山东省滨州市惠民县七年级(上)期末数学试卷
2022-2023学年山东省滨州市惠民县七年级上学期期末数学试题

2022-2023学年山东省滨州市惠民县七年级上学期期末数学试题1.下面计算正确的是()A.B.C.D.2.已知,b是49的平方根,且,则的值为()A.2或12B.2或C.或12D.或3.有下列实数:,,,3.141,,,(每两个1之间依次增加一个0),其中无理数有()A.1个B.2个C.3个D.4个4.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.-1B.0C.1D.25.下列解方程的过程中,移项错误的是()A.方程变形为B.方程变形为C.方程变形为D.方程变形为6.若与是同类项,则的值为()A.B.C.3D.47.在式子:,,,,1,,,中,单项式的个数为()A.2个B.3个C.4个D.5个8.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆柱,圆锥,四棱柱,正方体B.四棱锥,圆锥,正方体,圆柱C.圆柱,圆锥,正方体,三棱锥D.圆柱,圆锥,三棱柱,正方体9.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.10.在下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是()①用两颗钉子就可以把木条固定在墙上;②在A、B两地之间架设电线时,总是尽可能沿线段AB架设;③植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上;④把弯曲的公路改直,就能缩短路程.A.①②B.①③C.②④D.③④11.某商店有两个进价不同的计算器都卖了元,其中一个盈利,另一个亏本,在这次买卖中,这家商店()A.不赔不赚B.赚8元C.亏8元D.赚32元12.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,,则的余角是()A.B.C.D.13.单项式的系数是________,次数是________.14.计算:_______.15.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=_____.16.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分,甲队胜了___________场.17.如图,,,则_____度.18.观察下列单项式:x,,,,,…考虑它们的系数和次数.请写出第8个:___________.19.计算下列各题:(1);(2);(3);(4);20.(1)解方程:.(2)先化简,再求值:;其中a、b满足.21.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?22.元旦期间,家乐福超市搞促销活动,规定:购物不超过元不给优惠;购物超过元但不超过元的,全部打9折;购物超过元的,其中元部分打9折,超过元部分打8折.(1)张老师第1次购得商品的总价(标价和)为元,按活动规定实际付款多少元?(2)张老师第2次购物,按活动规定实际付款元,与没有促销相比,第2次购物节约了多少钱?23.如图,平分,平分.(1)计算求值:若,,求的度数;(2)拓展探究:若,求的度数?(3)问题解决:若.①用含x的代数式表示y;②如果,试求的度数.24.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=,线段AB的中点表示的数为.如图,数轴上点A表示的数为,点B表示的数为8.【综合运用】(1)填空:A,B两点间的距离AB=,线段AB的中点表示的数为;(2)若M为该数轴上的一点,且满足MA+MB=12,求点M所表示的数;(3)若点P从点A出发,以每秒1个单位长度的速度沿数轴向终点B匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,Q到达A点后,再立即以同样的速度返回B点,当点P到达终点后,P、Q两点都停止运动,设运动时间为t秒().当t为何值时,P,Q两点间距离为4.。
山东省滨州市惠民县七年级数学上学期期末考试试题

2016—2017学年第一学期期末学业水平测试七年级数学试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 若使等式(-4)(-6)=2成立,则中应填入的运算符号是( )(A )+ (B )- (C )⨯ (D )÷2.下列对于式子)5(--的解释:①可以表示5-的相反数;②可以表示1-与5-的积; ③结果等于5-的绝对值. 其中表述错误的个数为( )(A )0 (B )1 (C )2 (D )33.若a 与b 互为相反数,则下列化简a-b 的结果:①-2b 、②-2a 、③2a 、④2b ,其中结 果正确的个数为( )(A )1 (B )2 (C )3 (D )44.一个几何体从正面看、从左面看都是等腰三角形,从上面看是圆,那么它可能是( )(A ) 三棱锥 (B )三棱柱 (C ) 圆柱 (D ) 圆锥5.已知下列方程:① ;②0.31x =;③ ;④243x x -=; ⑤6x =; ⑥20x y +=.其中一元一次方程的个数是 ( )(A )2 (B )3 (C )4 (D )56. 如果以5x =-为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )(A )50x += (B )712x -=-(C )255x +=- (D )15x-=-7. 如图,根据根据图中提供的信息,可知一个杯子的价格是( )(A )51元(B )35元(C )8元(D )7.5元 共43元 共94元(第7题图)8. 如图,点C 在线段AB 上,点E 是AC 中点,点D 是BC 中点.若ED=6,则线段AB 的长为( )(A )6 (B )9(C )12 (D )18 9. 有理数a 、b 在数轴上的对应的位置如图所示,则下列各式中正确的是( )(A )a+b <0 (B )a+b >0 (C )a ﹣b=0 (D )a ﹣b >0 10.下列说法中正确的是( )A.射线AB 和射线BA 是同一条射线B.射线就是直线C.经过两点有一条直线,并且只有一条直线D.延长直线AB11.在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( )(A )80.6° (B ) 40°(C ) 80.8°或39.8° (D ) 80.6°或40°12.若()b a b a 则,032122=-+-=( )(A )61(B )21- (C ) 6 (D )81第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.请写出一个所含字母只有,x y ,且二次项系数和常数项都是-5的三次三项式: .14.太阳的半径大约是696000km,用科学记数法表示,则结果为______________ km.15.单项式 与 能合并成一个单项式,则 = .16.已知一个角的补角是它的余角的4倍,那么这个角的度数是 .17. 观察下列各数:- , ,- , ,- ,…,根据它们的排列规律写出第2017个数 为 .18.同学小明在解关于 的方程5x -4=( )x 时,把( )处的数看错,得错解 ,则小明把( )处看成了 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.(第8题图)(第9题图)213x a b --45y ab +20152016(2)(2)x y -++x 1-=x19.(满分10分)根据要求,解答下列问题.(1)计算:1)31()21(54)32(21+-+-+--+.(2)计算: 43121[()]2423-+--⨯20.(满分10分)根据要求,解答下列问题.(1)先化简,再求值: 2213[64()]22x y xy xy x y ---,其中x 取最大负整数,67y =-.(2)化简:)673()132()445(323223x x x x x x x x x +--+--+---++.21.(满分6分)根据要求,解答下列问题. 依照下列解方程161103.01.02.0=+-+x x 的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为16110312=+-+x x .( )去分母,得2(2x+1)﹣(10x+1)=6.( )( ),得4x+2﹣10x ﹣1=6.(乘法分配律)移项,得4x ﹣10x=6﹣2+1.( )( )得﹣6x=5.(合并同类项法则)系数化为1,得x=﹣65.( )22.(满分12分)根据要求,解答下列问题.(1)把若干块糖分给若干个小朋友,若每人3块,则多12块;若每人5块,则缺10块, 一共有多少个小朋友?(2)解方程:35231105x x --=-23.(满分10分)如图,已知∠AOB 是平角,∠AOC =20°,∠COD :∠DOB =3:13, 且OE 平分∠BOD ,求∠COE 的度数.24.(满分12分)如图,点A 、B 、C 在数轴上,点O 为原点.线段AB 的长为12,BO =AB 21,CA =AB 31.(1)求线段BC 的长.(2)求数轴上点C 表示的数.(3)若点D 在数轴上,且使DA =AB 32,求点D 表示的数.A C O B(第24题图)A B CDE O 第23题图参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13. 答案不唯一(如:255x y xy --); 14. 6.96×105; 15.0 16.60°; 17. -2017/2018 ; 18.9.三、解答题(本大题6个小题,共60分)19.(本小题满分10分)(1)解:原式=154)31()32()21(21+-⎥⎦⎤⎢⎣⎡-+-+⎥⎦⎤⎢⎣⎡-+ ……………………1分=15410+-- …………………………………………………4分=54-. …………………………………………………………5分(2)解:43121[()]2423-+--⨯=121()2483-+--⨯ …………………2分=-1+(-3-16) …………………4分=-20. …………………5分20.(本小题满分10分)(1)2213[64()]22x y xy xy x y ---=221(664)2x y xy xy x y --+ …………………1分=22142x y x y - …………………2分=272x y - …………………3分 由x 取最大负整数得1x =-. …………………4分当1x =-,67y =-时,原式=-272x y =276(1)()327-⨯-⨯-= …………………5分(2)解: ………………1分………………2分………………3分 ………………5分21.(本小题满分6分,填对1个空就得1分) 解:原方程可变形为.( 分式的基本性质 )去分母,得2(2x+1)﹣(10x+1)=6.( 等式的性质2 )(去括号),得4x+2﹣10x ﹣1=6.移项,得4x ﹣10x=6﹣2+1.( 等式的性质1 )(合并同类项),得﹣6x=5.系数化为1,得x=﹣.( 等式的性质2 )22.(本小题满分12分)(1)解:设一共有x 个小朋友,根据题意,得 3x+12=5x ﹣10, …………3分解得x=11.答:一共有11个小朋友. …………6分(2)解:解:去分母,得35102(23)x x -=-- …………………2分 去括号,得351046x x -=-+ …………………3分 移项,得341065x x +=++ …………………4分 合并同类项,得721x = …………………5分 系数化为1,得3x = …………………6分 ()()()().00000314734652314734652673132445)673()132()445(222333222333323223323223=+++=++-+-++-+++-=++--++-+++-=+--+++-+-++=+--+--+---++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x23.(本大题满分10分)因为∠AOB 是平角, ∠AOC =20°所以∠BOC =180°- 20°=160°即COD DOB ∠+∠=160° …………………3分 又∠COD :∠DOB =3:13 所以316016COD ∠=⨯°=30° …………………4分 1316016DOB ∠=⨯°=130° …………………6分因为OE 平分∠BOD所以12DOE BOD ∠=∠=65° …………………8分所以COE COD DOE ∠=∠+∠=30°+65°=95° ………………10分24.(本小题满分12分)解:(1)∵AB =12,CA =AB 31,∴CA =4, ………………………………1分∴BC =AB -CA =8. ………………………………3分(2)∵AB =12,BO =AB 21,CA =AB 31,∴BO =AO =6,CA =4. ………………………………………………4分 ∴CO =AO -CA =2. ………………………………………………6分 ∴数轴上点C 表示的数为-2. ………………………………………7分(3)∵AB =12,DA =AB 32,∴DA =8. ………………………………8分∴DO =DA +AO =8+6=14或DO =DA -AO =8-6=2 …………………10分 ∴数轴上点D 表示的数为-14或2. ………………………………12分。
七年级上册滨州数学期末试卷试卷(word版含答案)

七年级上册滨州数学期末试卷试卷(word 版含答案)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.如图,点A 、O 、D 在一条直线上,此图中大于0︒且小于180︒的角的个数是( )A .3个B .4个C .5个D .6个3.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( )A .0.8x +70=(1+50%)xB .0.8 x -70=(1+50%)xC .x +70=0.8×(1+50%)xD .x -70=0.8×(1+50%)x 4.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-1 5.下列说法不正确的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短6.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 7.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 8.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D9.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变10.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n 11.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1C .2(2x +1)﹣(10x +1)=6D .2(2x +1)﹣10x +1=1 12.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变13.-3的相反数为( )A .-3B .3C .0D .不能确定14.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 15.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________.18.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.19.单项式-4x 2y 的次数是__.20.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.21.当温度每下降100℃时,某种金属丝缩短0.2mm .把这种15℃时15mm 长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm .22.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.23.如图,一副三角板如图示摆放,若α=70°,则β的度数为_____°.24.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.25.数轴上到原点的距离等于122个单位长度的点表示的数是__________. 三、解答题26.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.27.先化简,再求值: 2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 28.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地.(1)甲车的速度为 千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?29.如图,如果//,40,40∠=∠=AB CD B D ,那么BC 与DE 平行吗?为什么?30.如图,网格线的交点叫格点,格点是的边上的一点(请利用网格作图,保留(1)过点画的垂线,交于点;(2)线段的长度是点O到PC的距离;(3)的理由是;(4)过点C画的平行线;31.某饮料加工厂生产的A、B两种饮料均需加入同种派加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产多少瓶?32.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用块小正方体搭成的.33.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示;②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。
七年级上册滨州数学期末试卷试卷(word版含答案)

七年级上册滨州数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
滨州市七年级上学期数学期末试卷及答案-百度文库

滨州市七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .32.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短 3.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒5.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .66.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣77.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能 8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米11.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .112.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 19.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.20.A 学校有m 个学生,其中女生占45%,则男生人数为________.21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____.22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.26.计算:(1)23(1)27|2|-+-+- (2)2311(6)()232-⨯--27.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 28.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?29.已知线段m 、n .(1)尺规作图:作线段AB ,满足AB =m+n (保留作图痕迹,不用写作法); (2)在(1)的条件下,点O 是AB 的中点,点C 在线段AB 上,且满足AC =m ,当m =5,n =3时,求线段OC 的长.30.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?四、压轴题31.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 32.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.33.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.3.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.4.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.5.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.6.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.7.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.9.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.10.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.11.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.14.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n −2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.16.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.20.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m,故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.21.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22-)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x 2m+6y 3与2x 4y n 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、解答题25.75°.【解析】【分析】先判断AC//BD ,然后根据平行线的性质进行求解即可得.【详解】∵∠A=∠B ,∴AC//BD ,∴∠D=∠C=75°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.26.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)﹣x 2+9xy+2y 2,﹣20;(2)k =4.【解析】【分析】(1)根据|x ﹣2|+(y+1)2=0可以求得x 、y 的值,然后将题目中所求式子化简,再将x 、y 的值代入化简后的式子即可解答本题.(2)利用多项式的值与x 无关,得出x 的系数和为0,即可得出k 的值,进而求出答案.【详解】解:(1)∵(x ﹣2)2+|y+1|=0,∴x =2、y =﹣1,则原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy+6y 2=﹣x 2+9xy+2y 2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x 2+2x ﹣kx 2+3x 2﹣2x+1=(4﹣k )x 2+1∵代数式的值与x 无关,∴k =4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.29.(1)见解析;(2)12m ﹣12n 【解析】【分析】(1)依据AB =m+n 进行作图,即可得到线段AB ;(2)依据中点的定义以及线段的和差关系,即可得到线段OC 的长.【详解】解:(1)如图所示,线段AB 即为所求;(2)如图,∵点O 是AB 的中点,∴AO =12AB =12(m+n ), 又∵AC =m , ∴OC =AC ﹣AO =m ﹣12(m+n )=12m ﹣12n . 【点睛】本题主要考查了基本作图,解决问题的关键是掌握作一条线段等于已知线段的方法.30.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A 部分由400吨,总数量为800吨,求出所占的百分比,C 部分占整体的40800,因此C 部分所在的圆心角的度数为360°的40800. (3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°, 答:在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°. (3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.四、压轴题31.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.32.(1)点P 在线段AB 上的13处;(2)13;(3)②MN AB 的值不变. 【解析】【分析】(1)根据C 、D 的运动速度知BD=2PC ,再由已知条件PD=2AC 求得PB=2AP ,所以点P 在线段AB 上的13处; (2)由题设画出图示,根据AQ-BQ=PQ 求得AQ=PQ+BQ ;然后求得AP=BQ ,从而求得PQ 与AB 的关系;(3)当点C 停止运动时,有CD =12AB ,从而求得CM 与AB 的数量关系;然后求得以AB 表示的PM 与PN 的值,所以MN =PN−PM =112AB . 【详解】解:(1)由题意:BD=2PC∵PD=2AC ,∴BD+PD=2(PC+AC ),即PB=2AP .∴点P 在线段AB 上的13处; (2)如图:∵AQ-BQ=PQ ,∴AQ=PQ+BQ ,∵AQ=AP+PQ ,∴AP=BQ ,∴PQ=13AB ,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.33.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C在中点的左边,点C在中点,点C在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P应在Q的右边,分别表示出AQ、QP、PB,求出t的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”.故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.。
滨州市七年级上学期数学期末试卷及答案-百度文库

滨州市七年级上学期数学期末试卷及答案-百度文库一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2062.将图中的叶子平移后,可以得到的图案是()A.B.C.D.3.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+14.在下边图形中,不是如图立体图形的视图是()A .B .C .D .5.﹣3的相反数是( ) A .13-B .13C .3-D .36.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =7.3的倒数是( ) A .3B .3-C .13D .13-8.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=yC .若x y m m =,则x y = D .若x y =,则x y m m= 9.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+10.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.把53°24′用度表示为_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.单项式22ab -的系数是________.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 20.化简:2x+1﹣(x+1)=_____. 21.用“>”或“<”填空:13_____35;223-_____﹣3.22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2017-2018学年山东惠民县七年级数学上期末试卷及解析

5.下列说法正确的是( A.1﹣x 是一次单项式
C.单项式﹣π2x2y2 的次数是 6 6.下列方程:
(1)2x﹣1=x﹣7,(2) x= x﹣1,(3)2(x+5)=﹣4﹣x,(4) x=x﹣2. 其中解为 x=﹣6 的方程的个数为( A.4 7.把方程 B.3 ﹣2= ) C.2 的分母化为整数的方程是( D.1 )
2.若 a 与 b 互为相反数,则 a﹣b 等于( A.2a B.﹣2a
3.下列变形符合等式基本性质的是(
A.如果 2a﹣b=7,那么 b=7﹣2a B.如果 mk=nk,那么 m=n C.如果﹣3x=5,那么 x=5÷3 4.下列去括号的过程 (1)a﹣(b﹣c)=a﹣b﹣c; (3)a﹣(b+c)=a﹣b+c; 其中运算结果错误的个数为( A.1 B.2 ) B.单项式 a 的系数和次数都是 1 D.单项式 2×104x2 的系数是 2 ) C.3 D.4 (2)a﹣(b﹣c)=a+b+c; (4)a﹣(b+c)=a﹣b﹣c. D.如果﹣ a=2,那么 a=﹣6
9.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( A.用两个钉子就可以把木条固定在墙上 B.利用圆规可以比较两条线段的大小关系 C.把弯曲的公路改直,就能缩短路程 D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
10.一个两位数,个位数字为 a,十位数字为 b,把这个两位数的个位数字与十位数字交换,得到一个 新的两位数,则新两位数与原两位数的和为( ) A.9a+9b B.2ab C.ba+ab D.11a+11b )
2017-2018 学年山东惠民县七年级数学上期末试卷及解析
2017-2018 学年惠民县七年级(上)期末 数学试卷
2025届山东省滨州惠民县联考数学七上期末教学质量检测试题含解析

2025届山东省滨州惠民县联考数学七上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列说法正确的是( )A .0是最小的整数B .若a b =,则a b =C .互为相反数的两数之和为零D .数轴上两个有理数,较大的数离原点较远2.著名数学家裴波那契发现著名的裴波那契数列1,1,2,3,5,8,13…,这个数列从第3项开始,每一项都等于前两项之和,如图1,现以这组数中的各个数作为正方形的边长构造正方形;如图2,再分别依次从左到右取2个,3个,4个,5个正方形拼成长方形并标记①,②,③,④,若按此规律继续作长方形,则序号为⑧的长方形的周长是( )A .466B .288C .233D .1783.﹣3的相反数是( )A .13- B .13 C .3- D .34.2020的相反数是( )A .2020-B .12020C .12020-D .以上都不是5.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是( ) A .此次调查属于全面调查B .样本容量是80C .800名学生是总体D .被抽取的每一名学生称为个体 6.如图,AOB ∠为平角,且14AOC BOC ∠=∠,则BOC ∠的度数是( )A.144︒B.36︒C.45︒D.135︒7.如图,一圆桌周围有5个箱子,依顺时针方向编号1 ~5 ,小明从1号箱子沿着圆桌依顺时针方向前进,每经过-个箱子就丢入-颗球,所有小球共有红、黄、绿3种颜色,1号箱子红色,2号箱子黄色,3号箱子绿色,4号红色,5号黄色,1号绿色.....,颜色依次循环,当他围绕圆桌刚好丢完2020圈时,则第5号箱子有()个红球.A.672 B.673 C.674 D.6758.如果x=-2是方程14x-a=-1的解,那么a的值是()A.-2 B.2 C.12D.-69.经过A、B两点可以确定几条直线()A.1条B.2条C.3条D.无数条10.下列运算正确的是()A.4x﹣x=3x B.6y2﹣y2=5C.b4+b3=b7D.3a+2b=5ab二、填空题(本大题共有6小题,每小题3分,共18分)11.数轴上表示数-5和表示-14的两点之间的距离是.12.近日,以“奋斗40载”为主题的大型无人机灯光表演在深圳龙岗上演,小刚把其中一句祝福“致敬奋斗的你”写在了正方体的各个面上,展开图如图所示,请问“敬”的相对面是_________.13.定义一种新运算:a※b=()3()a b a bb a b->⎧⎨<⎩,则当x=4时,(3※x)﹣(5※x)的值是_____.14.如图,ABCD 为一长条形纸带,//AB CD ,将ABCD 沿EF 折叠,A 、D 两点分别与A '、D 对应.若165∠=︒,则2∠=________.15.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.16.如果一个角的补角是11526'︒,那么这个角的余角是__________.三、解下列各题(本大题共8小题,共72分)17.(8分)某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?18.(8分)计算下列各题:(1)计算:31570.754⎛⎫---+-- ⎪⎝⎭(2)()()23123422⎛⎫ ⎪⎝⎭⨯--÷-+-(3)解方程:2111 34x x+--=19.(8分)如下表,在33⨯的幻方的九个空格中,填入9个数字,使得处于同一横行、同一竖行、同一斜对角线上的三个数的和都相等,按以上规则填成的幻方中,求出x的值并把表格填完整.4 21x-3 x1 1x+20.(8分)小明在对方程21132x x a-++=去分母时,方程左边的1没有乘以6,因而求得的解是4x=,试求a的值,并求出方程的正确解.21.(8分)作图并计算.(1)如图,已知点A B C,,,按下列要求尺规作图:(不要求写作法,只保留作图痕迹)①连接AB;②作射线BC;③在线段BC的延长线上取一点D,使CD BC=.(2)在(1)所作的图中标出线段CD的中点E,如果2DE=,则BE=_______.22.(10分)如图,点D,C,E在线段AB上,已知12AD DC=,点E是线段CB的中点,11.54BE AC==,求线段DE的长.23.(10分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)点A的坐标为;(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1.(3)△A1B1C1的面积为.24.(12分)已知多项式A 、B ,其中,某同学在计算A +B 时,由于粗心把A +B 看成了A -B 求得结果为,请你算出A +B 的正确结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省滨州市惠民县七年级(上)期末数学试卷
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确
的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.(3分)下列算式:(1)﹣(﹣2);(2)|﹣2|;(3)(﹣2)3;(4)(﹣2)2.其中运算结果为正数的个数为()
A.1B.2C.3D.4
2.(3分)若a与b互为相反数,则a﹣b等于()
A.2a B.﹣2a C.0D.﹣2
3.(3分)下列变形符合等式基本性质的是()
A.如果2a﹣b=7,那么b=7﹣2a
B.如果mk=nk,那么m=n
C.如果﹣3x=5,那么x=5÷3
D.如果﹣a=2,那么a=﹣6
4.(3分)下列去括号的过程
(1)a﹣(b﹣c)=a﹣b﹣c;
(2)a﹣(b﹣c)=a+b+c;
(3)a﹣(b+c)=a﹣b+c;
(4)a﹣(b+c)=a﹣b﹣c.
其中运算结果错误的个数为()
A.1B.2C.3D.4
5.(3分)下列说法正确的是()
A.1﹣x是一次单项式
B.单项式a的系数和次数都是1
C.单项式﹣π2x2y2的次数是6
D.单项式2×104x2的系数是2
6.(3分)下列方程:
(1)2x﹣1=x﹣7,(2)x=x﹣1,(3)2(x+5)=﹣4﹣x,(4)x=x﹣2.
其中解为x=﹣6的方程的个数为()
A.4B.3C.2D.1
7.(3分)把方程﹣2=的分母化为整数的方程是()A.﹣20=B.﹣2=
C.﹣2=D.﹣20=
8.(3分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()
A.28.3×107B.2.83×108C.0.283×1010D.2.83×109 9.(3分)下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上
B.利用圆规可以比较两条线段的大小关系
C.把弯曲的公路改直,就能缩短路程
D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
10.(3分)一个两位数,个位数字为a,十位数字为b,把这个两位数的个位数字与十位数字交换,得到一个新的两位数,则新两位数与原两位数的和为()
A.9a+9b B.2ab C.ba+ab D.11a+11b 11.(3分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()
A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1 12.(3分)定义符号“*”表示的运算法则为a*b=ab+3a,若(3*x)+(x*3)=﹣27,则x=()
A.﹣B.C.4D.﹣4
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.(4分)若把45.58°化成以度、分、秒的形式,则结果为.
14.(4分)若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2018的值等于.15.(4分)若(x﹣2)2+|y+|=0,则x﹣y=.
16.(4分)某同学在计算10+2x的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.
17.(4分)如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是﹣,则B点在数轴上对应的数值是.
18.(4分)我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是小时.
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19.(10分)计算:
(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)
(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.
20.(10分)先化简,再求值:
(1)3x2﹣[5x﹣(6x﹣4)﹣2x2],其中x=3
(2)(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=﹣1,n=2.
21.(10分)解方程:
(1)﹣2=.
(2)=﹣.
22.(8分)一个角的余角比这个角的补角的还小10°,求这个角的度数.
23.(10分)列方程解应用题:
A车和B车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A车到达乙地,而B车还差40公里才能到达甲地.求甲地和乙地相距多少公里?
24.(12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;
(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;
(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.
山东省滨州市惠民县七年级(上)期末数学试卷
参考答案
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确
的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.C;2.A;3.D;4.C;5.B;6.C;7.B;8.D;9.C;10.D;11.A;
12.D;
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.45°34'48″;14.1;15.;16.0;17.0或;18.;
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19.;20.;21.;22.;23.;24.;。