概率论第四章习题解答
概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论第四章习题解答

1第四章随机变量的数字特征I 教学基本要求1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望;2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差;3、了解切比雪夫不等式及应用;4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念;5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理;6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用.II 习题解答A 组1、离散型随机变量X 的概率分布为X -2 0 2 p0.400.300.30求()E X 、(35)E X +、2()E X ?解:()(2)0.4000.3020.300.2E X =-⨯+⨯+⨯=-;(35)3()5 4.4E X E X +=+=;2222()(2)0.4000.3020.30 1.8E X =-⨯+⨯+⨯=.2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元求产品的平均价值?解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为X 0 8 10 p0.00140.80880.1898则()80.1898100.80889.61E X =⨯+⨯≈(元).3、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()E X ?解:由分布函数知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它则4()()24x E X xf x dx dx +∞-∞===⎰⎰.4、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()E X ?解:1111()(1)(1)k k k k E X kp p pk p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知 211()[1(1)]E X p p p =⨯=--.5、若随机变量X 服从参数为λ的泊松分布,即的泊松分布,即()!kp X k e k λλ-== (0,1,2,)k =求()E X 、2()E X ?解:1()!(1)!kk k k E X k ee ee k k λλλλλλλλλ-+∞+∞---======-∑∑;12201(1)()[]!(1)!!kk kk k k k k E X keee k k k λλλλλλλλ-+∞+∞+∞---===+===-∑∑∑1210[]()(1)!!k kk k e e e e k k λλλλλλλλλλλλ-+∞+∞--===+=+=+-∑∑. 6、某工程队完成某项工程的时间X (单位:月)服从下述分布X 10 11 12 13 p0.40.30.20.1(1) 求该工程队完成此项工程的平均时间;(2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1)()100.4110.3120.2130.111E X =⨯+⨯+⨯+⨯=(月);(2) ()[50(13)]65050()100E Y E X E X =-=-⨯=(万元). 7、若随机变量X 服从区间[,]a b 上的均匀分布,即1()a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其它求()E X 、2()E X ?解:()()2bax a b E X xf x dx dx b a +∞-∞+===-⎰⎰;22222()()3baxa ab b E X x f x dx dx b a +∞-∞++===-⎰⎰. 8、若随机变量X 服从参数为λ的指数分布,即的指数分布,即0()0x ex f x x λλ-⎧>=⎨≤⎩0求()E X 、2()E X ?解:0()()xxE X xf x dx x edxxdeλλλ+∞+∞+∞---∞===-⎰⎰⎰1xxxeedxλλλ+∞+∞--=-+=⎰;2222202()()2xxxE X x f x dxx edxx exedxλλλλλ+∞+∞+∞+∞----∞-∞===-+=⎰⎰⎰.9、离散型随机变量X 的概率分布为X 0 2 6 p3/12 4/12 5/12求()E X 、[ln(2)]E X +?解:34519()0261212126E X =⨯+⨯+⨯=;34513[ln(2)]ln(02)ln(22)ln(62)ln 21212126E X +=+⨯++⨯++⨯=.10、设2~(,)X N μσ,求(||)E X μ-?解:22()21(||)||2x E X x e dx μσμμπσ--+∞-∞-=-⎰令x t μσ-=,由偶函数性质有222022(||)()2t t E X e d μσσππ+∞--==⎰.11、设某商品需求量(10,30)X U ,销售商进货量n 在(10,30)之间,是一个整数.每销售一件商品获利500(元),若供小于求,每件产品亏损100(元).若供大于求,则从外地调运,每件商品可获利300(元).为使利润期望值不少于9280(元),进货量最少应为多少?解:按题意利润Y 与X 、n 的关系为500300()1030500100()1030n X n n X Y X n X X n +-≤<≤⎧=⎨--≤<≤⎩则利润平均值为10101()[[500100()][500300()]20n n E Y X n X dx n X n dx =--++-⎰⎰ 27.53505250n n =-++由题意知27.535052509280n n -++≥解得62263n ≤≤,则最少进货量为21.12、某保险公司规定,如果一年内顾客投保事件A 发生,则赔偿顾客a 元.以往资料表明事件A 发生的概率为p .为使公司收益期望值为0.1a ,则应向顾客收取都少保费?解:设应向顾客收取x 元保费,公司的收益为Y 元则Yx x a - p1p -p按题意()(1)()0.1E Y x p x a p a =-+-= 解得0.1x ap a =+.13、设随机变量X 的密度函数为1cos0()220x x f x π⎧≤≤⎪=⎨⎪⎩其它.对X 进行独立重复观测4次,Y 表示观测值大于/3π的次数,求2Y 的数学期望?解:显然~(4,)Y b p ,其中p 是(/3)X π>的概率,故31()cos 0.5322xp p Xdx πππ=>==⎰所以44()0.50.5kkkp Y k C -==⨯ (0,1,2,3,4)k =则有42244()0.50.55k kkk E Y k C -==⨯=∑.14、设随机变量X 、Y 相互独立,且都服从标准正态分布求22Z X Y =+的数学期望?解:由题意知X 、Y 的联合密度函数为2221(,)2x y f x y eπ+-=于是22222221()(,)2x y E Z x y f x y dxdy x y edxdy π++∞+∞+∞+∞--∞-∞-∞-∞=+=+⎰⎰⎰⎰令cos x r θ=、sin y r θ=得222222201()22r r E Z r e drd r e drππθπ+∞+∞--===⎰⎰⎰.15、已知(,)X Y 的分布如下,令max{,}Z X Y =,求()E Z ?YX0 5 10 15 0 0.02 0.06 0.02 0.10 5 0.04 0.15 0.20 0.10 100.010.150.140.01解:由题设可得Z 的分布为Z 0 510 15 p 0.020.25 0.52 0.21()00.0250.25100.52150.219.6E Z =⨯+⨯+⨯+⨯=.16、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求()E X 、()E Y 、()E XY 、22()E X Y +?解:12004()(,)125xE X xf x y dxdydx xy dy+∞+∞-∞-∞-∞===⎰⎰⎰⎰; 1303()(,)125x E Y yf x y dxdy dx y dy +∞+∞-∞-∞===⎰⎰⎰⎰;;131()(,)122xE XY xyf x y dxdy dx xy dy +∞+∞-∞-∞-∞===⎰⎰⎰⎰; 122222220016()()(,)()15xE XY xy f x y dxdydx xy y dy+∞+∞-∞-∞-∞+=+=+=⎰⎰⎰⎰. 17、设随机变量(,)X Y 的密度函数为1()02,02(,)8x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ?解:22007()(,)()88xE X xf x y dxdyxy dxdy+∞+∞-∞-∞==+=⎰⎰⎰⎰. 18、甲乙二人相约在12:00~13:00之间会面,设X 、Y 分别表示甲乙到达时间,且相互独立已知X 、Y 的密度函数为2301()0x x f x ⎧<<=⎨⎩其它、201()0y y f y <<⎧=⎨⎩其它求先到达者需要等待时间的数学期望?解:等待时间可以表示为||X Y -,由于X 、Y 的联合密度函数为2601,01(,)0x y x y f x y ⎧<<<<=⎨⎩其它11200(||)||6E X Y x y x ydxdy ⇒-=-⎰⎰112200001()6()|64xyx y x ydydx y xx ydxdy =-+-=⎰⎰⎰⎰.19、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求数学期望()E X 、()E Y ?解:设(,)X Y 的联合密度函数为(,)(,)0(,)c x y G f x y x y G∈⎧=⎨∉⎩,由密度函数性质解出9/2c =下面分别求出边沿密度函数当12x -≤≤时,有22222()(2)99x X xf x dy x x +==+-⎰,故此 22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它 当01y ≤≤时,有24()99y Y y f y dx y--==⎰当14y <≤时,有222()(2)99y Y y f y dx y y --==+-⎰,所以 40192()(2)1490Y y y f y y y y ⎧≤≤⎪⎪⎪=+-<≤⎨⎪⎪⎪⎩其它从而22121()()(2)92XE X xfx dx x x x dx +∞-∞--==+-=⎰⎰; 1401428()()(2)995Y E Y yf y dy y yd y y y dy +∞-∞-∞==++-=⎰⎰⎰. 20、离散型随机变量X 的概率分布为X -2 0 2 p0.40 0.30 0.30求()D X ?解:由题意易知()0.2E X =-、2() 1.8E X =,所以22()()[()] 1.80.04 1.76D X E X E X =-=-=.21、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()D X解:由题意易知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它,且()2E X=,则242(2)4()(())()43x D X x E X f x dx dx +∞-∞-=-==⎰⎰. 22、若随机变量X 服从参数为λ的泊松分布,求()D X ? 解:由题意易知()E X λ=、22()E X λλ=+,故22()()[()]D X E X E X λ=-=.23、设随机变量(,)X Y 的密度函数为1()02,02(,)80x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()D X ?解:由题意易知7()8E X =,故2222001711()[()](,)()()8636D X x E X f x y dxdy x x y dxdy +∞+∞-∞-∞-∞=-=-+=⎰⎰⎰⎰. 24、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求方差()D X 、()D Y ?解:由题意易知22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它、40192()(2)1490Y yy f y y y y ⎧≤≤⎪⎪=+-<≤⎨⎪⎪⎪⎩其它1()2E X =、8()5E Y =22222127()()(2)910X E X x f x dx x x x dx+∞-∞--==+-=⎰⎰14222214247()()(2)9914Y E Yy f y dyy ydyy y dy +∞-∞-∞==++-=⎰⎰⎰229()()[()]20D X E X E X =-=;22279()()[()]350D YE Y E Y =-=.25、设10只同种元件中由2只是坏的,装配仪器时,从中任取1只,如果是不合格品,则扔掉后重取1只,求取出合格品前取出次品数的方差?只,求取出合格品前取出次品数的方差?解:设X 表示取出合格品前已取出次品的数目,则X0 1 2 p8/10 16/90 2/90故2()9E X =、24()15E X =所以2288()()[()]405D XE X E X =-=.26、设随机变量X 的密度函数为||1()2x f x e -=.求()E X 、()D X ?解:||1()()02x E X xf x dx x e dx+∞+∞--∞-∞===⎰⎰; 222||2011()(())()222x xD XE X E X x f x dx x e dx x e dx +∞+∞+∞---∞-∞=-====⎰⎰⎰.27、设X 为随机变量,证明:对任意常数C ,有2()()D X E X C ≤-,当()C E X =时等号成立.证明:22222()(2)()2()E X C E X CX C E X CE X C -=-+=-+22222()[()]{[()]2())}()[()]E X E X E X CE X C D X E X C =-+-+=+-由于2[()]E X C -非负,从而有2()()D X E X C ≤-,且当()C E X =时2()()D X E X C =-.28、设U 服从(-2,2)上的均匀分布,定义X 、Y 如下1111U X U -<-⎧=⎨>-⎩、1111U Y U -<⎧=⎨>⎩求()D X Y +?解:先求X Y +的分布(2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=-==-=-=<-<=<-= (2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=====≥-≥=≥= (0)1(2)(2)1/2p X Y p X Y p X Y +==-+=-+=-=所以()0E X Y +=,从而2()()2D X Y E X Y +=+=.29、已知()750E X =、2()15D X =.请估计概率(700800)p X <<? 解:由切比雪夫不等式有2215(700800)(|750|50)10.9150p X p X <<=-<≥-≈.30、设()2E X =-、()1D X =、()2E Y =、()4D Y =、0.5XY ρ=-,利用由切比雪夫不等式估计概率(||6)p X Y +≥的上限?解:因为()0E X Y +=、()()()2(,)3D X Y D X D Y Cov X Y +=++=,所以,所以2()1(||6)(|()()|6)612D X Y p X Y p X YE X Y ++≥=+-+≥≤=. 31、设()4D X =、()9D Y =、0.5XY ρ=,求(23)D X Y -? 解:(,)()()3XY Cov X Y D X D Y ρ==(23)4()9()2(2,3)16813661D X Y D X D Y Cov X Y -=++-=+-=.32、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求(,)Cov X Y ?解:由题意易知4()5E X =、3()5E Y =、1()2E XY =,故 1431(,)()()()25550Cov X Y E XY E X E Y ⨯=-=-=⨯. 33、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求协方差(,)Cov X Y 与相关系数XY ρ?解:由题意易知1()2E X =、8()5E Y =、9()20D X =、279()350D Y =2221225()994x x G E XY xy dxdy xdx ydy +-===⎰⎰⎰⎰所以9(,)()()()20Cov X Y E XY E X E Y =-=; (,)0.751()()XYCov X Y D X D Y ρ=≈.34、设二维随机变量(,)X Y 的联合分布为YX-1 0 1 00.07 0.18 0.15 100.080.320.20求22(,)Cov X Y解:先求2X 、2Y 、22X Y 的分布2(0)0.4p X ==、2(1)0.6p X == 2(0)0.5p Y ==、2(1)0.5p Y == 22(0)0.72p X Y ==、22(1)0.28p X Y ==所以2()0.6E X =、2()0.5E Y =、22()0.28E X Y =,由此得222222(,)()()()0.02Cov X Y E X Y E X E Y =-=-.35、随机变量(,)X Y 的密度函数为201,11(,)0x x y f x y ≤≤-≤≤⎧=⎨⎩其它求()D X Y +?解:当01x <<时,有11()22X x f x d y x -==⎰;当01y <<时,有11()22Y y f y d x y -==⎰,故2()()3E X E Y ==、1()()18D X D Y == 由于(,)()()X Y f x y f x f y ≠,即X 与Y 不独立.所以11015()212xE XY xydxdy -==⎰⎰541(,)()()()12936Cov X Y E XY E X E Y =-=-=- 1()()()2ov(,)18D X Y D X D Y C X Y +=++=.36、将1枚硬币抛n 次,以X 、Y 分别表示正面向上与反面向上的次数,求(,)Cov X Y 、XY ρ解:由于X Y n+=,即Y n X=-,于是1XYρ=-;又因~(,0.5)X b n 、~(,,0.5)Y b n ,所以()()/4D X D Y n ==,故(,)(,)(,)()/4Cov X Y Cov X n X Cov X X D X n =-=-==.37、设X 与Y 独立,且都服从参数为λ的泊松分布,令2U X Y =+、2V X Y =-求U 与V 的相关系数?解:由于()(2)4()()5D U D X Y D X D Y λ=+=+= ()(2)4()()5D V D X Y D X D Y λ=-=+=所以(,)(2,2)Cov U V Cov X Y X Y =+-4()(,2)(2,)()3D X Cov Y X Cov X Y D Y λ=+--=由此得(,)35(),()XYCov X Y D X D Y ρ==. 38、设二维随机变量(,)X Y 的联合密度函数为1||0,01(,)0y x f x y <<<⎧=⎨⎩其它判断X 与Y 之间的相关性与独立性.解:由于12()3x xE X xdydx -==⎰⎰、、10()0x xE Y ydydx -==⎰⎰、10()0xxE XY xydydx -==⎰⎰,则(,)()()()0Cov X Y E X E Y E XY =-=故X 与Y 之间不相关;又因当01x <<时,有()2xXxf x dy x-==⎰,即201()0X x x f x <<⎧=⎨⎩其它同理可以求出110()1010X y y f x y y +-<<⎧⎪=-<<⎨⎪⎩其它由于(,)()()X Y f x y f x f y ≠,故X 与Y 之间不独立.39、设a 为区间(0,1)上一定点,随机变量(0,1)X U ,Y 是X 到a 的距离.问a 为何值时X 与Y 是不相关?解:由题设知()0.5E X =、||Y X a =-,所以11201()||()()2aaE Y x a dx a x dx x a dx a a =-=-+-=-+⎰⎰⎰3101()()()323a a a a E XY x a x dx x x a dx =-+-=-+⎰⎰31(,)3212a aCov X Y =-+令31(,)03212a a Cov X Y =-+=,可得方程2(21)(221)0a a a ---=在(0,1)内解得0.5a =,即0.5a =时,X 与Y 不相关. 40、设计算器进行加法计算时,所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布.(1) 将1500个数相加,问误差总和的绝对值超过15的概率是多少;(2) 最多可以有几个数相加,其误差总和的绝对值小于10的概率不小于0.90? 解:设第i 个数的舍入误差为i X (1,,)i n = ,故()0i E X =、()1/12i D X = (1,,)i n =记1ni i X X ==∑(1) 由林德伯格-列维中心极限定理有15001150001515000(||15)(||)15001/1215001/12i i x p X p =-⨯-⨯>=>∑151[2()1]0.180215001/12≈-Φ-=;(2) 由林德伯格-列维中心极限定理有1100100.90(||10)(||)2()11/121/121/12ni i x n n p X p n n n =-⨯-⨯≤<=≤≈Φ-∑即10()0.951/12n Φ≥,由于(1.645)0.95Φ=,则101.6451/12n ≥因此443.45n £,再由n 为整数得满足题意的个数为443.41、一批木材中有80%的长度不小于3m ,从中任取100根,求其中至少有30根长度短于3m 的概率?解:以X 表示100根木材中长度短于3m 的数目,则~(100,0.2)X b ,于是()20E X =,()16D X =.由于100n =较大,则由中心极限定理,近似有2~(20,4)X N ,由此有20302010(30)1(30)1()1()0.0062444X p X p X p --≥=-<=-<≈-Φ-=. 42、某商店出售价格分别为1(元)、1.2(元)、1.5(元)的3种蛋糕,种蛋糕,每种蛋糕被购买的概每种蛋糕被购买的概率分别为0.3、0.2、0.5.若某天售出300只蛋糕,(1) 求这天收入为400(元)的概率;(2) 求这天售出价格为1.2(元)蛋糕多于60只的概率?解:(1) 设第i 只蛋糕价格为iX (1,,300)i = .则i X的分布为i X1 1.2 1.5 p0.30.20.5于是可得() 1.29i E X =、2() 1.713iE X =、()0.0489i D X =令3001i i X X ==∑表示总收入,则由林德伯格-列维中心极限定理有300 1.29400300 1.29(400)()1(3.39)0.00033000.04893000.0489X p X p -⨯-⨯≥=>≈-Φ=⨯⨯;(2) 记Y 为300只蛋糕中售价为1.2(元)的蛋糕数目,则~(300,0.2)Y b ,于是()60E Y =、()48D Y =,由中心极限定理,近似有~(60,48)X N ,由此有606060(60)1()1(0)0.54848Y p Y p --≥=-<≈-Φ=.43、进行独立重复试验,每次试验中事件A 发生的概率为0.25.问能以95%的把握保证1000次试验中事件A 发生的频率与概率相差多少?此时A 发生的次数在什么范围内?解:设X 为1000次试验中事件A 发生的次数,则~(1000,0.25)X b ,由二项分布的性质知()250E X =、()187.5D X =,而事件A 发生的频率为/1000X .根据题意,可得如下不等式(|0.25|)0.951000X p ε-≤≥即(|250|1000)0.95p X ε-≤≥,由棣莫弗―拉普拉斯定理有25010001000(||)2()10.95187.5187.5187.5X p εε-≤≈Φ-≥即1000()0.975(1.96)187.5εΦ≥=Φ解得0.026ε³,这表明1000次试验中事件A 发生的频率与概率相差不超过0.026,相应的有1000次试验中事件A 发生的次数在224到276之间.44、某车间有同型号车床150台,在1小时内每台车床约有60%的时间在工作.假定各车床工作相互独立,工作时每台车床要消耗电能15kw.问至少要多少电能,才可以有99.5%的可能性保证此车间正常工作?解:以X 表示同时工作的车床数,则~(150,0.6)X b ,于是()90E X =、()36D X =,由题意知x 应使得下式成立(0)0.995p X x ≤≤≥由中心极限定理,近似有~(90,36)X N ,故有090909090(0)()()(15)0.9956666X x x p X x p ----≤≤=<<≈Φ-Φ-≥ 查标准正态分布表得90 2.586x -≥,即105.28x ≥,取整得106x =.故要保证车间有99.5%的可能性正常工作,需供电能151061590⨯=()kw .B 组1、将n 只球(1n 号)随机的装入n 只盒子(1n 号),一只盒子装一只球.若一只球装入的盒子与球同号,称为一个配对.记X 为配对数,求()D X ?解:引入随机变量i X (1,)i n = ,1i X =表示第i 号配对,0i X =表示第i 号不配对,则1n X X X =++ ,且1(1)i p X n ==(1,)i n = 即1()i E X n = (1,)i n =于是1()()1n E X E X X =++=因为i X 之间不独立,所以11111()()2(,)nn ni i i i j ii ij D X D X Cov X X -=====+∑∑∑∑下面考虑i j X X 的分布,由于i j X X 的取值只能是0、1,且1(1)(1,1)(1)i j i j p X X p X X n n =====- 所以1()(1)i j E X X n n =-,因此 21()()()()(1)i j i j i j Cov X X E X X E X E X n n =-=- 2211()21(1)nn D X Cnn n -⇒=+=-.2、设随机变量X 的分布函数为()F x ,其数学期望存在,证明()[1()]()E X F x dx F x dx +∞-∞=--⎰⎰.证明:00()()()()E X xf x dxxf x dxxf x dx +∞+∞-∞-∞==-⎰⎰⎰由于00()()()xxf x dxxdy f x dx +∞-∞=-⎰⎰⎰改变积分次序有00()(())()yxf x dxf x dx dyF y dy +∞-∞-∞-∞=-=-⎰⎰⎰⎰同理有()[1()]xf x dx F y dy +∞+∞=-⎰⎰ 0()[1()]()E X F x dxF x dx +∞-∞⇒=--⎰⎰.3、设随机变量X 的分布函数为0111()arcsin 11211x F x x x x π⎧<-⎪⎪=+-≤<⎨≥⎪⎩求()E X ?解:由上一题结论有()[1()]()E X F x dxF x dx +∞-∞=--⎰⎰111111[1arcsin ](arcsin )022x dx x dx ππ--=---+=⎰⎰.4、设连续随机变量X 的密度函数为()f x 若对任意常数c 有()()f c x f c x +=- (0)x >且()E X 存在.证明()E X c =.证明:令x t c =-则有()()()()()()E X xf x dxc t f c t dtcf c t dttf c t dt +∞+∞+∞+∞-∞-∞-∞-∞==++=+++⎰⎰⎰⎰由密度函数性质有()()cf c t dt cf c t dt c +∞+∞-∞-∞+=+=⎰⎰令u t =-,有()()()()tf c t dttf c t dtuf c u duuf c u du +∞+∞-∞-∞+=-=+=-+⎰⎰⎰⎰故()0tf c t dt +∞-∞+=⎰所以()E X c =.5、证明事件A 在一次试验中发生次数的方差不超过0.25.证明:设X 表示事件A 在一次试验中发生的次数,则(1,)X b p ,其中p 是事件A 发生的概率,则()(1)0D X p p =-≥由均值不等式得,当0.5p =时,()D X 有最大值0.25. 6、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()D X解:1111()(1)(1)k k k k E X kp p p k p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知211()[1(1)]E X p p p =⨯=--又111[(1)](1)()(1)(1)k k k E X Xk k p Xk pk k p +∞+∞-==+=+==+-∑∑将21(1)x -的展开式两端求导得 1321223(1)(1)k x k kx x -=⋅+⋅++-+- 3222[(1)][1(1)]E X X pp p ⇒+==--222()()[()][(1)][()]D X E X E X E X X X E X ⇒=-=+-- 221[(1)]()[()]p E X X E X E X p-=+--=. 7、一只昆虫所生虫卵X 服从参数为λ的泊松分布,而每个虫卵发育成幼虫的概率为p ,且每个虫卵是否发育成幼虫相互独立,求一只昆虫所生幼虫数Y 的期望与方差?解:由题意知()!np X n en λλ-==(0,1,2,)λ= ,而n 个虫卵发育成k ()k n ≤个幼虫的概率为(|)(1)k kn knp Y k X n C p p -===- (0,1,,)k n =由全概率公式,对任意0,1,,k n = 有()()(|)(1)!nkkn kn n k n k p Y k p X n p Y k X n e C p p n λλ+∞+∞--========-∑∑(1)()[(1)]()()!()!!!k n kk kp pn k p p p p e e e e k n k k k λλλλλλλλ-+∞----=-===-∑即Y服从参数为pλ的泊松分布所以()()E Y D Y p λ==.8、设随机变量X 的密度函数()f x 是偶函数,且2(||)E X <+∞,证明X 与2X 不相关,但不独立.证明:因()f x 是偶函数,所以()xf x 、3()x f x 是奇函数,故此3()()0E X E X ==222(,)()()()0Cov X X E X X E X E X ⇒=⋅-=因而,X 与2X 不相关;选取0a >使得()1p X a ≤<,考察如下特定事件概率22(,)()()()p X a X a p a X a p X a p a X a ≤≤=-≤≤>≤-≤≤ 22()()p X a p X a =≤≤即2222(,)()()p X a X a p X a p X a ≤≤≠≤≤ 故X 与2X 不独立.9、设1X 、…、n X 中任意两个的相关系数都是ρ,试证:11n ρ≥--. 证明:因为111110()()2(,)nnni iiiji i i j D X D X Cov X X-====≤=+∑∑∑∑1111()2()()nni i i j i ij D X D X D X ρ-====+∑∑∑11111()[()()]()[1(1)]n ni ni i j i i i j i D X D X D X D X n ρρ-====≤++=+-∑∑∑∑11n ρ⇒≥--.。
概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示: ξ 0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示: ξ 0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{408.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。
概率论习题及解答-第四章特征函数

ξ = a min{Y, x} − bx.
从而平均利润
∫∞ E(ξ) = aE(min{Y, x}) − bx = a min{y, x}λe−λydy − bx
(∫ x
∫∞ 0
)
=a
yλe−λydy +
xλe−λydy − bx
(0
∫x x
)
= a − xe−λx + e−λydy + xe−λx − bx
∑ ∞
∑ ∞ ∑i
E(η) = iP(η = i) =
P(η = i)
i=1
i=1 k=1
∑ ∞ ∑ ∞
∑ ∞
=
P(η = i) = P(η k).
注意到
P(min{ξ1, ξ2, · · · , ξn}
k=1 i=k
k) = P(ξ1 k, ξ2
k=1
k, · · · , ξn
( ∑ )n
k) =
记 µk = p0 + p1 + · · · + pk−1, νk = 1 − µk, 试证明
∑ ∞ E(min{ξ1, ξ2, · · · , ξn}) = νkn,
k=1
∑ ∞ E(max(ξ1, ξ2, · · · , ξn)) = (1 − µnk ).
k=1
4
证明: 若 η 为取非负整值随机变量, 则
得
∑ ∞
∑ ∞
E(max{ξ1, ξ2, · · · , ξn}) = P(max{ξ1, ξ2, · · · , ξn} k) = (1 − µnk ).
k=1
k=1
练习4.1.11 设随机变量 ξ, η 独立同分布, ξ ∼ N (a, σ2), 试证明
概率论第四章 习题答案

1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò
+¥
3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞
∫
f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx
《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
概率论第四章习题答案

第四章复习题答案一、单项选择1.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4D.52.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( A )A .-1B .21C .2D .5 3.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( B )()(),XY Cov X Y D X D Y ρ=A .2161 B .361 C .61 D .1 4. 设随机变量X 和Y 独立同分布,X ~N (μ,σ2),则( B ) A.2X ~N (2μ,2σ2) B.2X -Y ~N (μ,5σ2) C.X +2Y ~N (3μ,3σ2)D.X -2Y ~N (3μ,5σ2)5.设EX 2=8,DX =4,则E (2X )=( D ) A.1 B.2 C.3 D.46.对任意两个随机变量X 和Y ,由D (X +Y )=D (X )+D (Y )可以推断( A ) A.X 和Y 不相关B.X 和Y 相互独立C.X 和Y 的相关系数等于-1D.D (XY )=D (X )D (Y )7.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( D ) A .-2 B .0 C .21D .2 8.设随机变量X 与Y 相互独立,且X ~B (16,0.5),Y 服从参数为9的泊松分布,则D (X -2Y +3)=( C )A.-14B.-11C.40D.439.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( D )A .-21B .0C .21D .2 二、填空1.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= ___-8___. 2.设随机变量X 与Y 相互独立,其分布律分别为则E (XY )=__2______.3.设X ,Y 为随机变量,已知协方差Cov(X ,Y )=3,则Cov(2X ,3Y )=____18___. 4.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= __8______ 5.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=__23______.6.已知E (X )=2,E (Y )=2,E (XY )=4,则X ,Y 的协方差Cov (X,Y )=____0_____. 7.设随机变量X ~N (0,4),则E (X 2)=_____4____.8.设X ~N (0,1),Y =2X -3,则D (Y )=____4__. 三、计算1.某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则X~P (λ),若已知P (X=1)=P (X=2),且该柜台销售情况Y (千元),满足Y=21X 2+2.试求:(1)参数λ的值;21!2!e e λλλλ--=,=2λ.(2)一小时内至少有一个顾客光临的概率;{}{}21101-P X P X e -≥=-== (3)该柜台每小时的平均销售情况E (Y ). ()==2E Y λ2. 2021年东京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术可用下表给出。
概率论第四、五章课后习题答案

第四章 随机变量的数字特征2.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。
以X 表示一天中调整设备的次数,试求E (X )。
(设诸产品是否为次品是相互独立的。
)解:先求检验一次,决定需要调整设备的概率。
设抽检出次品件数为Y ,则Y ~b (10,0.1).记需调整设备一次的概率为p ,则2639.01.09.01109.01}1{}0{1)1(910=⨯⨯⎪⎪⎭⎫ ⎝⎛--==-=-=>=Y P Y P Y P p 又因各次检验结果相互独立,故)2639.0,4(~b X X 的分布律为于是0556.12639.0444)1(43)1(62)1(41)(43223=⨯==⨯+-⨯+-⨯+-⨯=p pp p p p p p X E以后将会知道若X ~b (n ,p ),则np X E =)(.6.(1)设随机变量X 的分布律为求)53(),(),(22+XE X E X E(2)设)(~λπX ,求)11(+X E解:(1)E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2 由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.4(2)因)(~λπX ,故!}{k ek X P k λλ-==)1(1)1()1!(!)!1()!1(}{11)11(1100λλλλλλλλλλλλλλλλ--∞=-∞=-∞=+-∞=-∞=-=-=-==+=+==+=+∑∑∑∑∑eeej ej ek ek ek X P k X E j jj jk k k k k7. (1)设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x求(I)Y =2X ;(II) Y =e -2X 的数学期望(2)设随机变量n X X X ,,2,1 相互独立,且都服从(0,1)上的均匀分布,(I)求},,max{2,1n X X X U =的数学期望;(II)求},,min{2,1n X X X V =的数学期望。