三角函数诱导公式一览表
三角函数诱导公式一览表

三角函数诱导公式一览表公式一:设α为任意角,终边相同的角的同一三角函数的值相等:1、sin(2kπ+α)=sinα2、cos(2kπ+α)=cosα3、tan(2kπ+α)=tanα4、cot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:1、sin(π+α)=-sinα 2、cos(π+α)=-cosα3、tan(π+α)=tanα4、cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:1、sin(-α)=-sinα2、cos(-α)=cosα3、tan(-α)=-tanα4、cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:1、sin(π-α)=sinα 2、cos(π-α)=-cosα3、tan(π-α)=-tanα4、cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:1、sin(2π-α)=-sinα2、cos(2π-α)=cosα3、tan(2π-α)=-tanα4、cot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:1、sin(π/2+α)=cosα2、cos(π/2+α)=-sinα3、tan(π/2+α)=-cotα4、cot(π/2+α)=-tanα5、sin(π/2-α)=cosα6、cos(π/2-α)=sinα7、tan(π/2-α)=cotα 8、cot(π/2-α)=tanα公式七:3π/2±α与α的三角函数值之间的关系:1、sin(3π/2+α)=-cosα2、cos(3π/2+α)=sinα3、tan(3π/2+α)=-cotα4、cot(3π/2+α)=-tanα5、sin(3π/2-α)=-c osα6、cos(3π/2-α)=-sinα7、tan(3π/2-α)=cotα 8、cot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
三角函数的诱导公式

三角函数的诱导公式 所谓三角函数的诱导公式,就是讲角的三角函数转2n πα⋅
±化为角α的三角函数 常用公式(设α为任意角) 公式一:sin(2)k πα+= ,cos(2)k πα+= ,tan(2)k πα+= ,cot(2)k πα+= 公式二:
sin()πα+= ,cos()πα+= ,tan()πα+= ,cot()πα+= 公式三:
sin()α-= ,cos()α-= ,tan()α-= ,cot()α-= 公式四:
sin()πα-= ,cos()πα-= ,tan()πα-= ,cot()πα-= 公式五:sin(2)πα-= ,cos(2)πα-= ,tan(2)πα-= ,cot(2)πα-=
公式六:s i n()2πα+= ,cos()2πα+= ,tan()2πα+= ,cot()2πα+= ,sin()2πα-= ,cos()2πα-= ,tan()2πα-= ,cot()2πα-= 推算公式:3sin(
)2πα+= ,3cos()2πα+= ,3tan()2πα+= ,3cot()2πα+= ,3sin()2πα-= ,3cos()2πα-= ,3tan()2πα-= ,3cot()2πα-= 诱导公式记忆口诀:“奇变偶不变,符号看象限...........
” “奇、偶”指的是2π
的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
“符号看象限”的含义是:α不一定是锐角,只不过把它看成锐角,看
2n πα⋅
±是第几象限角,等式右边加上一个把α看成是锐角时原函数值的符号。
三角函数诱导公式

三角函数诱导公式
1三角函数诱导公式
三角函数诱导公式是一项重要的数学原理,需要数学爱好者研究和掌握。
它指的是从已知角度对应的三角函数值可以得到一定程度的总结,且每种总结都可以归纳为基本的诱导公式。
三角函数诱导公式的使用,可以节省时间,提高计算效率,常见的三角函数诱导公式有:
1.sin a+b=2sin(a+b/2)cos(a-b/2)
cos a+b=2cos(a+b/2)cos(a-b/2)
2.sin(a-b)=2sin(a/2+b/2)cos(a/2-b/2)
cos(a-b)=cos(a/2+b/2)cos(a/2-b/2)-sin(a/2+b/2)sin(a/2-b/2) 3.sin2A=2sinAcosA
cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
4.sin3A=3sina-4sin3A
cos3A=4cos3A-3cosA
三角函数诱导公式有助于更加有效地求解三角问题,但不能过于依赖它,只能作为计算辅助手段,将它用于更多地数学思考和创新中。
同时,还要注意上文说的诱导公式只涉及已知角度对应的三角函数值,因此,在求解未知的角的时候,还应使用反三角函数。
通过自
身学习和理解,从而掌握三角函数诱导公式,有助发展数学水平,提高数学活用能力。
三角函数诱导公式一览表

三角函数诱导公式一览表三角函数诱导公式是求解三角函数的重要工具之一,常用于简化复杂的三角函数表达式。
接下来,我们将一览表的形式,列举出常用的三角函数诱导公式及其推导过程。
一、正弦函数的诱导公式:1. 正弦函数的诱导公式之和差公式:sin(A±B) = sinAcosB±cosAsinB2. 正弦函数的诱导公式之倍角公式:sin2A = 2sinAcosA3. 正弦函数的诱导公式之半角公式:sin(A/2) = ±√[(1-cosA)/2]其中取正号的情况适用于A/2在第一、二象限,取负号的情况适用于A/2在第三、四象限。
二、余弦函数的诱导公式:1. 余弦函数的诱导公式之和差公式:cos(A±B) = cosAcosB∓sinAsinB2. 余弦函数的诱导公式之倍角公式:cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. 余弦函数的诱导公式之半角公式:cos(A/2) = ±√[(1+cosA)/2]其中取正号的情况适用于A/2在第一、四象限,取负号的情况适用于A/2在第二、三象限。
三、正切函数的诱导公式:1. 正切函数的诱导公式之和差公式:tan(A±B) = (tanA±tanB)/(1∓tanAtanB)2. 正切函数的诱导公式之倍角公式:tan2A = (2tanA)/(1-tan^2A)3. 正切函数的诱导公式之半角公式:tan(A/2) = ±√[(1-cosA)/(1+cosA)]其中取正号的情况适用于A/2在第一象限,取负号的情况适用于A/2在第三象限。
四、余切函数、正割函数和余割函数的诱导公式:1. 余切函数的诱导公式:cot(A±B) = cotAcotB∓ 12. 正割函数的诱导公式:sec(A±B) = secAsecB±13. 余割函数的诱导公式:csc(A±B) = cscAcscB∓1以上是常用的三角函数诱导公式一览表,通过这些公式的推导,我们可以在复杂的三角函数表达式中简化计算,提高计算效率。
三角函数诱导公式大全

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与αsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:的三角函数值之间的关系:对于k2π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:,k=4为偶数,所以取sinα。
-α)=sin(42π/2-α)sin(2π当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
高中三角函数诱导公式大全表格

高中三角函数诱导公式大全表格一、概述在高中数学课程中,三角函数是一个重要的内容。
而三角函数的诱导公式则是三角函数中的一个重要部分,它可以帮助我们简化复杂的三角函数表达式,从而更容易地进行计算和推导。
本文将为大家列举常见的高中三角函数诱导公式,并整理成一张大全表格,以供学习和参考。
二、正弦函数的诱导公式1. tanθ = sinθ / cosθ2. 1 + tan^2θ = sec^2θ3. sin^2θ + cos^2θ = 14. sin2θ = 2sinθcosθ5. cos2θ = cos^2θ - sin^2θ三、余弦函数的诱导公式1. cotθ = cosθ / sinθ2. 1 + cot^2θ = csc^2θ3. cos^2θ = 1 - sin^2θ4. cos2θ = cos^2θ - sin^2θ5. sin2θ = 2sinθcosθ四、正切函数的诱导公式1. sinθ/cosθ = tanθ2. 1 + cot^2θ = csc^2θ五、余切函数的诱导公式1. cosθ/sinθ = cotθ2. 1 + tan^2θ = sec^2θ六、结论通过以上列举的三角函数诱导公式,我们可以看到,这些公式为我们在高中数学课程中解决三角函数问题提供了非常重要的帮助。
熟练掌握这些公式,将有助于我们更好地理解和运用三角函数知识。
希望本文整理的高中三角函数诱导公式表格能够对大家的学习有所帮助。
七、参考资料1. 《高中数学课程标准实验教科书-数学》2. 《高中数学课程标准实验教科书-选修四》3. 《高中数学必修1》4. 《高中数学必修2》三、诱导公式的应用在学习三角函数的过程中,诱导公式是一个非常重要的内容。
通过诱导公式,我们可以简化三角函数的表达式,从而更加轻松地进行计算和推导。
诱导公式也在解决三角函数相关问题时起到了至关重要的作用。
下面我们将进一步深入探讨诱导公式的应用。
1. 解决三角函数方程在解三角函数方程的过程中,常常需要借助诱导公式进行转化。
三角函数的诱导公式

三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinα(k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotα公式六:sin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotα(以上k∈Z)诱导公式记背诀窍:奇变偶不变,符号看象限。
[2]或者也可以这样记:分变整不变,符号看象限。
三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)正弦二倍角公式sin2α = 2cosαsinα 正切二倍角公式tan2α= 2tanα / 1 - tan^2α余弦二倍角公式余弦二倍角公式有三组表示形式,三组形式等价(升幂,降角):1. cos2α = 2cos^2(α)-12. cos2α = 1 − 2sin^2(a)3. cos2α = cos^2(a)− sin^2(a)cos2α = cos^2(α)-sin^2(α)= 2cos^2(α)-1 = 1 -2sin^2(α)还可以变形为(降幂,升角)sin^2α = (1 -cos2α) /2,cos^2α =(1 + cos2α)/2sin2α = sin^2(α + π/4) -cos^2(α + π/4) = 2sin^2(a + π/4) -1 = 1 -2cos^2(α + π/4);cos2α = 2sin(α + π/4)cos(α + π/4)正切二倍角公式tan2α = 2tanα/[1 - (tanα)^2]tan(1/2*α)=(sin α)/(1 + cos α) = (1 - cos α)/sin αtan(2a) = tan(a + a) = (tan(a) + tan(a))/(1 -tan(a)*tan(a) )= 2tanα/[1 -tan^2(a)]。
三角函数诱导公式全集

三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数诱导公式一览表
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:1、sin(2kπ+α)=sinα2、cos(2kπ+α)=cosα
3、tan(2kπ+α)=tanα
4、cot(2kπ+α)=cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
1、sin(π+α)=-sinα
2、cos(π+α)=-cosα
3、tan(π+α)=tanα
4、cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:
1、sin(-α)=-sinα
2、cos(-α)=cosα
3、tan(-α)=-tanα
4、cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
1、sin(π-α)=sinα
2、cos(π-α)=-cosα
3、tan(π-α)=-tanα
4、cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
1、sin(2π-α)=-sinα
2、cos(2π-α)=cosα
3、tan(2π-α)=-tanα
4、cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
1、sin(π/2+α)=cosα
2、cos(π/2+α)=-sinα
3、tan(π/2+α)=-cotα
4、cot(π/2+α)=-tanα
5、sin(π/2-α)=cosα
6、cos(π/2-α)=sinα
7、tan(π/2-α)=cotα8、cot(π/2-α)=tanα
公式七:3π/2±α与α的三角函数值之间的关系:
1、sin(3π/2+α)=-cosα
2、cos(3π/2+α)=sinα
3、tan(3π/2+α)=-cotα
4、cot(3π/2+α)=-tanα
5、sin(3π/2-α)=-cosα
6、cos(3π/2-α)=-sinα
7、tan(3π/2-α)=cotα
8、cot(3π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀:
“一全正;二正弦;三两切;四余弦”。
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。