藏的开采效果。
油相的渗流受到表面张力的作用,而水相的渗流则受到毛细力的影响。
同时,油水两相之间的界面张力也会影响两相之间的相互转化和流体的分布。
其次,油藏油水两相渗流的特征体现在以下几个方面。
首先,油藏中油水相的分布会受到岩石孔隙结构的限制,不同的孔隙尺度和孔隙连通程度会导致油水相分布的非均匀性。
其次,两相渗流会存在于不同的渗流状态中,包括饱和渗流、非饱和渗流和混相渗流等。
不同的渗流状态会导致两相的流动特征和渗透能力有所不同。
最后,油水两相会发生相间的运移,即油相和水相会在渗流过程中相互转化。
这种相间运移会影响油藏中的渗流行为和生产动态,对油气开发产生重要影响。
最后,油藏油水两相渗流的特征对油气开发和生产有着重要的影响。
首先,了解和研究油藏油水两相渗流特征可以帮助评估储层的物理性质和渗流能力,为开发方案的制定和调整提供依据。
其次,油藏中油水两相的相互作用与运动对油气的产出和采收率有着重要的影响。
通过深入研究油藏中油水两相渗流的特征,可以优化开采方案,提高采收率,减少技术和经济风险。
此外,还可以通过研究油藏中的油水两相渗流特征来评估油藏的剩余储量和可采储量,为资源评价和油气储量估算提供依据。
综上所述,油藏油水两相渗流特征研究对油气开发和储层评价具有重要作用。
通过对油藏中油水两相渗流的原理、特征及其影响进行深入研究,可以更好地理解油藏中油水相的相互作用和运动规律,为优化油气开发方案以及评估油藏剩余储量提供科学依据。
第七章 油水两相渗流理论

∂ ( ρ o vox ) dx [ ρ o vox − ]dydzdt ∂x 2
[ ρ w v wx
6、经过dt时间,右端面油水流出质量:
∂(ρo v ox ) dx ∂ (ρ w v wx ) dx [ρo v ox + ]dydzdt [ρ w v wx + ]dydzdt ∂x 2 ∂x 2
第一节 影响水驱油非活塞性的因素
六、扰动力
纵向:各层是否投产、投注?物性? 平面:井周围压力梯度分布的非对称性
毛管力 润湿性 密度差 非均质 流度差 扰动力
采油井
注水井
油气层渗流力学
Mechanics of the Oil and Gas Flow in Porous Media
第七章 油水两相渗流理论
∂Sw ∂vwx ∂vwy ∂vwz + −[ + ] =φ ∂y ∂z ∂t ∂x
第二节 油水两相渗流理论
四、约束条件
So + S w = 1
Pc = Po − Pw = f ( S w )
第二节 油水两相渗流理论
五、分流方程
含水率fw:渗流总液量中的含水量
qw qw vw fw = = = q t q w + q o v w + vo
7、经过dt时间,微元体在x方向的流入-流出油水质量差:
∂ ( ρ o v ox ) − dxdydzdt ∂x
∂ ( ρ w vwx ) − dxdydzdt ∂x
第二节 油水两相渗流理论
三、连续性方程
8、经过dt时间,微元体在y方向的流入-流出油水质量差:
−
−
∂ (ρ o v oy ) ∂x ∂ (ρ w v wy )
7油水两相渗流理论

你能写出水相状 态方程否??!
27
三、连续性方程 z dz
x y
M’
M
M’’ dy
dx
So Sw 1
仍从x,y,z三个方向进行分别论述
28
四、分流方程
1 含水率是渗流总液量中的含水量,可以用分流方程表示:
fw
qw qw qo
or
fw
vw v w vo
=
vw vt
29
五、单向流动等饱和度平面移动方程
流动方向 •小毛管中pc大,驱动动力大, 水首先渗入小毛管形成非活 塞式推进。 •小毛管r小,阻力r4/(8L) 大。(p1- p2) 与pc合理配备, 可使大小毛管中流速均匀。
11
二、密度差的影响
1、在厚油层中 w>o> g, 油、气相遇或油、水相遇时,在油层 很厚,流速度不大时,容易形成形成上气下油(尤 其对带气顶的油藏)或上油下水(尤其对带底水的 油藏)的两相区。重力超覆现象。
250 x
36
计算出现了双值?
Sw
Kro/Krw fw(Sw)
0.2
0.3 0.4
24.0 7.6
fw’(Sw) 0 0.75 1.71
x60-x0 0 10.5 23.9
x120-x0 x240-x0
0
0.077 0.208
0.5
0.6 0.7 0.8 0.9
1.75
0.89 0.26 0.086 0
0.534
0.762 0.926 0.985 1.0
4.10
1.90 0.95
57.5
26.6 13.3
0.36
0
5.04
0
渗流力学_第五章

fw dfw dSw
dfw dSw
fw
dfw 1 t ∫xodx = dSw φA ∫0q(t)dt
x
¢ fw t x - xo = ò0 q(t )dt fA
Sw
¢ fw x - xo = W (t ) fA
Buckley—Leverett 方 程
Buckley曲线
Sw
t 1
t2 t3
t t2 1
∂pc ∂( po − pw ) ∂po ∂pw = = − ∂x ∂x ∂x ∂x
vt = vo + vw
∂pc vw − (vt − vw ) = − ∆ρ.g sin a Kw Ko ∂x
∂pc vw( + ) − vt = − ∆ρg sin a µw µo Ko ∂x Kw Ko
µw
µo
µo
′ fw
fw
0
0
Sw
பைடு நூலகம்
1
B
′ fw (Swf ) =
fw (Swf ) Swf − Swr
t
fw
A
x f − xo =
' fw (Swf )
∫0 q(t)dt φA
Swr
Swf Sw
Sw
∫0 q(t)dt Sw − Swr =
1 Sw − Swr = ′ fw(Swf )
t
φA(x f − xo )
油相: 水相:
∂(φρoSo ) − ∇⋅ (ρovo ) = ∂t ∂(φρwSw ) − ∇⋅ (ρwvw ) = ∂t
∂(vox ) ∂(voy ) ∂(voz ) ∂So + − + = φ ∂t ∂y ∂z ∂x ∂(vwx ) ∂(vwy ) ∂(vwz ) ∂Sw − + + = φ ∂t ∂y ∂z ∂x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章油水两相渗流的理论基础
§3平面单相流等饱和度平面移动方程的应用
§4平面单相流两相混合带的压力
§5平面径向流等饱和度平面移动方程的应用
教学目的
及要求
1.掌握确定前缘含水饱和度和平均含水饱和度的方法
2.掌握确定排液道见水时间的方法
3.掌握平面单相流两相混合带的压力分布
4.掌握平面径向流等饱和度平面移动方程的推导
5.掌握平面径向流各个时刻地层内沿径向各点的饱和度分布及两相区的压力分布
教学内 容提要
1.平面单相流等饱和度平面移动方程的应用
确定前缘含水饱和度和平均含水饱和度
确定排液道见水时间的方法
2.平面单相流两相混合带的力
3.平面径向流等饱和度平面移动方程的应用
平面径向流等饱和度平面移动方程
平面径向流各个时刻地层内沿径向各点的饱和度分布及两相区的压力分布
第五章油水两相渗流的理论基础
周次
第6周,总第1次课
备注
章节名称
第五章油水两相渗流的理论基础
§1影响水驱油非活塞性的因素
§2等饱和度平面移动的基本微分方程
教学目的
及要求
1.了解影响水驱油非活塞性的因素
2.掌握等饱和度平面移动的基本微分方程建立过程
3.掌握分流方程式的推导
4.掌握饱和度分布公式的推导及曲线
教学重点、
难点及
重点:
确定前缘含水饱和度和平均含水饱和度的方法
平面径向流各个时刻地层内沿径向各点的饱和度分布
难点:确定前缘含水饱和度和平均含水饱和度的方法
处理方案及方法设计
画示意图讲解,举例计算说明,作业巩固理解
作业
练习
思考题:p90 5
作业:p184 36
特别提示
涉及到近似积分的方法
教学内 容提要
1.影响水驱油非活塞性的因素
毛细管压力
重率差
粘度差
2.等饱和度平面移动的基本微分方程
连续性方程的推导
运动方程
1)不考虑重力和毛细管压力的运动方程
2)考虑重力和毛细管压力的运动方程
分流方程式的推导
等饱和度平面移动的基本微分方程
1)饱和度分布曲线
2)含水率及其导数变化曲线
教学重点、
难点及
重点:
影响水驱油非活塞性的因素
分流方程式的推导
饱和度分布公式的推导及曲线
难点:饱和度分布公式Buchkey-Leverett方程的推导及曲线
处理方案及方法设计
1.用示意图说明饱和度分布
作业
练习
思考题: p90 1,2,3,4
特别提示
交作业
涉及最终采收率、毛细管现象、界面张力的概念
周次
第6周,总第2次课
备注