双速电机自动控制电气原理简要说明
双速电机控制原理图

双速电机控制原理图一、双速电动机简介双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对从而改变电动机的转速。
根据感应电机同步转速公式为:n1=60f/p; p为磁极对数可知异步电动机的同步转速与磁极对数成反比,简单来讲就是磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。
这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。
此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。
∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。
电动机在△接法下运行,此时电动机p=2、n1=1500转/分。
3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。
其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。
同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。
KM2的辅助常开触点断开,防KM1误动。
4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。
5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。
双速电机控制原理学习

双速电机控制原理图一、双速电动机双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。
这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。
此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1,从而实现变速。
∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。
电动机在△接法下运行,此时电动机p=2、n1=1500转/分。
3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。
其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。
同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。
KM2的辅助常开触点断开,防KM1误动。
4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。
5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。
双速电机工作原理

双速机电工作原理引言概述:双速机电是一种具有两个不同转速的电动机,其工作原理基于电磁感应和电磁力的作用。
本文将详细介绍双速机电的工作原理,包括电磁感应原理、双速机电的结构和工作模式、转速控制原理以及应用领域。
一、电磁感应原理1.1 磁场的产生:双速机电通过电流在绕组中产生磁场,绕组中的电流会产生磁场,这个磁场会与定子磁场相互作用,从而产生转矩。
1.2 定子与转子之间的相互作用:当定子磁场和转子磁场相互作用时,会产生电磁力,这个电磁力会使转子产生转动。
二、双速机电的结构和工作模式2.1 结构:双速机电的结构包括定子、转子和绕组。
定子是由绕组和磁铁组成的,而转子是由绕组和铁芯组成的。
2.2 工作模式:双速机电有两种工作模式,即高速模式和低速模式。
在高速模式下,机电转速较高,适合于高速工作;而在低速模式下,机电转速较低,适合于低速工作。
三、转速控制原理3.1 电压变频控制:双速机电的转速可以通过改变电压的频率来控制。
通过改变电压的频率,可以改变机电绕组中的电流,从而改变转子的转速。
3.2 电阻调速控制:双速机电的转速还可以通过改变电阻来控制。
通过改变电阻的大小,可以改变机电绕组中的电流,从而改变转子的转速。
3.3 变极数控制:双速机电的转速还可以通过改变极对数来控制。
通过改变极对数,可以改变机电转子的磁场分布,从而改变转子的转速。
四、应用领域4.1 机械工业:双速机电广泛应用于机械工业领域,如机床、风机、压缩机等。
由于双速机电具有高低转速的特点,可以适应不同的工作需求。
4.2 矿山工业:双速机电在矿山工业中也有着重要的应用。
在矿山中,需要根据不同的工作环境和工艺要求来调整设备的转速,双速机电能够满足这种需求。
4.3 农业领域:双速机电在农业领域也有一定的应用。
在农业生产中,需要根据不同的作业要求来调整农机的转速,双速机电可以提供这种灵便性。
五、总结通过对双速机电的工作原理的详细介绍,我们可以了解到双速机电是一种具有两个不同转速的电动机,其工作原理基于电磁感应和电磁力的作用。
双速电动机控制电路工作原理

双速电动机控制电路工作原理
双速电动机控制电路是一种常见的电动机控制系统,它可以实现
对电动机的速度进行调整,使得电动机能够适应不同的工作环境。
该
电路的工作原理比较复杂,需要经过多步进行解释。
首先,双速电动机控制电路包括一个控制器和一个双速电动机。
控制器是电路的核心部分,它通过改变电动机的电源电压和频率来控
制电动机的运转。
而双速电动机则是一种可以在不同工作频率下工作
的电动机,它可以实现高速和低速两种工作状态。
在实际工作中,双速电动机控制电路经过以下几个步骤进行工作:第一步,控制器接收来自运行平台的控制信号,包括电压和频率。
这些信号会被送入控制器的中央处理器进行处理,从而控制电动机的
转速。
第二步,控制器会根据不同的工作环境,选择合适的电源电压和
频率来控制电动机的转速。
在低速工作状态下,控制器会降低电源电
压和频率,从而使电动机工作更加稳定。
第三步,控制器还可以对电动机的转速进行监测和控制。
如果电
动机出现故障或运行不稳定,控制器会及时调整电源电压和频率,以
确保电动机的正常运转。
第四步,双速电动机在工作过程中,还需要进行冷却和保护。
控
制器会监测电动机的温度和电流,一旦超过了预设的安全限制,就会
采取措施进行保护。
总之,双速电动机控制电路是一种广泛应用于各种工业和民用设
备中的电路系统。
它具有速度调节范围广、工作稳定、能耗低等优点,可以有效地提高设备的运行效率和使用寿命。
同时,该电路系统也需
要专业人员进行安装和调试,以确保设备的安全可靠运行。
双速电机控制电路原理

双速电机控制电路原理嘿,朋友!你有没有想过电机就像一个神奇的小怪兽,有时候慢悠悠地干活,有时候又风风火火地快速运转呢?这就是双速电机的魅力啦。
今天我就来给你好好讲讲双速电机控制电路原理,这可真是个超级有趣的事儿呢!咱们先来说说双速电机是个啥。
你可以把双速电机想象成一个有着两种性格的小伙伴。
一种性格是沉稳缓慢的,就像乌龟在慢慢爬;另一种性格是急性子,就像小兔子在蹦跶。
双速电机在不同的工作需求下,能够切换速度,这可太厉害了!那它是怎么做到的呢?这就全靠控制电路啦。
这个控制电路就像是双速电机的大脑,指挥着电机什么时候该快,什么时候该慢。
双速电机控制电路一般有两种基本的变速方式哦。
一种是通过改变电机的磁极对数来实现变速。
这怎么理解呢?就好比是一群小伙伴在玩接力赛,如果把小伙伴分成更多的小组,那传递接力棒的速度就会慢一些;如果把小伙伴分成更少的小组,那速度就会快起来。
在电机里呢,磁极对数多的时候,电机的转速就慢;磁极对数少的时候,电机的转速就快。
那控制电路在这个过程中是怎么发挥作用的呢?这时候就需要一些电气元件来帮忙啦。
比如说接触器。
接触器就像是一个个小开关,但是这个小开关可聪明着呢。
当我们想要电机以低速运行的时候,接触器就会按照预定的线路连接,让电机的绕组形成一种适合低速运转的连接方式,就好像是给电机穿上了一套适合慢慢走的装备。
我有个朋友,他刚开始接触双速电机控制电路的时候,那叫一个头疼。
他就问我:“这一堆线路和元件,就像一团乱麻,怎么才能理清啊?”我就跟他说:“你别把它看成乱麻,你就把它当成一个大拼图。
每一个元件都是一块拼图,只要你找到它们正确的位置,就能拼出一幅完美的画面。
”再来说说另一种变速方式,通过改变电机的电源频率来实现变速。
这个就有点像我们听音乐的时候调快或者调慢节奏一样。
电源频率高,电机就像打了鸡血一样转得飞快;电源频率低,电机就慢悠悠地晃悠。
在这种变速方式的控制电路里,会有一些专门的变频器。
双速电机的原理及控制方式

双速电机的原理及控制方式双速电机就是有两种速度的电机,常说的△/YY启动电路。
通过改变电机线圈绕组的极对数来改变电机转速。
常用电机极数有4级(2极对数),2极(1极对数)。
电机的同步转速=频率×时间(秒)/极对数4极电机的转速是一分钟1500转,2极电机的转速为一分钟3000转,去掉转差率为电机转子的实际转速。
双速电机线圈△/YY当双速电机线圈绕组△接法时(左图),U1、V1、W1端供入三相电源时,为低速运转。
当帮U1、V1、W1端短接在一起,提起来抖一抖电机线圈绕组就变成了YY接法(右图),U2、V2、W2端供入三相电源,高速运行,YY接法转速是△接法的两倍。
双速电机主电路接线双速电机主电路KM1接触器给双速电机U1、V1、W1供电,电机△低速运行,KM1吸合。
KM2接触器给双速电机U、V2、W2端供电。
KM3接触器主触点的下桩头接入电机的U1、V1、W1,接触器主触点的上桩头使用短接线连接在一起。
当KM3吸合时,U1、V1、W1端短接在一起。
电机YY高速运行时,KM2、KM3吸合。
双速电机控制电路手动切换手动切换高低速采用手动切换电路,按下SB1为低速运行,按下SB2为高速运行。
帮KM2、KM3看成一个接触器时,△/YY控制电路其实就是一个正反转电路。
采用接触器按钮双重互锁电路。
当按下SB1,KM1吸合电机低速运行,低速运行时按下SB2,KM1停止,KM2、KM3吸合电机YY高速运行。
当然高速运行时也可以直接切换成低速运行。
低速能直接转换成高速,得益于接触器辅助触点、按钮触点动作时,常闭触点先断开,常开触点后闭合,他们虽然感觉是同时动作的,实际上它们是有先后顺序的。
这一点在接触器、继电器控制电路非常重要。
自动切换通电延时时间继电器自动切换SA为转换开关,当转换开关切换到1时,电路为低速运行,KM1接触器吸合。
当转换开关切换到2时,电机为高速运行。
电机并不是直接高速运行,先低速再高速。
双速电机控制电路工作原理

双速电机控制电路工作原理哎呀,这双速电机控制电路工作原理啊,说起来还真是挺有意思的。
你们知道不,我以前教学生的时候,有个学生就跟我探讨这个问题,那会儿我一拍脑袋,哎呀,这事儿得好好讲讲。
首先啊,咱们得先说说双速电机是什么。
双速电机嘛,顾名思义,就是能跑两个速度的电机。
它和普通电机不一样,不是单一的,而是有两个定子绕组,通过改变绕组的连接方式,就能实现速度的变换。
那它的工作原理呢,咱们得先从电机的结构说起。
电机里头有两个线圈,一个叫主线圈,一个叫副线圈。
正常情况下,咱们只连接主线圈,这时候电机就按照一个速度转。
如果咱们把主线圈和副线圈并联起来,电机速度就提高啦;如果咱们串联起来,那速度就降低啦。
这原理说起来简单,但实际上有点儿复杂。
你们知道不,电机的转速和电压、频率是有关系的。
咱们改变电压和频率,就能改变电机的转速。
所以,双速电机控制电路,就是通过控制电压和频率来实现的。
记得有一次,有个学生问我:“刘老师,那这个电路到底是怎么控制电压和频率的呢?”我跟他讲:“哎呀,这事儿还得从电源说起。
”然后我就开始巴拉巴拉讲起电源的变换、控制器的原理,他听得是云里雾里。
我说:“你想象一下,电源就像一条大河,咱们得在河里搭起一个个水坝,通过调节水坝的大小,控制水流的速度。
这个控制电路,就是这样一个水坝。
”学生听得眼睛都瞪圆了:“哇,刘老师,您这比喻太形象了!”我说:“那是,我教学生嘛,就得让学生听得懂,记得住。
”咱们再说说控制电路的组成。
一般来说,双速电机控制电路主要由接触器、控制器、变压器和电机组成。
接触器负责通断电路,控制器控制电压和频率,变压器实现电压变换,电机嘛,就是实际的执行机构。
有一次,有个学生问我:“刘老师,那这个控制器到底是个啥玩意儿?”我说:“哎呀,这个控制器啊,就像是电机的‘大脑’。
”然后我就开始给他讲控制器的作用、原理,他听得是津津有味。
我说:“这个控制器,就像是一个人,得学会应变。
当电机需要高速度时,它就指挥电源加大电压;当电机需要低速度时,它就降低电压。
双速电机工作原理

双速机电工作原理双速机电是一种特殊类型的机电,它具有两个不同的转速。
在不同的工作情况下,可以切换不同的转速来适应不同的需求。
本文将详细介绍双速机电的工作原理及其应用。
1. 工作原理双速机电的工作原理基于机电的转子和定子之间的磁场相互作用。
它通常由一台机电和两个转速控制器组成。
转速控制器负责调整机电的转速,使其能够在不同的工作情况下以不同的速度运转。
双速机电的转速控制器通常采用两种不同的控制方式:电阻控制和变频控制。
- 电阻控制:在电阻控制方式下,转速控制器通过改变电机电源电压的大小来调整机电的转速。
通过增加或者减小电源电压,可以改变机电的转速。
这种控制方式简单可靠,但效率较低,因为在降低电源电压时会产生较大的能量损耗。
- 变频控制:在变频控制方式下,转速控制器通过改变机电的供电频率来调整机电的转速。
通过调整供电频率,可以实现机电的无级调速。
这种控制方式效率较高,但需要使用专门的变频器来实现频率调整。
2. 应用领域双速机电由于其灵便性和多功能性,在许多领域得到广泛应用。
- 工业领域:双速机电常用于工业生产线上的机械设备中。
在生产过程中,不同的工作环境和工作要求可能需要不同的转速。
双速机电可以根据需要在不同的转速下运行,提高生产效率和质量。
- 交通运输领域:双速机电也广泛应用于交通运输领域,如电动汽车、高铁、电动船舶等。
在不同的行驶情况下,车辆需要不同的动力输出和转速。
双速机电可以根据车辆的需求在不同的转速下提供合适的动力输出。
- 家用电器领域:双速机电还可以用于家用电器,如洗衣机、空调等。
在不同的工作模式下,家用电器需要不同的转速来满足用户的需求。
双速机电可以根据不同的工作模式提供合适的转速,提高家用电器的效能和使用体验。
3. 优势和局限性双速机电相比于普通机电具有一些明显的优势,但也存在一些局限性。
- 优势:- 灵便性高:双速机电可以根据需要在不同的转速下运行,适应不同的工作情况。
- 能效高:采用变频控制方式的双速机电能够实现无级调速,提高能源利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双速电机自动控制电气原理简要说明
设备简介
双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
根据公式;n=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。
这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。
控制电路
1、合上低压电断路器QF引入三相电源
2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动
机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。
电动机在△接法下运行,此时电动机p=2、n1=1500转/分。
3、若想转为高速运转,则按SB3按钮,此时中间继电器KA,时间继电器KT的线圈都
通电并自锁,经时间继电器设定的时间后,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。
同时交流接触器KM2、KM3线圈通电,辅助触点KM3自锁,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。
KM2的辅助常开触点断开,防KM1误动。
4、FR为电动机△运行和YY运行的过载保护元件。
5、此控制回路中KM2、KM3的常闭触点与KM1线圈串联,KM1常闭触点与KM3线圈串联,
这种控制就是接触器的互锁控制,保证△与YY两种接法不可能同时出现,保证电路正常工作和电路安全。
行业现状
双速电机主要用于煤矿、石油天然气、石油化工和化学工业。
此外,在纺织、冶金、城市煤气、交通、粮油加工、造纸、医药等部门也被广泛应用。
双速电机作为主要的动力设备,通常用于驱动泵、风机、压缩机和其他传动机械。
随着科技、生产的发展,存在爆炸危险的场所也在不断增加。
例如,近年来我国公路发展迅速,一大批燃油加油站出现,也给双速电机提供了新的市场。
电动机星三角启动电气控制原理简要说明
设备简介
星三角起动异步电动机因其结构简单、价格便宜、可靠性高等优点被广泛应用。
但在起动过程中起动电流较大,所以容量大的电动机必须采取一定的方式起动,星三角形换接起动就是一种简单方便的降压起动方式。
星三角起动可通过手动和自动操作控制方式实现。
对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。
这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ起动)。
控制电路
1、合上低压电断路器QF引入三相电源
2、按下启动按钮SB1,KM1交流接触器KM1、KM2及时间继电器KT线圈通电,KM1、KM2主触
点得电动作,并自锁。
电动机线圈处于星形接法。
3、时间继电器KT延时到达以后,延时触点KT断开,KM2线圈断电,KM1仍然得电吸合着;而
另一个延时触点KT闭合,KM3线圈通电,KM1、KM3主触点闭合,电动机线圈处于三角形接法运转状态。
4、电动机的三角形运转状态,必须要按下SB2,才能使全部接触器线圈失电跳开,才能
停止运转。
行业现状
采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。
由此可见,采用星三角起动方式时,电流特性很好,而转矩特性较差,所以客观存在只适用于无载或者轻载起动的场合。
由于起动转矩小,星三角起动的优点还是很显著的,因为基于这个起动原理的星三角起动器,同任何别的减压起动器相比较,其结构最简单,价格也最便宜。
除此
之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。
此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
电动机双重联锁正反转控制原理简要说明
设备简介
线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。
这两个接触器的主触头所接通的电源相序不同,KM1按L1-L2-L3相序接线,KM2则对调了两相的相序。
控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。
控制电路
1、合上低压断路器QF
3、反转控制:反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、
W相(即改变电源相序),从而达到反转目的。
行业现状
电动机的正反转控制是工业上经常采用的控制方式,然而正反转电路容易发生短路现象,
按钮、接触器双重联锁的正反转控制线路兼有两种联锁控制线路的优点,使线路操作方便,工作安全可靠。